doi: 10.3969/j.issn.1003-3106.2017.04.05

引用格式: 刘仲民 李博皓 李战明 等.基于误差采样的 Nyström 谱聚类图像分割算法研究 [J].无线电工程 2017 47(4): 20-23.

基于误差采样的 Nyström 谱聚类图像分割算法研究

刘仲民¹,李博皓¹,李战明¹,胡文瑾²

(1. 兰州理工大学 电气工程与信息工程学院,甘肃 兰州 730050;

2. 西北民族大学 数学与计算机学院,甘肃 兰州 730000)

摘 要 谱聚类算法在聚类过程中要计算样本相似度矩阵,构造数据量大,并且要对拉普拉斯矩阵进行特征分解,计 算比较耗时。Nyström 扩展方法通过部分采样数据来逼近原始特征空间,可以有效降低谱聚类算法的计算复杂度。采样点的 选择是决定 Nyström 扩展方法精度的重要因素,通过对 Nyström 扩展方法的误差进行分析,结合图像特征信息,设计了一种 新的采样方案。利用均匀采样方法对图像进行初步采样,并通过迭代的方法最小化采样点与像素点之间的误差,得到最终 采样点特征值。通过在 Berkeley 图库上的图像分割实验表明了算法的可行性和有效性。

关键词 Nyström; 谱聚类; 图像分割; K 均值

中图分类号 TP391 文献标志码 A 文章编号 1003-3106(2017)04-0020-04

Error Sampling Based Nyström Spectral Clustering Image Segmentation

LIU Zhong-min¹, LI Bo-hao¹, LI Zhan-ming¹, HU Wen-jin²

(1. College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou Gansu 730050, China;

2. College of Mathematic and Information Technology, Northwest University for Nationalities, Lanzhou Gansu 730000, China)

Abstract Spectral clustering is based on the similarity of data but the similarity matrix is complex and the calculation process of Laplacian characteristic decomposition is very time-consuming. The Nyström extension method approximates the original feature space by sampling which reduces the computational complexity of spectral clustering effectively. A new sampling method is presented in this paper which is based on the features of image and Nyström error analysis. First , uniform sampling is used to generate a set of cluster centers; then the error between data and centers is minimized by iteration. Finally experiments verify the feasibility and effectiveness of the method.

Key words Nyström; spectral clustering; image segmentation; k-means

0 引言

图像分割就是指把图像分成各具特性的区域并 提取出感兴趣目标区域的技术和过程^[1]。它是计 算机视觉处理中极为重要的环节之一,是由图像处 理进入到图像分析的关键步骤^[2]。谱聚类是一种 新型聚类分析方法,具有能够处理任意形状的数据 集、易于执行等优点^[3]。近些年来谱聚类算法得到 了迅速发展,并被应用于图像分割及其相关领域。

在图像分割中, 谱聚类计算像素点之间的相似 度矩阵并求解该矩阵的特征值与特征向量, 通过对 特征向量进行聚类完成对图像的划分。谱聚类算法 将图像划分为多个区域, 使得同一区域内部像素点 相似度高, 不同区域之间相似度低, 获得了较好的分 割效果^[4]。然而, 谱聚类算法计算过程中产生的相 似度矩阵规模过大 特征值与特征向量的存储、计算 使得谱聚类算法计算复杂度过高^[5]。例如:一幅像 素数目为n、特征维度为d的图像,计算其相似度矩 阵的时间复杂度高达 $O(d^2n^2)$,空间复杂度高达 $O(n^2)$ 拉普拉斯矩阵特征分解的时间复杂度更是 高达 $O(n^3)$ 。

谱聚类的计算复杂度过高严重制约了其在图像 分割方面的应用。对此,国内外学者对其进行了一 系列的研究和改进,其中 Nyström 扩展方法^[6]是应 用和研究较多的一种改进方法。Nyström 扩展方法 可以使用小部分数据近似逼近整个数据集的相似度 矩阵和其特征空间,从而降低了谱聚类对时空的要 <u>求。文献[7]最初将 Nyström 扩</u>展方法应用在谱聚 _{收稿日期: 2017-01-06}

基金项目:国家自然科学基金资助项目(64561042)。

20 2017 Radio Engineering Vol. 47 No. 4

类中,并以此成功地进行了图像分割。文献 [8-9] 在文献 [7]的基础上对 Nyström 扩展的逼近误差进 行了详细的理论分析,提出了基于 K 均值采样的 Nyström 算法。但在图像分割中 K 均值采样算法存 在两点不足:① 无法准确预估像素各特征值之间的 权重;② 采样点较多时 K 均值聚类运算速度较慢。

针对以上问题,本文提出了一种基于最小误差 采样的 Nyström 谱聚类算法。经实验验证,该算法 在分割有效性上相对于传统 Nyström 谱聚类算法有 显著提高。

1 谱聚类及其改进算法

1.1 谱聚类算法

谱聚类是一种基于图论的聚类方法。图由若干 点及连接两点的线构成,用点代表事物,线表示对应 2 个事物间具有的某种关系,又称为权重。将图划 分为若干个子图,各子图无交集,划分时子图之间被 "截断"的边的权重和称为损失函数^[10]。谱聚类通 过最小化损失函数来实现图的划分^[11]。

设 G(V, E) 表示图 , $V = \{v_1 \ v_2 \ \cdots \ v_n\}$ 表示点 集 E 表示边集。 w_{ij} 表示 v_i 与 v_j 之间的权重。假设 G(V, E) 被划分成 $G_1 \ G_2$ 两个子图 ,定义一个 n 维向 量 q 来表示划分方案。

$$\boldsymbol{q}_i = \begin{cases} c_1 & i \in G_1 \\ c_2 & i \in G_2 \end{cases}$$
(1)

损失函数:

Cut(G1 ,G2) =
$$\sum_{i \in G_1, i \in G_2} w_{ij} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (\mathbf{q}_i - \mathbf{q}_j)^2}{2 (c_1 - c_2)^2}$$
, (2)

$$\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (\boldsymbol{q}_{i} - \boldsymbol{q}_{j})^{2} = 2 \boldsymbol{q}^{\mathrm{T}} (\boldsymbol{D} - \boldsymbol{W}) \boldsymbol{q}_{\circ}$$
(3)

式中,W为权重矩阵;D为对角矩阵。

$$\boldsymbol{D}_{ii} = \sum_{j=1}^{n} w_{ij} \circ \tag{4}$$

定义拉普拉斯矩阵 L=D-W,将最小化损失函数的问题转化为最小化 $q^{T}Lq$ 的问题^[12]。

1.2 基于 Nyström 的谱聚类算法

谱聚类通过最小化 $q^{T}Lq$ 实现聚类划分 , $q^{T}Lq$ 的最小值在 q 为 L 的次小特征值对应的特征向量 时实现。对 L 进行特征分解运算量巨大 ,文献 [13] 利用 Nyström 扩展方法求得特征向量的近似值。

$$\left[p(y) \ k(x \ y) \ \boldsymbol{\Phi}_{i}(y) \ \mathrm{d}y = \lambda_{i} \ \boldsymbol{\Phi}_{i}(x) \quad , \qquad (5)\right]$$

式中,P(y)为核密度函数;k(x,y)为正定的核函数; λ_i 为特征值; $\boldsymbol{\Phi}_i$ 为特征向量。

设 {
$$x_1 \ x_2 \ \cdots \ x_m$$
} 是取自 $P(y)$ 的采样点 则

$$\frac{1}{m} \sum_{j=1}^m k(x \ x_j) \ \boldsymbol{\Phi}_i(x_j) \approx \lambda_i \ \boldsymbol{\Phi}_i(x) \quad , \qquad (6)$$

从 k(x x_j) 中再次提取采样点 {x₁ x₂ ,··· x_m} ,形成 标准特征值分解:

$$K^{(m)} U^{(m)} = U^{(m)} \Lambda^{(m)}$$

式中, $K_{ij} = k(x_i, x_j)$; U为正交化的矩阵; Λ 为角对称矩阵,其中,

$$\boldsymbol{\Phi}_{i}(x_{i}) \approx \sqrt{m} \boldsymbol{U}_{ii}^{(m)} , \lambda_{i} \approx \lambda_{i}^{(m)} / m_{\circ} \qquad (8)$$

对于非连续核密度函数,设数据集 $X = \{x_1, x_2, \dots, x_n\}$ 相似度矩阵 K,采样点集 $Z = \{z_1, z_2, \dots, z_m\}$,采 样相似度矩阵 W,则 K 的特征值和特征向量分 别为:

$$\boldsymbol{\Lambda}_{\boldsymbol{K}} \approx \frac{n}{m} \boldsymbol{\Lambda}_{\boldsymbol{z}} \quad , \boldsymbol{\varPhi}_{\boldsymbol{K}} \approx \sqrt{\frac{m}{n}} \boldsymbol{E} \, \boldsymbol{\varPhi}_{\boldsymbol{Z}} \, \boldsymbol{\Lambda}_{\boldsymbol{Z}}^{-1} \quad . \tag{9}$$

式中, $E_{ij} = k(x_i, y_j)$; A_z , Φ_z 分别为 W 的特征值矩 阵和特征向量矩阵。

$$\boldsymbol{K} = \boldsymbol{\Phi}_{\boldsymbol{K}} \boldsymbol{\Lambda}_{\boldsymbol{K}} \boldsymbol{\Phi}_{\boldsymbol{K}}^{-1} \approx \boldsymbol{E} \boldsymbol{W}^{-1} \boldsymbol{E}^{\mathrm{T}} \circ \qquad (10)$$

2 最小误差采样的 Nyström 方法

Nyström 扩展方法提高了谱聚类算法的运算效 率,但是如果得到的相似度矩阵与原相似度矩阵误 差过大会影响图像的分割效果^[14]。本文通过对相 似度矩阵误差进行分析,并选择最小化误差的采样 方法完成谱聚类图像分割。

2.1 最小误差分析

本文所取相似度矩阵函数为高斯核函数^[15], 由中值定理可知存在 *C* 使其满足:

 $k(a \ b) - k(c \ d) \le C_x^k(||a - c|| + ||b - d||)$ 。(11) 式中, C_x^k 是由核函数 k 以及数据 X 确定的常数。

$$\varepsilon = \| \boldsymbol{K} - \boldsymbol{E} \boldsymbol{W}^{-1} \boldsymbol{E}^{\mathrm{T}} \|_{\mathrm{F}} \circ \qquad (12)$$

对于单独数据点来说,

相似度矩阵误差为:

$$\boldsymbol{\varepsilon}_{I_i,I_i} = \| \boldsymbol{K}_{I_i,I_i} - \boldsymbol{E}_{I_i,Z} \boldsymbol{W}^{-1} \boldsymbol{E}_{I_i,Z}^{\mathrm{T}} \|_{\mathrm{F}} \circ \qquad (13)$$

式中, E_{I_iZ} 为($X_{I_i}Z$)的相似度矩阵; 令 p, q分别 表示与 I_i , I_i 最近的采样点。设

$$A_{I_i I_j} = K_{I_i I_j} - W_{pq} ,$$

$$B_{I_i Z} = E_{I_i Z} - W_{pZ} ,$$

$$C_{I_i Z} = E_{I_i Z} - W_{qZ} \circ$$
(14)

根据式(11) ,则有

$$\begin{split} \|\boldsymbol{A}_{I_{i}I_{j}}\|_{\mathrm{F}} &= \| \|\boldsymbol{K}_{I_{i}I_{j}} - \boldsymbol{W}_{pq} \|_{\mathrm{F}} = \| k(I_{i}|I_{j}) - k(p|q) \| \leq \\ & C_{\chi}^{k}(\||I_{i}| - p\| + \||I_{j}| - q\|) = C_{\chi}^{k}(e_{I_{i}} + e_{I_{i}}) \quad , \end{split}$$

2017年 无线电工程 第47卷 第4期 21

$$\| \boldsymbol{B}_{I_{i}Z} \|_{F} = \| \boldsymbol{E}_{I_{i}Z} - \boldsymbol{W}_{pZ} \|_{F} = \sum_{j=1}^{m} \| k(I_{i} q_{j}) - k(p q_{j}) \| \leq mC_{X}^{k} \| I_{i} - p \| = mC_{X}^{k}e_{I_{i}},$$

$$\| \boldsymbol{C}_{I_{j}Z} \|_{F} = \| \boldsymbol{E}_{I_{j}Z} - \boldsymbol{W}_{qZ} \| \leq mC_{X}^{k} \| I_{j} - q \| = mC_{X}^{k}e_{I_{j}}.$$

(15)

单独数据点误差:

$$\varepsilon_{I_{i}I_{j}} = \| \mathbf{K}_{I_{i}I_{j}} - \mathbf{E}_{I_{i}Z} \mathbf{W}^{-1} \mathbf{E}_{I_{j}Z}^{\mathsf{T}} \|_{\mathsf{F}} = \\ \| \mathbf{A}_{I_{i}I_{j}} + \mathbf{W}_{pq} - (\mathbf{B}_{I_{i}Z} + \mathbf{W}_{pZ}) \mathbf{W}^{-1} (\mathbf{C}_{I_{j}Z} + \mathbf{W}_{qZ})^{\mathsf{T}} \|_{\mathsf{F}} = \\ \| \mathbf{A}_{I_{i}I_{j}} + \mathbf{W}_{pq} - \mathbf{B}_{I_{i}Z} \mathbf{W}^{-1} \mathbf{C}_{I_{j}Z}^{\mathsf{T}} - \mathbf{W}_{pZ} \mathbf{W}^{-1} \mathbf{C}_{I_{j}Z}^{\mathsf{T}} - \\ \mathbf{B}_{I_{i}Z} \mathbf{W}^{-1} \mathbf{W}_{qZ}^{\mathsf{T}} - \mathbf{W}_{pZ} \mathbf{W}^{-1} \mathbf{W}_{qZ}^{\mathsf{T}} \|_{\mathsf{F}} \leq \\ C_{x}^{k} (e_{I_{i}} + e_{I_{j}}) + \| \mathbf{W}_{pq} \|_{\mathsf{F}} + m^{2} C_{x}^{k^{-2}} e_{I_{i}} e_{I_{j}} \| \mathbf{W}^{-1} \|_{\mathsf{F}} + \\ m C_{x}^{k} e_{I_{j}} \| \mathbf{W}_{pZ} \mathbf{W}^{-1} \|_{\mathsf{F}} + m C_{x}^{k} e_{I_{i}} \| \mathbf{W}^{-1} \mathbf{W}_{qZ}^{\mathsf{T}} \|_{\mathsf{F}} + \\ \| \mathbf{W}_{pZ} \mathbf{W}^{-1} \mathbf{W}_{qZ}^{\mathsf{T}} \|_{\mathsf{F}} \circ$$

$$(16)$$

从以上推导可以看出 Nyström 方法最终误差大 小由采样数目、采样相似度矩阵以及数据点与最近 的采样点误差决定。

2.2 最小误差采样算法

对 Nyström 扩展方法进行误差分析,发现在图像分割中,采样数目与相似度函数不变的情况下,可以通过最小化像素点与采样点误差对最终误差进行优化。

本文选取图像为灰度图像 ,3 个特征值分别为 坐标 x 坐标、y 坐标和灰度值 *I*(x,y)。对灰度图像 进行采样必须保证式(17) 最小化。

$$\varepsilon = \varepsilon_{x,y} + \varepsilon_{I(x,y)} \circ$$
(17)

式中, $\varepsilon_{x,y}$ 为坐标误差; $\varepsilon_{I(x,y)}$ 为灰度值误差。具体 采样步骤如下:

输入: 给定图像 *I*,像素个数 *n*,特征中心个数 *m*,终止迭代参数 σ。

输出:特征中心 Q。

步骤 1: 按照设定的采样点个数 m,在图像 / 上 进行均匀采样,并将像素分配到与之最近的采样点;

步骤 2: 计算采样点 3×3 邻域内像素点的灰度 梯度值,选取梯度值最小的点作为新的采样点;

步骤 3: 设置步长 *S* = (*n/m*)^{1/2},在 2*S*×2*S* 邻域 内按照距离:

$$d = d_{x y} + d_{I(x y)} , \qquad (18)$$

为每一个采样点分配像素。其中 $d_{x,y}$ 为坐标的欧氏 距离 $d_{I_{(x,y)}}$ 为灰度差的绝对值。

步骤 4: 求取采样点所属像素的平均值作为新的采样点 Q,计算新旧采样点误差:

22 2017 Radio Engineering Vol. 47 No. 4

 $\varepsilon = \varepsilon_{xy} + \varepsilon_{I(xy)} , \qquad (19)$

如果 $\varepsilon < \sigma$ 转步骤 5; 否则转步骤 3;

步骤 5: 输出 Q 作为区域特征中心。

从算法流程可以看出,算法的关键在于对数据 点的选取时充分利用像素点与采样中心之间的距离 关系,使得误差最小化。根据 K 均值聚类算法可得 知,通过步骤1在空间上进行均匀采样可得到最小 化的 ε_{xy} 。利用步骤2可以防止采样点落在噪音或 者边界上。在此基础上,步骤3和步骤4计算每个 采样中心拥有像素的灰度值,并在一定范围内变化 像素点所属采样中心,并更新采样中心坐标,利用迭 代的方式最小化灰度值误差 $\varepsilon_{I(xy)}$ 。

基于以上表述,改进的谱聚类算法步骤 如下^[16]:

步骤 1: 将图像按照本文算法进行采样,利用高 斯函数构建采样相似度矩阵 W,采样点与像素点的 相似度矩阵 E;

步骤 2: 通过 Nyström 方法估算出特征值与特征 向量 将特征值由大到小排序后 选择前 k 最小的特 征值所对应的特征向量 ,用矩阵 V 表示;

步骤 3: 将矩阵 V 进行归一化,并记归一化的矩 阵为 Y:

$$\boldsymbol{Y}_{ij} = \frac{\boldsymbol{V}_{ij}}{\sqrt{\sum_{i} \boldsymbol{V}_{ij}}}$$
 (20)

步骤 4: 矩阵 Y 的每行视为样本 运用 K 均值聚 类算法将它们聚为 k 类;

步骤 5:确定原像素点归属类别,完成图像 分割。

3 实验结果与有效性分析

为了检验该算法的性能,对文中所述算法进行 了实验分析。实验环境为 Windows10 系统、Intel i3 处理器、4 GB 内存,实验平台 MATLAB7.0。实验图 像来源于 Berkeley 图库。实验中对每幅图像抽取 *m*=100的像素点。

图 1 为图像数据库中 3 幅原始图像。图 2 为随 机采样 Nyström 谱聚类分割结果。图 3 为本文算法 分割结果。图 4 为人工分割结果。

图1 原始图像

图 4 人工分割结果

通过对比发现,在对图 1(a)~图 4(a) 的松树图 像的分割中,随机采样 Nyström 谱聚类分割将背景 中与松塔灰度值接近的区域与目标划分在一起,而 本文提出的改进算法能准确地将目标区域分割出 来。对图 1(b)~图 4(b)的水牛以及图 1(c)~ 图 4(c)的海豚图像的分割中,由于图像背景复杂, 传统分割方法效果很不理想。不仅存在大量噪点, 而且存在误分割区域。而本文算法可以更清楚地观 察到分割轮廓和图像细节的对应情况,明显将水牛 与海豚同背景区分开来,其分割效果与人工分割结 果基本一致。

4 结束语

本文基于采样误差分析,通过最小化像素与最 邻近采样点之间误差对 Nyström 谱聚类图像分割方 法进行了优化。首先在全局范围内均匀采样,最小 化坐标之间的误差;其次在局部范围内利用迭代算 法最小化灰度值误差,最终找到最优的采样中心,使 得本文算法运算过程中所得相似度矩阵能更真实的 反映图像信息。通过对 Berkeley 图库标准测试图片 进行分割验证了本算法的有效性。

参考文献

[1] 章毓晋·图像分割中基于过渡区技术的统计调查[J].
 计算机辅助设计与图形学学报,2015,27(3):

379-381.

- [2] ZHU Z ,WANG L Initialization Approach for Fuzzy Cmeans Algorithm for Color Image Segmentation [J]. Application Research of Computers 2015 32(4):1 257-1 260.
- [3] 苏木亚 郭崇慧.基于主成分分析的单变量时间序列聚 类方法[J].运筹与管理 2011(6):66-72.
- [4] 田 玲,邓旌波.基于多空间多层次谱聚类的非监督 SAR 图像分割算法 [J].计算机应用研究,2013, 30(7):2 213-2 215.
- [5] 蔡晓妍 戴冠中 杨黎斌. 谱聚类算法综述 [J]. 计算机 科学 2008 35(7): 14-18.
- [6] 阳 春,张向荣,焦李成.结合 Nyström 逼近的图半监 督纹理图像分割[J].系统工程与电子技术,2009,31 (12):2 820-2 825.
- [7] FOWLKES C ,BELONGIE S ,CHUNG F ,et al. Spectral Grouping Using Nyström Extension [J].IEEE Transactions on Pattern Analysis and Machine Intelligence ,2004 ,26 (2): 214-225.
- [8] ZHANG K ,TSANG I W ,KWOK J T. Improved Nyström Low-rank Approximation and Error Analysis [C] // In Proceedings of the 25th International Conference on Machine Learning ,Helsinki 2008: 1 232-1 239.
- [9] ZHANG K , KWOK J T. Clustered Nyström Method for Large Scale Manifold Learning and Dimension Reduction [J]. JEEE Transactions on Neural Networks , 2010 , 21(10):1 576-1 587.
- [10] 吴 健 准志明 时玉杰 等.基于局部密度构造相似矩 阵的谱聚类算法[J].通信学报 2013(3):14-22.
- [11] WANG S ,GU J ,CHEN F. Clustering High-Dimensional Data via Spectral Clustering Using Collaborative Representation Coefficients [M]. Intelligent Computing Theories and Methodologies. Springer International Publishing 2015: 248–258.
- [12] 侯 叶 郭宝龙.基于图论的运动对象分割[J].吉林大 学学报(工学版) 2008 38(4):902-906.
- [13] CHEN Z QIU Z ,LI J ,et al. Two-derivative Runge-Kutta-Nyström Methods for Second-order Ordinary Differential Equations [C] // Numerical Algorithms 2015: 1–31.
- [14] 唐文俊,左亚尧,张 波,等.一种基于密度聚类 Nyström 抽样算法 [J].计算机工程与科学,2012, 34(11):148-152.
- [15] LU Z. Constrained Spectral Clustering through Affinity Propagation [C] // IEEE Conference on Computer Vision and Pattern Recognition 2008: 1–8.
- [16] 印世乐,曾志勇.一种改进的 Nyström 谱聚类图像分割 算法[J].计算机与现代化 2014(4):20-23.

作者简介

÷

刘仲民 男 (1978—),副教授,博士研究生。主要研究方向: 机器视觉、智能信息处理与模式识别。

李博皓 男 (1990—),硕士研究生。主要研究方向:智能信息 处理与模式识别。

2017年 无线电工程 第47卷 第4期 23