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Abstract

In this paper we determine the minimum and maximum values of the sum of squares of degrees of bipartite graphs with a given
number of vertices and edges.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

All graphs considered in this paper are finite, undirected and simple. For terminology and notation not defined here
we follow those in Bondy and Murty [4].

In this paper we study an extremal problem on the degree sequences of bipartite graphs: determine the minimum
and maximum values of the sum of squares of degrees of bipartite graphs with a given number of vertices and edges.

Related problems for general graphs have been studied in [2,3,13]. It is easy to see that, among all the graphs with
a given number of vertices and edges, a graph has the minimum sum of squares of degrees if and only if its maximum
degree exceeds its minimum degree by at most one. Since such graphs always exist, the problem for general graphs
is trivial in the minimum case. However, the problem is much complicated in the maximum case. Ahlswede and
Katona [2] gave a solution for this problem. At the same time, for the family of bipartite graphs with n vertices, m
edges and one partite side of size k, they determined a bipartite graph such that the sum of squares of its degrees is
maximum. Boesch et al. [3] studied a more advanced problem for the maximum case: among all the graphs with a
given number of vertices and edges, find the ones where the sum of squares of degrees is maximum. It was showed
that every such graph is a threshold graph (see the definition in [10]). They constructed two threshold graphs and
proved that at least one of them has the maximum sum of squares of degrees among graphs with a given number of
vertices and edges. Peled et al. [13] further studied this problem and showed that, among all the graphs with a given
number of vertices and edges, if a graph has the maximum sum of squares of degrees, then it must belong to one of the
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Table 1
Degrees of the vertices in the graph Bs (n,m)

d(xi ) i d(y j ) j

n is even

t + 1 1 ≤ i ≤ r
2 t + 1 1 ≤ j ≤ r

2
t r

2 + 1 ≤ i ≤ n
2 t r

2 + 1 ≤ j ≤ n
2

n is odd and nt ≤ 2m < nt + t

t + 1 1 ≤ i ≤ r+t
2 t 1 ≤ j ≤ n+r−t+1

2
t r+t

2 + 1 ≤ i ≤ n−1
2 t − 1 j = 0 or n+r−t+1

2 + 1 ≤ j ≤ n−1
2

n is odd and nt + t ≤ 2m ≤ nt + n − t − 1

t + 1 1 ≤ i ≤ r+t
2 t + 1 1 ≤ j ≤ r−t

2
t r+t

2 + 1 ≤ i ≤ n−1
2 t j = 0 or r−t

2 + 1 ≤ j ≤ n−1
2

n is odd and nt + n − t + 1 ≤ 2m < nt + n

t + 2 1 ≤ i ≤ r+t−n+1
2 t + 1 1 ≤ j ≤ r−t

2
t + 1 r+t−n+1

2 + 1 ≤ i ≤ n−1
2 t j = 0 or r−t

2 + 1 ≤ j ≤ n−1
2

six particular classes of threshold graphs. Other types of bounds for the sum of squares of degrees of general graphs
can be found in the literature, i.e., see [1,5–9,11,12,14].

The rest of the paper is organized as follows. In Section 2 we present some notation and lemmas that will be used
later. The minimum and maximum sums of squares of degrees of bipartite graphs with a given number of vertices and
edges are presented in Sections 3 and 4, respectively.

2. Notation and lemmas

Let x be a real number. We use bxc to represent the largest integer not greater than x and dxe to represent the
smallest integer not less than x . The sign of x , denoted by sgn(x), is defined as 1, −1, and 0 when x is positive,
negative and zero, respectively.

We use δ(G) and ∆(G) to denote the minimum degree and maximum degree of a graph G, respectively. By ni (G)
we denote the number of vertices in G with degree i . If S is a set of vertices, we use δ(S) and ∆(S) to denote the
minimum degree and the maximum degree of the vertices in S, respectively. Let Si represent the set of vertices in S
with degree i .

Let n,m and k be three positive integers. We use B(n,m) to denote a bipartite graph with n vertices and m edges,
and B(n,m, k) to denote a B(n,m) with a bipartition (X, Y ) such that |X | = k. By B(n,m, k) we denote the set of
graphs of the form B(n,m, k).

Let n ≥ 2 be an even integer and t ≤ n/2 a nonnegative integer. By Bn,t we denote the bipartite graph with vertices
x1, x2, . . . , xn/2, y1, y2, . . . , yn/2 and edges xi y j with i < j ≤ i + t (where the addition is taken modulo n/2) for
i, j = 1, 2, . . . , n/2.

For two integers n and m with n ≥ 2 and 0 ≤ m ≤ bn/2cdn/2e, let 2m = nt + r , where 0 ≤ r < n. We define a
bipartite graph Bs(n,m) with n vertices and m edges as follows.

Case 1. n is even. Define Bs(n,m) = Bn,t ∪ {xi yi |1 ≤ i ≤ r/2}.
Case 2. n is odd and nt ≤ 2m < nt + t . Define Bs(n,m) = Bs(n− 1,m − t + 1)∪ {xi y0|(n+ r − t + 1)/2+ 1 ≤

i ≤ (n + r + t − 1)/2}, where the addition is taken modulo (n − 1)/2.
Case 3. n is odd and nt + t ≤ 2m ≤ nt + n − t − 1 or nt + n − t + 1 ≤ 2m < nt + n. Define

Bs(n,m) = Bs(n − 1,m − t)∪ {xi y0|(r − t)/2+ 1 ≤ i ≤ (r + t)/2}, where the addition is taken modulo (n − 1)/2.
The degrees of the vertices of the graph Bs(n,m) are shown in Table 1.
If n is odd and nt ≤ 2m < nt + t or nt + n − t + 1 ≤ 2m < nt + n, then from the above table, it can be checked

that nδ(Bs (n,m)) =
(n+1)(δ+1)

2 − m, nδ(Bs (n,m))+1 = n − δ − 1 and nδ(Bs (n,m))+2 = m − (n−1)(δ+1)
2 , where

δ =

{
t − 1, if n is odd and nt ≤ 2m < nt + t ;
t, if n is odd and nt + n − t + 1 ≤ 2m < nt + n.
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Suppose that n, m and k are three integers with n ≥ 2, 0 ≤ m ≤ bn/2cdn/2e and dn/2e ≤ k ≤ n − 1. Let
m = qk + r , where 0 ≤ r < k. Then Bl(n,m, k) is defined as a bipartite graph in B(n,m, k) such that q vertices in Y
are adjacent to all the vertices of X and one more vertex in Y is adjacent to r vertices in X . We use Bl(n,m) to denote
a graph Bl(n,m, k0) with k0 = max{k|m = qk + r, 0 ≤ r < k, dn/2e ≤ k ≤ n − q − sgn(r)}.

Let D = (d1, d2, . . . , dn) be a nonnegative integer sequence. Define σ2(D) =
∑n

i=1 d2
i . If D is the degree sequence

of a graph G, then we define σ2(G) = σ2(D).
The following lemma is obvious.

Lemma 1. Let m be a nonnegative integer and D = (d1, d2, . . . , dn) an integer sequence with 0 ≤ di ≤ n − 1 for
i = 1, 2, . . . , n and

∑n
i=1 di = 2m. Then

σ2(D) ≥

(
4m − n − n

⌊
2m

n

⌋)⌊
2m

n

⌋
+ 2m,

and the equality holds if and only if |di − d j | ≤ 1 for 1 ≤ i < j ≤ n.

Lemma 2 ([2]). Let m, n and k be three integers with n ≥ 2, 0 ≤ m ≤ b n
2 cd

n
2 e and dn/2e ≤ k ≤ n − 1. Suppose

m = qk + r , where 0 ≤ r < k. Then σ2(Bl(n,m, k)) attains the maximum value among all the graphs in B(n,m, k).

3. Minimum value of the sum of squares of degrees

Theorem 1. Let n and m be two integers with n ≥ 2 and 0 ≤ m ≤ bn/2cdn/2e. Then σ2(Bs(n,m)) attains the
minimum value among all the bipartite graphs with n vertices and m edges.

Proof. Let 2m = nt + r , where 0 ≤ r < n. If n is even, or n is odd and nt + t ≤ 2m ≤ nt + n − t − 1, then from
Table 1 we have ∆(Bs(n,m)) − δ(Bs(n,m)) ≤ 1. It follows from Lemma 1 that σ2(Bs(n,m)) attains the minimum
value in these cases.

If n is odd, then nt+n− t = (n−1)t+n is odd too. So we have 2m 6= nt+n− t . Note that if n is odd and m < n,
then nt + t ≤ 2m ≤ nt + n − t − 1. So in the following we need only consider the case where n is odd, m ≥ n, and
nt ≤ 2m < nt + t or nt + n − t + 1 ≤ 2m < nt + n.

Suppose that G is a bipartite graph such that σ2(G) attains the minimum value among all the bipartite graphs with
n vertices and m edges.

Claim 1. δ(G) ≥ 1.

Proof. Since m ≥ n, there must be one vertex u with d(u) ≥ 2. If δ(G) = 0, let v be a vertex with d(v) = 0. Choose
one neighbor w of u and set G ′ = G − uw + vw. Clearly G ′ is still a bipartite graph. Then

σ2(G
′)− σ2(G) = 2(1− d(u)) < 0,

a contradiction. �

Let (X, Y ) be the bipartition of G. By the symmetry of X and Y , we assume that |X | < |Y |.

Claim 2. ∆(X)− δ(X) ≤ 1 and ∆(Y )− δ(Y ) ≤ 1.

Proof. We only prove ∆(X)− δ(X) ≤ 1. The other assertion can be proved similarly.
We prove this by contradiction. Suppose that there exist two vertices x and x ′ in X such that d(x) = ∆(X),

d(x ′) = δ(X) and d(x)− d(x ′) > 1. Then there must be one vertex y ∈ Y such that xy ∈ E(G) but x ′y 6∈ E(G). Set
G ′ = G − xy + x ′y. Clearly G ′ is still a bipartite graph. So we have

σ2(G
′)− σ2(G) = (d(x)− 1)2 + (d(x ′)+ 1)2 − d(x)2 − d(x ′)2

= 2(d(x ′)− d(x)+ 1)

< 0,

a contradiction. �

Claim 3. ∆(X) = ∆(G) and δ(Y ) = δ(G).
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Proof. Clearly, ∆(G)− δ(G) ≥ 1. We distinguish two cases.

Case 1. ∆(G)− δ(G) = 1.
Suppose ∆(X) 6= ∆(G). Then ∆(X) = δ(X) = δ(G). So we have∑

x∈X

d(x) = |X |δ(G) < |Y |δ(G) ≤
∑
y∈Y

d(y),

a contradiction. Suppose δ(Y ) 6= δ(G). Then ∆(Y ) = δ(Y ) = ∆(G). So we have∑
y∈Y

d(y) = |Y |∆(G) > |X |∆(G) ≥
∑
x∈X

d(x),

again a contradiction.

Case 2. ∆(G)− δ(G) ≥ 2.
Suppose ∆(X) 6= ∆(G). Then ∆(Y ) = ∆(G). By Claim 2, we have∑

y∈Y

d(y) > |Y |(∆(G)− 1) > |X |(∆(G)− 1) ≥
∑
x∈X

d(x),

a contradiction. The result δ(Y ) = δ(G) follows from Claim 2 immediately. �

For simplicity, in the following we use ∆ and δ instead of ∆(G) and δ(G), respectively.

Claim 4. ∆− δ = 2.

Proof. Since |X | < |Y |, G cannot be a regular bipartite graph. So we have ∆− δ 6= 0.
Suppose ∆− δ ≥ 3. If |X∆−1

| = 0 or |Y δ+1
| = 0, then by Claims 1 and 2, there exist two vertices x∗ ∈ X∆ and

y∗ ∈ Y δ such that x∗y∗ ∈ E(G). If |X∆−1
| 6= 0 and |Y δ+1

| 6= 0, and there exist no edges connecting vertices in X∆

and vertices in Y δ , then by Claims 1 and 2, we can choose three vertices x∗ ∈ X∆, x ′ ∈ X∆−1 and y∗ ∈ Y δ such that
x ′y∗ ∈ E(G) but x∗y∗ 6∈ E(G). Since Y δ+1 contains all the neighbors of x∗ and d(x∗) = d(x ′)+ 1, there must exist
one vertex y′ ∈ Y δ+1 such that x∗y′ ∈ E(G) but x ′y′ 6∈ E(G). Set G ′ = G − x∗y′ − x ′y∗ + x∗y∗ + x ′y′. Then G ′

has the same degree sequence as G and there is one edge connecting a vertex in X∆ and a vertex in Y δ . So we can
always assume that there is at least one vertex x∗ ∈ X∆ and one vertex y∗ ∈ Y δ such that x∗y∗ ∈ E(G).

Let x1 = x∗, x2, . . . , xδ be the neighbors of y∗. Choose δ vertices y1, y2, . . . , yδ in Y \{y∗}. Then we have d(x1) ≥

d(y1) + 2 and d(xi ) ≥ d(yi ) + 1 for i = 2, 3, . . . , δ by Claim 2. Let G∗ be the graph obtained from G by deleting
the edges xi y∗ and adding the edges y∗yi for i = 1, 2, . . . , δ. Clearly G∗ is still a bipartite graph. Then we have

σ2(G
∗)− σ2(G) =

δ∑
i=1

[(d(xi )− 1)2 + (d(yi )+ 1)2 − d(xi )
2
− d(yi )

2
]

= 2(d(y1)− d(x1)+ 1)+ 2
δ∑

i=2

(d(yi )− d(xi )+ 1)

< 0,

a contradiction.
Suppose ∆ − δ = 1. Then it is easy to see that ∆ = ∆(X) = t + 1, δ = δ(Y ) = t . It follows from∑
x∈X d(x) =

∑
y∈Y d(y) that

|X∆
|(t + 1)+ |X∆−1

|t = |Y δ+1
|(t + 1)+ |Y δ|t.

Then

|X∆
| = (|Y δ+1

| + |Y δ| − |X∆
| − |X∆−1

|)t + |Y δ+1
| ≥ t + |Y δ+1

|. (1)

So we have

|X∆
| + |Y δ+1

| ≥ t + 2|Y δ+1
| ≥ t. (2)

Since |X | = |X∆
| + |X∆−1

| < |Y | = |Y δ+1
| + |Y δ|, by (1) we have

|Y δ| > |X∆
| + |X∆−1

| − |Y δ+1
| ≥ t + |X∆−1

|.
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This implies that

|X∆
| + |Y δ+1

| = n − |X∆−1
| − |Y δ| ≤ n − |Y δ| < n − (t + |X∆−1

|) ≤ n − t. (3)

By |X∆
| + |Y δ+1

| = r = 2m − nt , and (2) and (3), we have

nt + t ≤ 2m < nt + n − t,

contradicting our assumption that nt ≤ 2m < nt + t or nt + n − t + 1 ≤ 2m < nt + n.
Therefore, we obtain ∆− δ = 2. �

Claim 5. δ(G) =
{

t − 1, if nt ≤ 2m < nt + t;
t, if nt + n − t + 1 ≤ 2m < nt + n.

Proof. If δ ≤ t − 2, then

2m = |X∆
|(δ + 2)+ |X∆−1

|(δ + 1)+ |Y δ+1
|(δ + 1)+ |Y δ|δ

≤ (|X∆
| + |X∆−1

| + |Y δ+1
| + |Y δ|)t − |X∆−1

| − |Y δ+1
| − 2|Y δ|

≤ nt − 2,

a contradiction. If δ ≥ t + 1, then

2m = |X∆
|(δ + 2)+ |X∆−1

|(δ + 1)+ |Y δ+1
|(δ + 1)+ |Y δ|δ

≥ (|X∆
| + |X∆−1

| + |Y δ+1
| + |Y δ|)(t + 1)+ 2|X∆

| + |X∆−1
| + |Y δ+1

|

≥ n(t + 1)+ 2,

a contradiction. So we have δ = t or t − 1.
Suppose nt ≤ 2m < nt + t . If δ = t , then

2m = |X∆
|(t + 2)+ |X∆−1

|(t + 1)+ |Y δ+1
|(t + 1)+ |Y δ|t

= nt + 2|X∆
| + |X∆−1

| + |Y ∆
|

> nt + t,

a contradiction. Therefore, we have δ = t − 1 when nt ≤ 2m < nt + t .
Suppose nt + n − t + 1 ≤ 2m < nt + n. If δ = t − 1, then from |X∆

| ≤ |X | ≤ n−1
2 and |Y δ| ≥ 1 we have

2m = |X∆
|(t + 1)+ |X∆−1

|t + |Y δ+1
|t + |Y δ|(t − 1)

= nt + |X∆
| − |Y δ|

≤ nt +
n − 3

2
.

At the same time, noting that nt + r = 2m ≤ n2
−1
2 , we obtain t < n+1

2 . This implies that

2m ≤ nt +
n − 3

2
< nt + n − t + 1,

a contradiction. Therefore, we have δ = t when nt + n − t + 1 ≤ 2m < nt + n. �

Claim 6. |X | = |Y | − 1.

Proof. We prove this claim by contradiction. First, since |X | + |Y | = n is odd, it is clear that |X | 6= |Y | − 2.
Now suppose |X | ≤ |Y | − 3. As in the proof of Claim 4, we can assume that there exists an edge x∗y∗ ∈ E(G)

with x∗ ∈ X∆ and y∗ ∈ Y δ . If |Y δ| ≥ δ + 1, then denote the neighbors of y∗ by x1 = x∗, x2, x3, . . . , xδ and choose
δ vertices y1, y2, . . . , yδ in Y δ \ {y∗}. Let G ′ be the graph obtained from G by deleting the edges xi y∗ and adding
the edges y∗yi for i = 1, 2, . . . , δ. Clearly G ′ is still a bipartite graph. It is easy to see that σ2(G ′) − σ2(G) < 0, a
contradiction. So we have |Y δ| ≤ δ.
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It follows from |X∆
|(δ + 2)+ |X∆−1

|(δ + 1) = |Y δ+1
|(δ + 1)+ |Y δ|δ that

|X∆
| = (|Y δ+1

| + |Y δ| − |X∆
| − |X∆−1

|)δ + |Y δ+1
| − |X∆

| − |X∆−1
|

≥ 3δ + |Y δ+1
| − |X∆

| − |X∆−1
|

≥ 2δ + |Y δ+1
| + |Y δ| − |X∆

| − |X∆−1
|

≥ 2δ + 3.

Now let B denote the graph Bs(n,m). From Claim 5 we know that δ(B) = δ(G) = δ. Then we have

σ2(B) = n∆(B)(δ + 2)2 + nδ(B)δ
2
+ (n − n∆(B) − nδ(B))(δ + 1)2

< n∆(B)(δ + 2)2 + (n − n∆(B))(δ + 1)2

and

σ2(G) = |X
∆
|(δ + 2)2 + |Y δ|δ2

+ (n − |X∆
| − |Y δ|)(δ + 1)2

= (|X∆
| − |Y δ|)(δ + 2)2 + (n − |X∆

| + |Y δ|)(δ + 1)2 + |Y δ|((δ + 2)2 + δ2
− 2(δ + 1)2)

> (|X∆
| − |Y δ|)(δ + 2)2 + (n − |X∆

| + |Y δ|)(δ + 1)2.

At the same time, from Table 1, we can see that n∆(B) ≤ δ. It follows from |X∆
| ≥ 2δ + 3 and |Y δ| ≤ δ that

σ2(B)− σ2(G) < (n∆(B) + |Y
δ
| − |X∆

|)((δ + 2)2 − (δ + 1)2)

≤ −3((δ + 2)2 − (δ + 1)2)

< 0,

a contradiction. �

Claim 7. |X∆
| = m − (n−1)(δ+1)

2 , |X∆−1
| =

(n−1)(δ+2)
2 − m, |Y δ+1

| = m − (n+1)δ
2 and |Y δ| = (n+1)(δ+1)

2 − m.

Proof. By Claim 6 we have

|X∆
| + |X∆−1

| =
n − 1

2
(4)

and

|Y δ+1
| + |Y δ| =

n + 1
2

. (5)

On the other hand,

|X∆
|(δ + 2)+ |X∆−1

|(δ + 1) = |Y δ+1
|(δ + 1)+ |Y δ|δ = m. (6)

Solving Eqs. (4)–(6), we get |X∆
| = m − (n−1)(δ+1)

2 , |X∆−1
| =

(n−1)(δ+2)
2 − m, |Y δ+1

| = m − (n+1)δ
2 and

|Y δ| = (n+1)(δ+1)
2 − m. �

From Claims 4, 5 and 7, we know that ∆(G) − δ(G) = 2, nδ(G) =
(n+1)(δ+1)

2 − m, nδ(G)+1 = n − δ − 1 and

nδ(G)+2 = m − (n−1)(δ+1)
2 , where

δ =

{
t − 1, if nt ≤ 2m < nt + t ;
t, if nt + n − t + 1 ≤ 2m < nt + n.

So the graph Bs(n,m) has the same degree sequence as G. Therefore, σ2(Bs(n,m)) attains the minimum value among
all the bipartite graph with n vertices and m edges. This completes the proof of the theorem. �

Corollary 1. Let n and m be two integers with n ≥ 2 and 0 ≤ m ≤ bn/2cdn/2e, and G a bipartite graph with n
vertices and m edges. Then the minimum possible value of σ2(G) is(4m − n − nt)t + 2m, if n is even; or n is odd and nt + t ≤ 2m ≤ nt + n − t − 1;

(4m + 1− nt)t, if n is odd and nt ≤ 2m < nt + t;
(4m − n + 1− nt)(t + 1), if n is odd and nt + n − t + 1 ≤ 2m < nt + n,

where t = b 2m
n c.
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4. Maximum value of the sum of squares of degrees

Theorem 2. Let n and m be two integers with n ≥ 2 and 0 ≤ m ≤ bn/2cdn/2e. Then σ2(Bl(n,m)) attains the
maximum value among all the bipartite graphs with n vertices and m edges.

Proof. Suppose that G is a bipartite graph such that σ2(G) attains the maximum value among all the bipartite graphs
with n vertices and m edges. Let (X, Y ) be the bipartition of G. Without loss of generality, we assume |X | = k ≥ d n

2 e.
Let m = qk + r , where 0 ≤ r < k.

First, let us prove that bm
k c−b

m
k+1c ≤ 1. Suppose m = b m

k+1c(k+1)+r ′, where 0 ≤ r ′ < k+1. If bm
k c−b

m
k+1c > 1,

then

r ′ =
⌊m

k

⌋
k + r −

⌊
m

k + 1

⌋
(k + 1)

≥

⌊m

k

⌋
k + r −

(⌊m

k

⌋
− 2

)
(k + 1)

= r + 2(k + 1)−
⌊m

k

⌋
≥ r + 2(k + 1)−

⌊n

2

⌋
≥ r + 2(k + 1)− k

> k + 1,

a contradiction.
By Lemma 2, we can assume that q vertices in Y are all adjacent to all the vertices in X and one more vertex in Y

is adjacent to r vertices in X . So we have

σ2(G) = r(q + 1)2 + (k − r)q2
+ qk2

+ r2

= (m − qk)(q + 1)2 + (k + qk − m)q2
+ qk2

+ (m − qk)2

= q(k − 1)(k + qk − 2m)+ m2
+ m

=

⌊m

k

⌋
(k − 1)

(
k +

⌊m

k

⌋
k − 2m

)
+ m2

+ m.

Set f (k) = σ2(G). Then

f (k + 1)− f (k) =

⌊
m

k + 1

⌋
k

(
k + 1+

⌊
m

k + 1

⌋
(k + 1)− 2m

)
−

⌊m

k

⌋
(k − 1)

(
k +

⌊m

k

⌋
k − 2m

)
.

If bm
k c − b

m
k+1c = 0, then

f (k + 1)− f (k) = 2
⌊m

k

⌋ (
k
(⌊m

k

⌋
+ 1

)
− m

)
≥ 0.

If bm
k c − b

m
k+1c = 1, then

f (k + 1)− f (k) = 2
(⌊m

k

⌋
− k

) (⌊m

k

⌋
k − m

)
≥ 0.

Thus, f (k) is a nondecreasing function. So we can assume that k = k0 = max{k|m = qk + r, 0 ≤ r < k, dn/2e ≤
k ≤ n − q − sgn(r)}. The proof follows from the construction of Bl(n,m) immediately. �

Corollary 2. Let n and m be two integers with n ≥ 2 and 0 ≤ m ≤ b n
2 cd

n
2 e, and G a bipartite graph with n vertices

and m edges. Then the maximum possible value of σ2(G) is⌊
m

k0

⌋
(k0 − 1)

(
k0 +

⌊
m

k0

⌋
k0 − 2m

)
+ m2

+ m,

where k0 = {k|m = qk + r, 0 ≤ r < k, d n
2 e ≤ k ≤ n − q − sgn(r)}.
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