
Commun Nonlinear Sci Numer Simulat 39 (2016) 99–107 

Contents lists available at ScienceDirect 

Commun Nonlinear Sci Numer Simulat 

journal homepage: www.elsevier.com/locate/cnsns 

The effect of process delay on dynamical behaviors in a 

self-feedback nonlinear oscillator 

Chenggui Yao 

a , ∗, Jun Ma 

b , Chuan Li c , Zhiwei He 

a 

a Department of Mathematics, Shaoxing University, Shaoxing, China 
b Department of Physics, Lanzhou University of Technology, Lanzhou, China 
c Jiangxi Expressway networking management center, Nanchang, China 

a r t i c l e i n f o 

Article history: 

Received 29 August 2015 

Revised 20 December 2015 

Accepted 28 February 2016 

Available online 4 March 2016 

Keywords: 

Feedback loop 

Process delay 

Transmission delay 

Amplitude death 

Nonlinear oscillator 

a b s t r a c t 

The delayed feedback loops play a crucial role in the stability of dynamical systems. The 

effect of process delay in feedback is studied numerically and theoretically in the delayed 

feedback nonlinear systems including the neural model, periodic system and chaotic oscil- 

lator. The process delay is of key importance in determining the evolution of systems, and 

the rich dynamical phenomena are observed. By introducing a process delay, we find that 

it can induce bursting electric activities in the neural model. We demonstrate that this 

novel regime of amplitude death also exists in the parameter space of feedback strength 

and process delay for the periodic system and chaotic oscillator. Our results extend the ef- 

fect of process delay in the paper of Zou et al.(2013) where the process delay can eliminate 

the amplitude death of the coupled nonlinear systems. 

© 2016 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

The self-feedback loops, connecting a system to itself, are pervasive and significant in many science and application

fields [1–4] , especially in the biological system [5–7] . Many systems perceive external input in the form of self-feedback cir-

cuits, or loops. One of the well studied examples is the autapse which has been named originally by Van et al. in 1972 [8] .

The autapses, formed between a neuron and a branch of its own axon, are relatively widespread and have been found in

the various brain areas, including the cerebellum, striatum, hippocampus, and neocortex [9,10] . So far, several studies have

also revealed that these autapses could play an important role in brain function, maintaining the precision of action poten-

tial firing trains. Bekkers revealed that excitatory autapses contribute to a positive-feedback loop that maintains persistent

electrical activity in neurons, and the functional autapses in the cerebral cortex are found [11] . Saada et. al have identified

an autapse which underlies a plateau potential causing persistent activity in the B31/B32 neurons of Aplysia. The persistent

activity is essential to the ability of these neurons to initiate and maintain components of feeding behavior [12] . Bacci et

al experimentally observed that firing precision of spike times of neurons was increased in pyramidal neurons by artificial

GABAergic autaptic conductances [13] , and found that the autaptic activity has significant inhibitory effects on repetitive

firing and increase the current threshold for evoking action potentials [14] . Furthermore, the effect of autaptic on neural

dynamics is also investigated widely, and many interesting phenomena are observed [15–22] . 
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The time delayed feedback, a particularly simple and efficient scheme, has a significant effect on the dynamics of nonlin-

ear systems, especially on stabilizing periodic orbits and steady states embedded in chaotic attractors in physics, chemistry,

biology, and medicine [23–25] . For example, Many works have shown that time-delayed feedback methods provide a tool to

stabilize unstable steady states [26–29] . Ahlborn and Parlitz found that the multiple delayed feedback signals can stabilize

plane waves or the trapping spiral waves in the two-dimensional complex Ginzburg–Landau equation [30] . Gaudreault et al

found that the delay feedback can modify the natural frequency of the oscillator and the damping coefficient [31] . Yanchuk

presented an asymptotic analysis of time-delayed feedback control of steady states for large delay time, and elaborated an-

alytical conditions for successful control of a fixed point of focus type [32] . The feedback method has also been applied

successfully in many experiments, including laser [33] , electronic [34] , chemical [35] , and plasma systems [36] . 

The time-delayed feedback, used the difference g(x (t − τ )) − g(x (t)) , was first introduced by Pyragas [37] . Here, the

delay τ is known as the time delay which arises from finite propagation speeds. It has been named as propagation delay

which has also been widely investigated, and various phenomena have been uncovered in time-delayed coupling oscillators

[38–45] . Very recently, the marked effects of the process delay on dynamical behavior have been revealed [46–49] . The

process delay, different with the propagation delay, comes from a finite response time required for internal processing of

the input information. The process delay is universal in a heterogeneous network especially in networks with large hubs

due to nodes with different time scale of oscillations. In cognitive psychophysiology and cognitive neuroscience, the mental

chronometry is a core paradigm of process delay which the neural system deal with the reaction time to a stimulus [50] .

Importantly, the experimental evidence of process delay in annihilating the quenching of oscillation will be reported [51] .

So far, to the best of our knowledge, in all existing works on the feedback, the effect of process delay on the dynamical

behavior of nonlinear systems was not considered. 

In this work, we investigate numerically and theoretically the effect of process delay in self-feedback on dynamics of

the nonlinear systems including the neural model, periodic system and chaotic oscillator. We show that the rich dynamical

phenomena are observed with the different values of feedback strength, propagation delay, and process delay. For the de-

layed feedback excitable FitzHugh–Nagumo neural model, the propagation delay can induce simply spiking without process

delay. Surprisingly, we find that the process delay can drive the neuron to bursting electric activities. For the periodic sys-

tem and chaotic oscillator, We find that the process delay can stabilize unstable fixed points before the transmission delay

takes no effect in stabilization, and the analytical boundaries are also derived explicitly. This paper is organized as follows.

In Section 2 , we investigate the FitzHugh–Nagumo neuronal model with delay feedback. In Section 3 , the case of the Stuart-

Landau system is discussed in details. In Section 4 , we examine the dynamical behavior of the delayed feedback Rössler

oscillator. Finally, Section 5 is devoted to our conclusions and discussions. 

2. The FitzHugh–Nagumo neuronal Model 

First let us consider the delayed-feedback FitzHugh–Nagumo neuronal model which is described by 

ε ˙ x = x − x 3 

3 

− y + I syn , (1a) 

˙ y = x + a. (1b) 

In a neural context, x is the activator variable (representing the membrane potential) and y is the inhibitor (related to the

conductivity of the potassium channels existing in the neuron membrane) [52–55] . The dynamics of y is much faster than

that of x because of the small parameter ε = 0 . 01 . When | a | < 1, the unit is in the oscillatory regime, while for | a | > 1, it

is in the excitable one [54,55] . In our paper, a = 1 . 05 is chosen and fixed [54,56,57] . The decision about choosing parameter

a since a = 1 . 05 is near bifurcation point. The more richer dynamical behaviors may be observed for this chosen parameter.

I syn is the synaptic current through self-feedback, 

I syn = κ(x (t − τ − δ) − x (t − δ)) , (2) 

where the delays δ and τ physically account for the process time and propagation time, respectively. κ quantifies gain of

feedback. 

For an electrical autapse with the process delay, the rich firing patterns for the FitzHugh–Nagumo neuronal model are

observed. The time series of the action potential for the different autaptic parameters are shown in Fig. 1 . In Fig. 1 (a) and

(b), the autaptic intensity is given as κ = 0 . 2 , and the process delay time is given as δ = 0 . 8 . Fig. 1 (c) and (d), the autaptic

intensity is given as κ = 0 . 4 , and the process delay time is given as δ = 0 . 2 . The FitzHugh–Nagumo neuronal model is on

quiescent state for this parameter settings, but it transitions to the various spiking patterns in the presence of an process

delay. Fig. 1 (a) exhibits a period-1 spiking pattern, Fig. 1 (b) give a period-2 spiking pattern, while Fig. 1 (c) and (d) are

devoted to examples of period-4 and period-7 busting pattern. 

To display clearly the effect of process delay in the autapse on the firing patterns, we show the bifurcations of the inter-

spike intervals (ISIs) against propagation delay τ with different process delay δ and the gain of feedback κ , respectively. The

neuronal model is in the periodic oscillatory mode without process delay for the sufficiently large τ [ Fig. 2 (a)]. Comparing

three subfigures, the marked effect of the process delay in autaptic is observed [ Fig. 2 (b) and (c)]. The neuron transmits from
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Fig. 1. The time series of x ( t ) (a) of a period-1 spiking with κ = 0 . 2 , δ = 0 . 8 , τ = 0 . 1 (b) of a period-2 spiking with κ = 0 . 2 , δ = 0 . 8 , τ = 0 . 5 (c) of period-4 

bursting with κ = 0 . 4 , δ = 0 . 2 , τ = 0 . 05 and (d) and period-7 busting with κ = 0 . 4 , δ = 0 . 2 , τ = 0 . 1 . The pink dashed lines are the time series of the action 

potential without the process delay. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article). 

Fig. 2. (a)–(c) The bifurcation diagrams of �t i (the interval time of successive spikes) of x ( t ) for κ = 0 . 4 , δ = 0 , κ = 0 . 2 , δ = 0 . 8 and κ = 0 . 4 , δ = 0 . 2 , 

respectively. The inset of (c) shows the zoomed-in part of (c), indicating that the bursting electric activity occurs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

quiescent state to regular spiking patterns (period-1 firing pattern) under the action of process delay when the propagation

delay is small, then the neuron will undergo bursting patterns as the propagation delay time increases. 

To get a global view, the phase diagrams on the plane ( δ, τ ) are shown numerically in Fig. 3 for the different dynamic

regions with κ = 0 . 2 , and 0.4, respectively. The system behaves five primary features: quiescent state (QS), excite-spiking

state(ESS), bursting state (BS), unexcite-oscillate state (UOS), and multistable state (MS). The pink region where a sufficiently

large stimulus can excite a spike at the time interval between two successive firing corresponds to ESS; while the green

region where any stimulus cannot excite a spike at the time interval between two successive firing corresponds to UOS; the

blue region where periods of rapid action potential spiking are followed by a phase quiescent periods corresponds to BS.

The multistable region is marked with the orange region. To distinguish the chaotic state and period state, we count �t i
(the interval time of successive spikes) in a sufficiently large time, if �t i ’s are random, we believe that the system is chaotic.

Otherwise, the system is period. 

3. The Stuart-Landau oscillator 

Next, let us consider the following self-feedback coupled Stuart-Landau oscillator [58] : 

˙ z = (1 + iω − | z| 2 ) z + κ(z(t − τ − δ) − z(t − δ)) , (3)

where z = x + iy represents the complex variable of the oscillator; κ quantifies gain of feedback, and the delays δ and τ
physically account for the process time and propagation time, respectively. The ω is the rotational frequency of the limit

cycle oscillator. In the absence of feedback (i.e., κ = 0 ), the oscillator performs the limit-cycle motion z = e iωt . When κ >

0, the occurrence of amplitude death implies the conversion of stability of the fixed point by self-feedback. To identify an

amplitude death state, the self-feedback coupled system (3) is linearized at the origin ( z = 0 ). The linearization equation of
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Fig. 3. (a) and (b) Schematic phase diagrams for Eq. (1) in the ( δ, τ ) plane for different dynamic parameter region with κ = 0 . 2 and κ = 0 . 4 , respectively. 

The pink region where a sufficiently large stimulus can excite a spike at the time interval between two successive firing corresponds to ESS; while the 

green region where any stimulus cannot excite a spike at the time interval between two successive firing corresponds to UOS; the blue region corresponds 

to BS (bursting state) and the multistable region is marked with the orange region. The letter QS stands for the quiescent state. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article). 

Fig. 4. (a) The amplitude death islands of the self-feedback coupled Stuart-Landau oscillator without process delay for different frequencies. (b) The size 

of amplitude death region S is plotted against ω. 

 

 

 

 

 

 

 

the amplitude death state reads as: 

˙ ξ = (1 ± iω) ξ + κ(ξ (t − δ − τ ) − ξ (t − δ)) . (4) 

The characteristic equation for the amplitude death state is obtained by making ξ∝ e λt , 

λ = (1 ± iω) + κ(e −λ(δ+ τ ) − e −λδ ) . (5) 

Setting λ = α + iβ, where α and β are real, the amplitude death region corresponds to the region in which α < 0. The

marginal stability curves or the critical curves are thus obtained by requiring that α = 0 , i.e. λ = iβ . Substituting this in Eq.

(5) , the equation defining the critical curves is thus given by 

iβ = (1 ± iω) + κ(e −iβ(δ+ τ ) − e −iβδ ) , (6) 

For δ = 0 , we get the critical coupling strength κc = 1 . 0 and the following bounding curves for the death island region by

eliminating β in Eq. (6) : 

τa = 

2 mπ + cos −1 
(

κ−1 
κ

)
w 0 − κ

√ 

1 −
(

κ−1 
κ

)2 
, 

τb = 

2(m + 1) π − cos −1 
(

κ−1 
κ

)
w 0 + κ

√ 

1 −
(

κ−1 
κ

)2 
, (7) 

where m (m = 0 , 1 , 2 , ..., ∞ ) stands for the number of death islands. These critical curves are similar with the result in pa-

per [28] . The figures for amplitude death surrounded by the above critical curves are shown in Fig. 4 for different frequen-

cies, respectively. One can observe clearly that the size of region of amplitude death monotonically increases as frequency

ω increases. 

Next, we consider δ � = 0. The accurate solution may be not gotten for δ � = 0 due to complexity of Eq. (6) , however, we

can obtain the approximate solution under the condition τ � δ, 

iβ = (1 ± iω) − iκβτ e −iβδ. (8) 
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Fig. 5. The amplitude death island of the self-feedback coupled Stuart-Landau oscillator on the ( κ , δ) space for τ = 0 . 006 (a) and τ = 0 . 01 (b). The solid 

lines come from analyses, they show good agreement with the numerical results (black points) in both the subfigures. (For interpretation of the references 

to color in this figure, the reader is referred to the web version of this article). 

Fig. 6. (a) The amplitude death islands on the ( κ , δ) space for τ = 0 . 0 02 , 0 . 0 04 and 0.006. The amplitude death island expands along the horizontal 

direction. (b) The normalized scaling factor R vs . τ , with the data numerically computed (hollow points) and the fit (solid line) R = γ τμ, μ = −1 . 0 , γ = 

0 . 002 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We have 

κβτ sin (βτ ) = 1 , 

κβτ cos (βτ ) = −β ∓ ω. (9)

Further, we get 

(κβτ ) 2 = 1 + (β ± ω) 2 , (10)

we obtain 

β1 , 2 = 

ω ±
√ 

(κτω) 2 + (κτ ) 2 − 1 

1 − (κτ ) 2 
. (11)

After some algebraic manipulations, we further arrive at the following two equations: 

δa 1 ,a 2 (κ) = 

π − sin 

−1 
(

1 
κτβ1 , 2 

)
β1 , 2 

, 

δb 1 ,b 2 (κ) = 

sin 

−1 
(

1 
κτβ1 , 2 

)
β1 , 2 

. (12)

As an illustrated example, Fig. 5 shows the stable regions of amplitude death in the parameter plane of ( κ , δ) for τ =
0 . 006 , 0 . 01 , respectively. ω = 10 . All of the critical curves for different δa i ,b i 

, i = 1 , 2 are shown in this figure. Totally, four

critical curves determined by Eq. (12) are included and indicted by different colors and arrows. However, one can observe

the curves δa 2 and δb 1 
do not contribute to the region of amplitude death. The amplitude death domain, which is predicted

by the critical curves δa 1 and δb 2 
, has been well confirmed by direct numerical simulations (solid circles) of the self-feedback

system ( Eq. (3) ). 

We also explore the effect of τ on the size for region of amplitude death. Fig. 6 (a) shows the region of amplitude death

on the ( κ , δ) plane with τ = 0 . 0 02 , 0 . 0 04 , and 0.006, respectively. Interestingly, from Fig. 6 (a), we find that the size of

amplitude death island monotonically decreases with decreasing of τ . To quantify this size phenomenon, we introduce a

normalized scaling factor R = 

S τ
S max 

, where S τ = 

∫ 
δa 1 

≤δb 2 

(δa 1 − δb 2 
) d κ denotes the area of death island for τ , and S max for the

maximal size. The value of R is numerically calculated and shown in Fig. 6 (b). The hollow circles represent the numerical

results. We find that R monotonically increases as propagation delay τ decreases before the propagation delay induces

amplitude death ( τ < 0.079). This behavior is well characterized by the power law scaling, 

R = γ τμ, (13)
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Fig. 7. (a) The amplitude death islands for ω = 6 , 8 , 10 and 16, respectively. (b) The normalized scaling factor R vs. ω. The solid line which fits with the 

numerical results (open circles) well comes from analyses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where μ = −1 . 0 , γ = 0 . 002 . The power law relation can be clearly seen from a perfect log–log fit shown in Fig. 6 (b). The

power law function ( R = γ τμ) is universal, as several other frequency parameters(e.g., ω = 5 , 10 , 15 , or 20) have been sys-

tematically tested and all qualitative results have been found unchanged. 

Eq. (12) shows that the frequency ω is involved in the amplitude death critical curves. Thus the size of the amplitude

death region definitely depends on the value of ω. Fig. 7 (a) displays several amplitude death islands for different values

of ω = 6 , 8, 10, and 16, respectively. τ = 0 . 004 is fixed. The amplitude death region nonmonotonically depends on the

frequency ω. This nonmonotonic dependence is shown clearly in Fig. 7 (b) which shows R as a function of the frequency ω.

There exists an optimal frequency ω such that the size of the amplitude death region becomes maximal. This phenomenon

is totally different from the dependence on frequency for size of region which the propagation delay induces amplitude

death. 

4. The chaotic Rössler system 

In order to further understand the effect of the process delay on dynamical behaviors in the nonlinear oscillators, we

will analyze the self-feedback chaotic Rössler system [59] , and the equations can be written as 

˙ x = −y − z + κ(x (t − δ − τ ) − x (t − δ)) , (14a) 

˙ y = x + ay + κ(y (t − δ − τ ) − y (t − δ)) , (14b) 

˙ z = b + z(x − c)) + κ(z(t − δ − τ ) − z(t − δ)) , (14c) 

where κ is the feedback gain, and the delays δ and τ physically account for the process time and propagation time, respec-

tively. The parameters a , b , and c , are 0.15, 0.4, and 8.5, respectively. The oscillator is with phase coherent chaotic attractor

under this parameter setting. The phase diagram of attractor resembles the limit cycle where the phase point always rotates

around the origin on the plane ( x , y ), its topological property is rather simple. 

Assuming the linear perturbation varies e λt , where λ is the eigenvalue, we obtain the following characteristic equation

as the same as linear stability analysis of self-feedback coupled Stuart-Landau oscillator: 

λ = λ0 k + κ(e −λ(δ+ τ ) − e −λδ ) , (15) 

where λ0 k = 0 . 073 ± i 0 . 9973 , −8 . 4575 ( k = 1 , 2 , 3 ) are the eigenvalues of the unperturbed oscillator at the unstable fixed

point, respectively. Some critical curves are obtained with the similar procedure in Section 3 for δ = 0 , 

τa = 

2 mπ + cos −1 

(
κ−λR 

01 

κ

)

λI 
01 

− κ

√ 

1 −
(

κ−λR 
01 

κ

)2 
, 

τb = 

2(m + 1) π − cos −1 

(
κ−λR 

01 

κ

)

λI 
01 

+ κ

√ 

1 −
(

κ−λR 
01 

κ

)2 
, (16) 

where m (m = 0 , 1 , 2 , ..., ∞ ) stands for the number of death islands, λR 
01 

and λI 
01 

are the real and imaginary part of λ01 ,

respectively. These critical curves are similar with the result in paper [27] . 
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Fig. 8. (a) The amplitude death islands of the self-feedback chaotic Rössler system for τ = 0 . 02 and τ = 0 . 04 . (b) The normalized scaling factor R vs. τ , 

The data for the numerical simulation (scatter points) fit well with analytical result (solid line). 

Fig. 9. (a) and (b) Bifurcation diagrams obtained by plotting the local maxima of x ( t ) in Eq. (11 ). With increasing the process delay δ, the system experi- 

ences a reverse period-doubling bifurcation from chaos to one cycle. 

Fig. 10. (a) and (b) Phase diagram on the ( τ , κ) plane for different dynamic regions of the self-feedback chaotic Rössler system for δ = 0 . 04 and 0.06. 

The parameter space is separated into four regions, phase coherent chaotic state (PCC), phase noncoherent chaotic state (PNCC), periodic state (PS), and 

amplitude death (AD). 

 

 

 

 

 

 

 

 

For δ � = 0, the approximate critical curves can also be gotten under the condition τ � δ, 

δa 1 (κ) = 

π − sin 

−1 
(

λR 
01 

κτβ1 

)
β1 

, 

δb 2 (κ) = 

sin 

−1 
(

λR 
01 

κτβ2 

)
β2 

, (17)

where β1 , 2 = 

λI 
01 

±
√ 

(κτλI 
01 

) 2 +((κτ ) 2 −1)(λR 
01 

) 2 

1 −(κτ ) 2 
. The critical boundary lines which do not have contributions are not shown. The

results with solid lines are presented in Fig. 8 (a) for different τ ; they show good agreement with the numerical results

(solid dots) in all the subfigures. Comparing these subfigures, we find that the size of death island gets smaller as τ in-

creases. To quantify the change of this size clearly, the normalized scaling factor R = S τ /S max is shown in Fig. 8 (b), where

S τ = 

∫ 
δa 1 

≤δb 2 

(δa 1 − δb 2 
) d κ , One can easily see a monotonic decrease relationship between the value of R and τ , which is also

described by a power law function. 

To show the detail dynamics, Fig. 9 plots the bifurcation diagrams of the self-feedback system ( Eq. (11) ) which shows

that with increasing the process delay δ, the system undergoes a reverse period-doubling cascade from chaos to one cycle,
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Fig. 11. (a) The amplitude death islands for δ = 0 . 0 , 0 . 02 , 0 . 1 and 0.2, respectively. (b) The normalized scaling factor R vs. δ. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with a further increase in δ, the self-feedback system achieves amplitude death via a Hopf bifurcation. This observation

clearly demonstrates that the process delay facilitates amplitude death in self-feedback chaotic oscillator. 

We also numerically studied Eq. (11) in the parameter space of feedback gain and process delay time with different

process delay. The results are shown in Fig. 10 . The plane ( τ , κ) is divided into four different dynamical regions: phase

coherent chaotic state (PCC), phase noncoherent chaotic state (PNCC), periodic state (PS), and amplitude death (AD). Com-

paring two figures, one can observe that the phase noncoherent chaotic state merges if the process delay is sufficiently

large, the process delay makes dynamics of system complex. The system have no solution for the sufficiently large process

delays. To distinguish the phase coherent attractor and the phase noncoherent attractor, we used the method in paper [41] .

To distinguish the chaotic state and period state, we use the method which is similar to the method in Section 2 . 

5. Conclusion and discussions 

In conclusion, the role of process delay in feedback on the dynamical behavior of the nonlinear oscillators is investigated

numerically and theoretically, and the rich dynamical phenomena are observed. For the delayed feedback FitzHugh–Nagumo

neuronal model, the excite-spiking state, bursting state, unexcite-oscillate state, and multistable state are observed. For the

periodic oscillator and chaotic system, the process delay can induce amplitude death before the transmission delay takes

no effect in amplitude death, and the analytical death boundaries are also derived explicitly. Furthermore, we find that the

transmission delay can reduce the area of the death island. The larger the value of transmission delay, the smaller the size

of amplitude death island. The expansion well obeys a power law scaling, R = τ γ ( γ < 0). 

Below it is necessary to give some further discussions. In investigating the effect of process delay on amplitude death,

the process delay is larger than the propagation delay. It is interesting to explore the opposite case ( δ < τ ). Fig. 11 (a) depicts

the numerically obtained stable amplitude death for Stuart-Landau periodic oscillator with δ = 0 . 0 0.02 0.10.2, respectively.

We can observe that the amplitude region shrinks monotonically as process delay is increased and vanishes if process delay

surpasses the critical value. To quantify the change of this size clearly, the normalized scaling factor R = S τ /S max is shown in

Figs. 11 (b), From this plot, we can clearly see that R nonmonotonically depends on the value of process delay δ, indicating

the process delay can eliminate the amplitude death. The similar results for process delay eliminating amplitude death can

be gotten for the Rossler chaotic system. Our study can be a useful step to understand the effect of self-feedback loops and

establish a method to control the stability of system by adjusting the process delay and transmission delay. All these results

have been successfully extended to self-feedback dynamical systems with general nonlinearities. Finally we expect that the

findings are of significance, and can provide a positive inducement for various experimental studies in future. 
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