Robust hollow glass microspheres-based solar evaporator with enhanced thermal insulation performance for efficient solar-driven interfacial evaporation
Wang, S.1,2; Niu, Y.1; Mu, W.1; Zhu, Z.1; Sun, H.1; Li, J.1; Liang, W.1; Li, A.1
2022-12
发表期刊Materials Today Chemistry
ISSN2468-5194
卷号26
摘要Solar-driven interfacial evaporation is a green and efficient technology with wide applications, such as seawater desalination, wastewater treatment and electrical generation, and so on. Herein, we report a novel composite aerogel (PI-MWCNT-MHGM) using (3-aminopropyl)triethoxysilane modified hollow glass microspheres (MHGM), carboxylated multiwalled carbon nanotubes (MWCNT), and water-soluble polyamide via simple directional freezing and freeze-drying methods for solar-driven interfacial evaporation. Owing to the directional freezing method, the hollow structure of HGM, and strong chemical interactions in PI-MWCNT-MHGM, the PI-MWCNT-MHGM composite aerogel exhibits porous structure with vertically aligned channels, strong mechanical properties, low thermal conductivity, and excellent thermal insulation, as well as broadband light absorption. As expected, the PI-MWCNT-MHGM evaporator shows a high evaporation rate (1.506 kg m−2 h−1) under 1 kW m−2 solar irradiation and excellent salt resistance, e.g., even when 1 g of NaCl was placed on the surface of the PI-MWCNT-MHGM, it could dissolve within 10 min. Moreover, the PI-MWCNT-MHGM possesses self-floating ability, combined with its eco-friendly, facile, and potentially scalable preparation method, the prepared aerogel may hold great potential for real applications. © 2022 Elsevier Ltd
关键词Aerogels Energy dissipation Evaporation Evaporators Freezing Glass Light absorption Microspheres Multiwalled carbon nanotubes (MWCN) Sodium chloride Solar energy Thermal conductivity Thermal insulation Wastewater treatment Composite aerogel Directional freezing Efficient technology Evaporation rate Green technology Hollow glass microspheres Insulation performance Multi-walled-carbon-nanotubes Seawater desalination Solar evaporators
DOI10.1016/j.mtchem.2022.101042
收录类别EI ; SCIE
语种英语
WOS研究方向Chemistry ; Materials Science
WOS类目Chemistry, Multidisciplinary ; Materials Science, Multidisciplinary
WOS记录号WOS:000853266600002
出版者Elsevier Ltd
EI入藏号20223012410673
EI主题词Desalination
EI分类号413.2 Heat Insulating Materials - 445.1 Water Treatment Techniques - 452.4 Industrial Wastes Treatment and Disposal - 525.4 Energy Losses (industrial and residential) - 641.1 Thermodynamics - 657.1 Solar Energy and Phenomena - 741.1 Light/Optics - 761 Nanotechnology - 801.3 Colloid Chemistry - 802.1 Chemical Plants and Equipment - 802.3 Chemical Operations - 812.3 Glass - 933.1 Crystalline Solids
来源库WOS
引用统计
被引频次[WOS]:0   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://ir.lut.edu.cn/handle/2XXMBERH/159425
专题材料科学与工程学院
石油化工学院
通讯作者Li, A.
作者单位1.Lanzhou Univ Technol, Coll Petrochem Technol, Langongping Rd 287, Lanzhou 730050, Peoples R China;
2.Ankang Univ, Dept Chem & Chem Engn, Ankang 725000, Shaanxi, Peoples R China
第一作者单位石油化工学院
通讯作者单位石油化工学院
第一作者的第一单位石油化工学院
推荐引用方式
GB/T 7714
Wang, S.,Niu, Y.,Mu, W.,et al. Robust hollow glass microspheres-based solar evaporator with enhanced thermal insulation performance for efficient solar-driven interfacial evaporation[J]. Materials Today Chemistry,2022,26.
APA Wang, S..,Niu, Y..,Mu, W..,Zhu, Z..,Sun, H..,...&Li, A..(2022).Robust hollow glass microspheres-based solar evaporator with enhanced thermal insulation performance for efficient solar-driven interfacial evaporation.Materials Today Chemistry,26.
MLA Wang, S.,et al."Robust hollow glass microspheres-based solar evaporator with enhanced thermal insulation performance for efficient solar-driven interfacial evaporation".Materials Today Chemistry 26(2022).
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, S.]的文章
[Niu, Y.]的文章
[Mu, W.]的文章
百度学术
百度学术中相似的文章
[Wang, S.]的文章
[Niu, Y.]的文章
[Mu, W.]的文章
必应学术
必应学术中相似的文章
[Wang, S.]的文章
[Niu, Y.]的文章
[Mu, W.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。