DOI :10.13872/j.1000-0275.2015.0149

赵文举,李娜,李宗礼,徐裕.不同种植年限压砂地土壤水分空间变异规律研究 [J]. 农业现代化研究, 2015, 36(6): 1067-1073. Zhao W J, Li N, Li Z L, Xu Y. Study on spatial variability of soil water content in gravel-mulched fields with different planting years[J]. Research of Agricultural Modernization, 2015, 36(6): 1067-1073.

不同种植年限压砂地土壤水分空间变异规律研究

赵文举¹ 李娜¹ 李宗礼^{1,2} 徐裕¹

(1. 兰州理工大学能源与动力工程学院,甘肃 兰州 730050 2. 水利部水利水电规划设计总院,北京 100120)

摘 要 '本文采取野外大田试验 运用地统计学和经典统计学方法 研究了不同种植年限压砂地的土壤水分空间变异 规律。结果表明 压砂地的土壤含水量均值明显大于裸地 (CK) 的土壤含水量 ,且新砂地 > 中砂地 > 老砂地 > 裸地。压 砂地各土层的变异系数均小于 10% ,为弱变异。裸地 (CK) 第 层 老砂地 、 层土壤水分半方差函数最佳理论模型 为指数模型 ,裸地 、、 层 新砂地第 层 ,中砂地第 、、 层 老砂地第 层为球形模型 ,其他各地型、各土层 均为高斯模型。新砂地具有强烈的空间自相关性 ,中砂地具有中等的空间自相关性 ,而裸地和老砂地空间自相关性微 弱 ,变异主要由随机性变异所引起。基于 Surfer8.0 绘制新砂地各层土壤含水量等值线分布图 结果显示 第 层的等 值线最密 ,第 层、第 层次之 ,第 层最稀疏 这与 C,和 Co/(Co + C) 得出的结论一致。以期为压砂地生态农业的生 产提供理论依据。

关键词 压砂地 土壤水分 空间变异性 变异系数 半方差函数模型 等值线分布图

中图分类号 \$152.7⁺2 文献标识码:A 文章编号:1000-0275(2015)06-1067-07

Study on spatial variability of soil water content in gravel-mulched fields with different planting years ZHAO Wen-ju¹, LI Na¹, LI Zong-li^{1,2}, XU Yu¹

(1. School of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050,

China; 2. General Institute for Water Resources and Hydropower Planning and Design, Ministry of Water Resources,

Beijing, 100120)

Abstract Geostatistical and classical statistics were used to characterize spatial variability of soil water content (SWC) in gravel-mulched fields with different planting years. Results indicated that SWC with sand covered was higher than that with bare land (CK), and the SWC ranked as New Gravel-Mulched > Middle Gravel-Mulched (MGM) > Old Gravel-Mulched (OGM) > CK. Coefficient variation of the gravel-mulched fields were less than 10%, indicating a weak variability. The best models for fitting the semi-variograms were exponential, spherical, and Gaussian models depending on the soil layer and field. Spatial autocorrelation of SWC was strong in the new gravel-mulched field, moderate in the middle gravel-mulched field, and weak in the bare land and old gravel-mulched field where random variation dominated. The SWC distribution obtained by Surfer8.0 showed that isoline of the layer was the densest followed by the layer and , with the layer being the most sparse, which agrees with the results of C_v and $C_0/(C_0 + C)$. This provided a theoretical basis for ecological agriculture production in gravel-mulched fields.

Key words gravel-mulched field; soil moisture; spatial variability; coefficient variation; semi-variogram model; isoline

砂石覆盖在改善土壤环境、减小地表产流、抑 制土壤水分蒸发、增加雨水入渗、蓄水保墒、增温 保温、减少侵蚀、抗御风蚀、防止土壤次生盐渍化、 改善土壤理化性质等方面具有明显的作用。因此, 该技术在旱区农业生产中具有广阔的应用前景。大 量研究表明,砂石覆盖作为一项传统的覆盖技术, 能有效地协调和改善土壤水、热、气、肥等状况, 提高降水利用效率,活化土壤潜在肥力,改善土壤 的透水性、蓄水能力及通气性,增加土壤的缓冲性 等,为促进作物生长和产量提高创造更为有利的环境条件^[1-6]。国内原翠萍等^[7]、关红杰和冯浩^[8]通过室内模拟实验研究了不同粒径和厚度砂石覆盖对 土壤蒸发的影响,得出砂石覆盖能有效地抑制土壤 蒸发,在土壤含水量较高的阶段,这种抑制效果更 加明显。吴宏亮^[9]的研究发现,砂石覆盖处理后, 在作物各生育期内其农田不同深度的土壤含水量均 高于对照 (gravel-mulched 比 CK 平均高 27.05%),陈 土辉等^[10]通过野外大田试验得出覆砂能够有效减少

基金项目 国家自然科学基金项目(51269008) / 甘肃省高等学校科研项目(2013B-019) ,兰州理工大学红柳青年教师培养计划(Q201310)。 作者简介 赵文举(1981-),男,甘肃永昌人,博士,副教授,主要从事农业水土工程方面的研究,E-mail wenjuzhao@126.com;李娜(1990-),女, 硕士研究生,主要从事农业水土工程方面的研究,E-mail nn19900904@163.com。 收稿日期 2014-11-11,修回日期 2015-06-23

土壤蒸发,未覆砂处理全生育期土壤蒸发耗水占西 瓜蒸散的40.7%,而覆砂处理仅占总蒸散的17.8%-25.0%。国外学者 Cerda^[11]研究了瑞典东南部地区砂 石覆盖对入渗特性的影响,其研究结果表明,土壤 稳渗率与砂石覆盖度之间为正相关关系。Diaz等^[12]、 Jimenez 等^[13]在西班牙卡纳瑞岛气候干燥区域,通 过田间和实验室试验发现,与无覆盖土壤相比,采 用砂石覆盖的土壤水分蒸发量减少了70%,覆盖砂 石的土壤含水量是无覆盖土壤的1.6 倍。

虽然国内外学者对砂石覆盖做了大量研究,但 大多都着重于砂石覆盖对土壤蒸发及入渗规律的影 响,而对砂石覆盖对土壤水分空间变异性的研究还 较少。掌握压砂地土壤水分的影响因子和空间变异规 律对揭示压砂地土壤水分空间特性具有重要意义。 为此,本文基于野外大田试验,选取不同种植年 限、不同深度的土层为研究对象,采用地统计学方 法,分析不同种植年限条件下土壤水分的空间变异 规律,揭示压砂地土壤水分变异影响因素,以期为 压砂地生态农业的生产提供理论依据和技术支撑。

- 1 研究材料与方法
- 1.1 实验区概况

景泰县地处中国西部的甘肃省中部,河西走廊 东端,甘、蒙、宁三省(区)交界处,黄土高原与 腾格里沙漠的过渡地带。土壤类型主要为洪积灰棕 荒漠土和灰钙土。景泰县地处季风区与非季风区过 渡地带,该县境内气候呈现出明显的大陆性气候特 征,年均降水量185mm,多集中在7-9月,占全 年降水量的 61.4%, 年均蒸发量 3 038 mm, 是降水 量的 16 倍。光热资源丰富,年日照时数约为 2 725 h, 日照百分率 62%,太阳年平均辐射约 147.8 Kcal/cm², , 10 年 0 的活动积温 3 614.8 的有效积 温 3 038 , 无霜期 141 d, 年均温度 8.2 ,极端 ,极端最低气温-27.3 。试验区 最高气温 36.6 位于景泰县兰州理工大学实验基地。

1.2 砂石与土壤颗粒级配

不同种植年限压砂地的砂石颗粒级配和土壤颗 粒级配见表 1、表 2。

表 1 砂石颗粒级配									
Table 1 Percentages of various sand particle size by mass									
心地米刑									
砂地关型 -	>20 mm	20-5 mm	5-2 mm	2-0.5 mm	0.5-0.075 mm	<0.075 mm			
新砂地 (NGM)	11.6	29.4	26.2	22.5	9.5	0.8			
中砂地 (MGM)	6.7	30.6	20.9	20.6	16.7	4.5			
老砂地 (OGM)	9.1	24.6	15.9	19.6	22.5	8.3			

表 2 土壤颗粒级配 Table 2 Percentages of various soil particle size by mass

个同地型 -	>1.00 mm	0.05-1.00 mm	0.01-0.05 mm	0.001-0.01 mm	<0.001 mm
新砂地 (NGM)	0.00	26.28	46.11	22.76	4.85
中砂地 (MGM)	0.00	26.20	41.33	26.89	5.58
老砂地 (OGM)	0.00	22.83	42.14	29.55	5.48
裸地 (CK)	0.54	19.20	57.13	13.07	10.06

1.3 样点布置及测量方法

压砂地的划分以种植年限为基准:新砂地(new gravel-mulched, NGM)种植年限不足 10 a、中砂地 (middle gravel-mulched, MGM)种植年限为 25-30 a、 老砂地(old gravel-mulched, OGM)种植年限为 45-60 a^[14]。

本研究采用野外大田试验,试验共有裸地(CK) 新砂地、中砂地、老砂地四块采样区,压砂地砂石 层厚度均为10 cm。试验区面积均为32 m×32 m, 矩形取样,测点尺寸为1 m×1 m,测点中心距为4 m, 共64 个取样点。在竖直方向,依据一般耕作层深 度,土壤取土范围为:从地表依次向下第 层(0-

第6期

10 cm) 第 层(10-20 cm) 第 层(20-30 cm) 第 层(30-50 cm) 取样点分布如图1所示。

测试方法:土壤含水量采用取土烘干法进行测 定,均重复3次,以裸地(无砂石覆盖)为对照组, 通过测定新、老、中压砂地各土层土壤的含水量变 化及相同土层下各类压砂地土壤含水量的变化。本 研究选取2013年5月11日的采样数据,因为前一 周没有降雨,本文不考虑降雨的影响。

1.4 分析方法

半方差函数,也称空间变异函数,是用来描述 区域化变量结构性和随机性并存这一空间特征而提 出的,是描述土壤特性空间变异结构的一个函数。

半方差函数 (h) 的计算式为 :

$$\gamma(h) = \frac{1}{2N(h)} \sum_{i=1}^{N(h)} \left[Z(x_i + h) - Z(x_i) \right]^2$$
(1)

式中: (h) 为半方差值;h 为样本间距;*N*(h) 为间距为 h 的样本对数;*Z*(x_i+h)、*Z*(x_i)分别为 x_i+h、x_i 处的测定值。

当定量描述整个研究区域的变异特征时,还需 建立变异函数的理论模型。常用理论模型有球状模 型、指数模型、高斯模型和线性有基台模型等。本 文的理论模型有球状模型、指数模型和高斯模型。

半方差函数的重要参数包括 块金系数(nugget) 基台值(sill) 变程(range),主要用来表示区域 化变量在一定尺度上的空间变异和相关程度。一 般 C₀表示块金系数,反映随机变量带来的空间 变异以及观测变量的测量误差,C₀+C 为总基台 值,反映某观测变量在研究范围内总的空间变异 强度, a 为变程, 表示研究变量的空间变异中空间 自相关变异的尺度范围, $C_0/(C_0+C)$ 为空间相关 度, 表示可度量空间随机因素引起的变异所占的比 例。利用 GS+软件对数据进行半方差分析,得到 3 个参数值 C_0 (块金值)、 C_1 (基台值)和 a(变程)。

2 结果与分析

2.1 土壤水分数据的统计分析

将四块采样区内样点的土壤含水量数据进行 整理,按照经典统计学方法,以东西方向为研究 方向,分别对不同类型不同土层的土壤水分数据 进行初步的特征值计算,结果见表3。在研究区域 内,每块采样区剖面各层的样本数均为64个,综 合各类型各土层土壤含水量的最小值、最大值、均 值来看,裸地 (CK) 的平均含水量小于 8.0%,压砂 地的平均含水量大于 8.0%, 压砂地的土壤含水量 明显大于裸地 (CK) 的土壤含水量,且新砂地>中 砂地 > 老砂地 > 裸地 (CK);裸地 (CK)、新砂地、中 砂地的含水量均随着土层深度增加而依次增加,即 土壤含水率 > > , 而只有老砂地的含水 量 > > > ,这是因为随着压砂地种植年 限增大,泥土逐渐混入砂石层中,使砂层堵塞、板 结,导致土壤水分不易下渗。从变异系数来看,除 裸地第 层的土壤水分变异系数为 16.5%, 为中 等弱变异,其他各类型各土层的变异系数均小于 10%,即为弱变异,其中新砂地变异系数大小为 > > > ;不同类型土壤水分的偏度均小于 1 且在 0 左右变化, 说明均符合正态分布; 峰度值 均小于3,呈"低峰态"分布。

表 3	土壤含水量的统计分析
Table 3	Statistics of soil water content

			Table 5		n water con	tern			
压砂类型	土壤深度(cm)	样本数(个)	最小值(%)	最大值(%)	均值 (%)	标准差	变异系数(%)	偏度	峰度
裸地 (CK)	0-10	64	0.80	1.40	1.038	0.171	16.5	0.308	-0.859
	10-20	64	2.30	3.50	2.978	0.255	8.6	-0.320	-0.253
	20-30	64	4.40	5.60	4.980	0.361	7.2	0.191	-1.193
	30-50	64	6.60	7.90	7.200	0.330	4.6	0.137	-0.751
	0-10	64	10.70	12.40	11.522	0.351	3.0	0.053	-0.257
☆⊏7小+屮	10-20	64	11.40	12.50	11.914	0.247	2.1	0.203	-0.283
新砂地	20-30	64	11.40	13.50	12.259	0.430	3.5	0.216	-0.012
	30-50	64	12.10	13.50	12.652	0.287	2.3	0.623	1.148
	0-10	64	7.00	8.80	7.761	0.433	5.6	0.201	-0.519
	10-20	64	8.00	10.20	9.320	0.508	5.4	-0.304	-0.269
甲砂地	20-30	64	8.70	11.50	9.738	0.589	6.0	0.373	-0.007
	30-50	64	9.80	12.30	10.836	0.595	5.5	0.224	-0.803
老砂地	0-10	64	8.20	9.40	8.795	0.309	3.5	0.035	-0.454
	10-20	64	9.50	10.70	10.047	0.288	2.9	-0.102	-0.445
	20-30	64	8.40	10.40	9.395	0.500	5.3	-0.053	-0.941
	30-50	64	8.00	10.00	9.036	0.469	5.2	-0.121	-0.254

2.2 变异函数的结构分析

采用 GS+9.0 软件,分别对各类型各土层土壤 含水量样本数据进行分析,得到其半方差函数模型 参数及回归模型的检验参数,详细参数值见表 4。 以新砂地为例,地统计学分析的半方差函数图及其

模型拟合结果如图 2 所示。

根据区域化变量空间相关性程度的分级标准 $^{[15-19]}$ 可知, C₀/(C₀+C) 0.25 时,说明变量具有强烈的空间相关性;0.25<C₀/(C₀+C) 0.75 时,说明变量具有中等的空间自相关性;C₀/(C₀+C) >0.75 时,

表 4 土壤含水量半方差函数模型参数

Table 4 Semi-variogram parameters for son water content							
压砂类型	土壤深度(cm)	理论模型	块金值 (C₀)	基台值 (C₀+C)	变程(a)	块金基台比(C₀/(C₀+C))	决定系数(R ²)
裸地(CK)	0-10	指数	0.028	0.028	6.9	0.987	0.327
	10-20	球形	0.066	0.066	8.1	0.997	0.784
	20-30	球形	0.092	0.148	14.1	0.622	0.758
	30-50	球形	0.083	0.131	14.3	0.634	0.808
新砂地	0-10	高斯	0.023	0.146	17.0	0.155	0.934
	10-20	球形	0.015	0.064	13.4	0.227	0.667
	20-30	高斯	0.020	0.278	25.9	0.072	0.987
	30-50	高斯	0.035	0.164	47.4	0.213	0.957
	0-10	球形	0.087	0.225	13.2	0.389	0.869
中砂地	10-20	高斯	0.130	0.494	32.8	0.263	0.995
	20-30	球形	0.189	0.379	21.6	0.499	0.912
	30-50	球形	0.161	0.382	19.0	0.471	0.671
老砂地	0-10	球形	0.084	0.093	13.9	0.903	0.306
	10-20	指数	0.087	0.094	11.1	0.926	0.432
	20-30	指数	0.236	0.293	14.2	0.805	0.820
	30-50	高斯	0.186	0.223	13.7	0.834	0.507

图 2 新砂地各层土壤水分半方差函数图

Fig. 2 Calculated and fitted semi-variogram function for soil water content of different layers in new gravel-mulched fields

第6期

变量的空间自相关性微弱,变异主要由随机性变异 所引起 , 不适合采用空间插值的方法进行空间预测。

由表 4 可知,裸地 (CK) 第 层土壤水分半方差 函数最佳理论模型为指数模型,、、层为球 形模型;新砂地第、、层土壤水分半方差函 数最佳理论模型为高斯模型,第 层为球形模型; 中砂地第、、层土壤水分半方差函数最佳 理论模型为球形模型,第 层为高斯模型;老砂地 第 层土壤水分半方差函数最佳理论模型为球形模 型,、 层为指数模型,第 层为高斯模型。

从变程来看,裸地(CK)各层的变程在 6.9-14.3 m,新砂地各层的变程在 17.0-47.4 m,中砂地各层 的变程在 13.2-32.8 m,老砂地各层的变程在 11.1-14.2 m,其中新砂地的平均变程值最大,说明新砂 地的自相关距离最大;两点之间距离超过变程值的 土壤含水量就不再具有相关性,本试验中最小变程 为 6.9 m,大于采样间距 4 m,说明采样间距合理。 就块金基台比而言,裸地(CK)除了 20-30 cm 土层 的块金基台比略小于 0.75 之外,具有中等的空间自 相关性,其他土层的块金基台比均大于 0.75,说明 其土壤含水量空间自相关性微弱,变异主要由随机 性变异所引起;新砂地的块金基台比均小于 0.25, 说明其土壤含水量具有强烈的空间自相关性,即 空间自相关部分引起的空间异质性大于由随机因 素引起的空间异质性,且各层块金基台比大小为 > > 。 中砂地的土壤含水量块金基台比

介于 0.25-0.75,说明其具有中等的空间自相关性。 老砂地的块金基台比均大于 0.75,说明其土壤含水 量空间自相关性微弱,变异主要由随机性变异所引起。

由图 2 和表 4 可知,图 2 (a)新砂地第 层 土壤水分半方差函数最佳理论模型为高斯模型,块 金值为 0.023,基台值为 0.146,变程为 17.0 m;图 2 (b)新砂地第 层土壤水分半方差函数最佳理论 模型为球形模型,块金值为 0.015,基台值为 0.064, 变程为 13.4 m;图 2 (c)新砂地第 层土壤水分半 方差函数最佳理论模型为高斯模型,块金值为 0.020,

基台值为 0.278, 变程为 25.9 m;图 2(d)新砂地 第 层土壤水分半方差函数最佳理论模型为高斯模 型,块金值为 0.035,基台值为 0.164,变程为 47.4 m,所以在最大间距 32 m 处,还没达到其变程值, 半方差函数曲线仍呈上升趋势。

2.3 土壤含水率变化分析

为了更直观地反映整块样地土壤水分的空间分 布情况,以新砂地的数据为例,根据所得到的半方 差函数模型,利用 Surfer8.0 绘制土壤含水量等值线 分布图(图3)。由图3可知,第 层的土壤含水量 在10.70%-12.40%之间变化,第 层的土壤含水量 在11.40%-12.50%之间变化,第 层的土壤含水量 在11.40%-13.40%之间变化,第 层的土壤含水量 在12.10%-13.50%之间变化;第 层的等值线最密, 第 层、第 层次之,第 层最稀疏,说明新砂地 各层的土壤水分的空间变异 > > > ,这与 表3中新砂地各层的变异系数和表4中新砂地各层 块金基台比得出的结论一致。

3 结论

本文通过野外大田试验,对新压砂地、中压砂 地、老压砂地与裸地的土壤含水量进行对比,探讨 了压砂地土壤水分的变化规律,获得以下结论。

1) 实验结果表明,各类型土壤平均含水量为 新砂地 > 中砂地 > 老砂地 > 裸地,压砂地的土壤含 水量明显大于裸地的土壤含水量,裸地、新砂地、 中砂地的含水量均随着土层深度增加而依次增加, 即土壤含水量 > > ,而只有老砂地的含 水量 > > ,各类型的第 、 、 层的 土壤含水量均大于表层土壤含水量。除裸地第 层 的土壤水分变异系数为 16.5%,为中等弱变异,其 他各类型各土层的变异系数均小于 10%,即为弱变 异。这是因为裸地表层没有压砂,容易受到人为干 扰等其他因素的影响。

2)通过地统计学分析,得出东西方向上各类 型各土层土壤含水量的半方差函数模型有指数模 型、球形模型和高斯模型。新砂地的自相关距离最 大;本试验中最小变程为6.9m,大于采样间距4m, 采样间距合理。不同类型土壤含水量的平均块金基 台比为老砂地>裸地(CK)>中砂地>新砂地。其中, 新砂地具有强烈的空间相关性,中砂地具有中等的 空间自相关性,而裸地和老砂地空间自相关性微弱, 变异主要由随机性变异所引起。

3) 对新砂地运用 Surfer8.0 绘制土壤含水量等 值线分布图,得出第 层的等值线最密,第 层、 第 层次之,第 层最稀疏,则新砂地各层土壤水
分的空间变异 > > > ,这与表3和表4分
析的变异系数和块金基台比得出的结论一致。

4 讨论

通过研究不同年限压砂地土壤水分变化规律, 揭示了压砂地的保水性能及种植年限对保水性能的 影响,这对压砂地生态环境改善与农业生产具有重 要的现实意义。

试验结果表明,压砂地的土壤含水量明显大于 裸地的土壤含水量 这与许强等^[20]的研究结果一致, 这主要是因为在农田表面铺设砂石层后,由于砂石 大小不一,形态各异,结构孔隙大,渗透性好,在 雨季增加了渗水能力,杜绝径流,可将有限降水充 分蓄积到土壤层内,加之砂石层的阻隔作用,可明 显减少土壤水分的蒸发量,从而使压砂地土壤水分 含量明显高于一般裸地。新砂地保水性最好,老砂 地保水性较差,这是因为随着压砂地种植年限增大, 由于播种、耖砂、拔除根系、风沙等综合因素,砂 石和土壤混掺程度变大,造成土地老化,保水性能 下降。裸地表层土壤水分变异系数较大,这是因为 裸地表层没有压砂,容易受到人为干扰等其他因素 的影响。

在土壤水分空间变异性的研究中,引入地统计 学理论与方法,可以克服经典统计学无法解决空间 上分布的不足,定量得出土壤水分的变异程度、相 关程度、变化范围,科学、合理地描述土壤水分在 空间分布上的随机性和结构性特征,体现土壤水分 宏观和微观上的变异规律,为研究区域土壤水分与 地形因子、植被因子的关系提供基本依据^[21]。本文 研究土壤水分空间变异性的最大困难在于土壤水分 随时间的变化较大,不像其他土壤理化性质一样具 有相对稳定性,且不同尺度上土壤水分的空间变异 规律不同。本文只对特定时间里土壤水分的空间变异 规律不同。本文只对特定时间里土壤水分空间变异 过十步的研究。

参考文献:

- Li X Y, Gong J D, Gao Q Z, et al. Rainfall interception loss by pebble mulch in the semiarid region of China[J]. Journal of Hydrology, 2000, 228(3): 165-173.
- [2] 王占军, 蒋齐, 何建龙, 等. 宁夏环香山地区压砂地土壤肥力 特征分析 [J]. 水土保持学报, 2010, 24(2): 201-204.
- [3] Mathur O P, Mathur S K, Talati N R. Effect of addition of sand and gypsum to fine-textured salt-affected soils on the yield of cotton and

第6期

赵文举等:不同种植年限压砂地土壤水分空间变异规律研究

jower (sorghum) under Rajasthan Canal Command Area condition[J]. Plant and Soil, 1983, 74(1): 61-65.

- [4] Tejedor M, Jiménez C, Díaz F. Volcanic materials as mulches for water conservation[J]. Geoderma, 2003, 117(3): 283-295.
- [5] 王永忠, 牛国元, 许强, 等. 宁夏中部干旱带压砂地耕作方式 的生态功能 [J]. 水土保持通报, 2010, 30(3): 163-167.
- [6] Li X Y. Gravel sand mulch for soil and water conservation in the semiarid loess region of northwest China[J]. Catena, 2003, 52(2): 105-127.
- [7] 原翠萍,张心平,雷廷武,等.砂石覆盖粒径对土壤蒸发的影响[J].农业工程学报,2008,24(7):25-28.
- [8] 关红杰, 冯浩. 砂石覆盖厚度和粒径对土壤蒸发的影响 [J]. 灌 溉排水学报, 2009, 28(4): 41-44.
- [9] 吴宏亮.宁夏中部干旱区砂石覆盖对土壤水热特性及西瓜生长 发育的影响 [D].北京:中国农业大学,2013.
- [10] 陈士辉,谢忠奎,王亚军,等.砂田西瓜不同粒径砂砾石覆盖 的水分效应研究 [J].中国沙漠,2005,25(3):433-436.
- [11] Cerda A. Effects of rock fragment cover on soil infiltration, interrill runoff and erosion[J]. European Journal of Soil Science, 2001, 52(1): 59-68.
- [12] Diaz F, Jimenez C C, Tejedor M. Influence of the thickness and grain size of tephra mulch on soil water evaporation[J]. Agricultural Water Management, 2005, 74(1): 47-55.

- [13] Jimenez C C, Tejedor M, Diaz F, et al. Effectiveness of sand mulch in soil and water conservation in an arid region, Lanzarote, Canary Islands, Spain[J]. Journal of Soil and Water Conservation, 2005, 60(1): 63-67.
- [14] Ma Y J, Li X Y. Water accumulation in soil by gravel and sand mulches: Influence of textural composition and thickness of mulch layers[J]. Journal of Arid Environments, 2011, 75(5): 432-437.
- [15] 何丹,马东豪,张锡洲,等.土壤入渗特性的空间变异规律及 其变异源[J].水科学进展,2013,24(3):340-348.
- [16] 王政权 . 地统计学及在生态学中的应用 [M]. 北京 : 科学出版社, 1999.
- [17] 刘爱利. 地统计学概论 [M]. 北京: 科学出版社, 2011.
- [18] 阮本清,许凤冉,蒋任飞.基于球状模型参数的地下水水位空 间变异特性及其演化规律分析 [J].水利学报,2008,39(5):573-579.
- [19] 佘冬立,邵明安,俞双恩.黄土区农草混合利用坡面土壤水分 空间变异性 [J].农业机械学报,2010,41(7):57-63.
- [20] 许强,强力,吴宏亮,等.砂田水热及减尘效应研究[J].宁夏大 学学报,2009,30(2):180-182.
- [21] 毕华兴,李笑吟,刘鑫,等.晋西黄土区土壤水分空间异质性 的地统计学分析 [J].北京林业大学学报,2006,28(5):59-66.

(责任编辑:王育花)