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Abstract. Electric load prediction is an important decision tool in area of electricity economy. Recently researchers have
presented innovative models to improve the forecasting accuracy of short-term electricity series, which is valuable in allowing
both consumers and electric power sector to make effective planning. This study proposed novel combing optimization model
to improve the precision of electric load forecasting and called SSPM. First, taken the advantage of linear prediction for
the seasonal autoregressive integrated moving average (SARIMA) model and non-linear prediction for the support vector
machines (SVM) model to combine a new model. Next, the produce results by SARIMA model is regarded as linear component
and used SVM model for correcting the residual from SARIMA as non-linear component of forecasting results. Third, in
order to show the dynamic relationship of linear and non-linear components, the weight variable of α1 and α2 are proposed
that optimized by particle swarm optimization (PSO) algorithm with lower error of fitness function, the combining model
is applied in the daily electric load data at New South Wales (NSW) in Australia. The experimental results indicate that
the proposed optimization model obtains better performance of precise and stability than models of SARIMA and SVM
respectively, outperform than conventional artificial neural network (ANN). Although the novel model is applied to electric
load forecasting in this paper, it has more scopes for application in a number of areas to gain improvement of forecast accuracy
in complex time series.

Keywords: Support vector machines, seasonal autoregressive integrated moving average, combining optimization model,
electric load forecasting, particle swarm optimization algorithm

1. Introduction

Electricity is a special energy source that has
particular attribute which cannot be stored and trans-
ported by vehicle. Therefore, effective load demand
decisions should be made correctly and timely, it is
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important to manage the process of electrical produc-
tion, distribution and consumption. Many researchers
have investigated electricity prediction in current
decision, but how to forecast power load with better
accuracy and effectively organize the transportation
sector, electricity generation sector and electricity
market are still challenging tasks [1]. Because inac-
curacy and uncertain prediction can waster for energy
distribution and industrial production, that lead to the
risk of management and the increase of the operating
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cost, which caused a wrong strategy in the gener-
ation of the power sector. Moreover, the accurate
prediction of the power data is a complex process
that including climate factor and social environment.
Climate changes include season changes and tem-
perature, among other concerns, social environment
changes involve holidays, local laws, competition of
Market [2]. Furthermore, many random and uncertain
factors could influence electricity trend, therefore,
it is hard to improve the accurate forecast trend of
electricity demand.

Many prediction models for electric load have been
proposed by researchers over the past two decades.
According to the forecasting period, the models can
be classified into short-term, interim and long-term.
Short term forecasting requires high forecasting accu-
racy with volatility and stochastic data, and this is a
challenge for models. The interim and long-term fore-
casting have more pattern with long history dataset,
it can capture the accuracy trend and interval than
the short-term forecasting. The statistics methods are
widely used in the stock and energy fields, and these
methods are both considered the data feature and time
factors, due to analysis history rule of real data at spe-
cific point in time, it can obtained trend in the time
series. These methods include linear regression, logi-
cal regression and generalized linear regression. The
latter two methods can be dealt with non-linear prob-
lem after conversion. Kulkarni et al. utilized Spike
Response Model (SRM) for building short term elec-
trical load predicted model applied in the Australian
Energy Market Operator (AEMO) forecasting [3].
Linear regression is good at forecasting linear type
dataset and the restriction of require sample have
fewer noise and conform the normal distribution.

In recent literature, artificial intelligence methods
are effective to deal with non-linear data and con-
sideration more influence factors for electrical load
forecasting. Ding et al. proposed a new forecasting
approach for the power output of photovoltaic system
based on the improved artificial neural network and
similar day selection algorithm and simulation results
suggested the superiority of this approach [4]. Cai
et al. presented a neural network applied to the elec-
tric load forecasting based on adaptive neural network
[5]. Pillai et al. investigated the feasibility of using
publicly available load and weather data to generate
synthetic load profiles by means of artificial neural
network (ANN) [6].

However, statistics model and artificial intelligence
models are applied in their own domains and none
of them really fit dataset in area of electrical load.

Therefore, some researchers utilize discrete probabil-
ity models integrated with neural networks to produce
novel hybrid models. Sperandio et al. presented new
Markov Chain model based on the Self-Organizing
Map (SOM) which considered climate variables of
historical trend. This model was used for electricity
demand prediction on very short-term horizon [7].
Kelo et al. proposed to optimize configuration of
model for focused time lagged recurrent neural
network. The author utilized two methods: one imple-
mented is that the laguarre, gamma and structure
of multi-channel tapped line memory; the other
implemented is that the parameter-wise optimization
training processed [8]. Dihimi et al. proposed a novel
echo state network optimized by modified shuffled
frog leaping algorithm for prediction of short-term
load and short-term temperature. At the previous
stage, load or temperature time series were decom-
posed by Wavelet transform and forecasting accuracy
was improved by Wavelet echo state network model
[9]. The structure and parameters of model influ-
ence the forecasting results, and tune off still lacks
on theoretical basis.

Meta heuristics can effectively optimize param-
eters of conventional model and improve precision
for prediction. Li et al. proposed a combining annual
power load prediction model which utilized fruit fly
optimization algorithm to optimize parameter selec-
tion of generalized regression neural which is capable
of more accuracy for prediction [10]. Lin et al. pro-
posed a hybrid economic indices based on short-term
load forecasting system are consideration electric-
ity load predicted the impact of business indicators,
which took part in the new model and obtained well
forecasting effect [11]. Kavousi-Fard et al. proposed
a new hybrid model to provide the short term elec-
trical load prediction which utilized Modified Firefly
Algorithm (MFA) to optimize parameter of Support
Vector Regression (SVR) model [12]. Wang et al.
applied residual modification method in SARIMA
to predict electricity demand based on PSO optimal
Fourier method [13]. The novel PSO–SVM model
was proposed by Selakov et al. considerate the train-
ing strategies, aiming to find the similar time points
in the recent historical data, are decided by the sig-
nificant temperature variation in the early stage [14].

The hybrid model can utilize the advantages of
each model and avoid the disadvantages; it can
receive good results for prediction. However, in real
world, in this section have large influence on pre-
diction, the forecasting model with consideration
of multiple factors and multiple conditions have a
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hot area. Hong et al. proposed model with seasonal
SVR and Chaotic genetic algorithm which consid-
ered effect of cyclic changes element on electric load
accuracy and obtained more precision [15] Felice
et al. proposed numerical weather prediction models
with potential benefit to predict electricity demand in
Italy using the weather data factor [16]. Lopes et al.
proposed a neural network based on the fuzzy ART
architecture applied in electric load predicting prob-
lem [17]. The statistic model of SARIMA is good
at forecasting the data with seasonal factor and lin-
ear trend, the intelligence method SVM is expert
in processing multiple factor and non-linear trend.
The combination of the two well-known models of
SARIMA and SVM were a new method, which is
applied in forecasting plant of a grid-connected pho-
tovoltaic and has obtained more forecasting accuracy
than both of SARIMA and SVM respectively [18].
But for electricity consumption forecasting, the data
involved uncertain and volatility factors, this may
decrease the accuracy of prediction.

In this paper, the author proposed a novel comb-
ing model which consists of SARIMA model and
SVM model optimized by PSO algorithm to forecast
electricity consumption, this model marked SSPM.
At first, the model SARIMA is used to forecast the
dataset and the forecasting result as linear compo-
nent for final model. The six type SARIMA models
with different parameters are proposed and marked
case1 to case6. The predict results of these six cases
were tested by statistical analysis and selected lowest
error of case as a best model. Next, the forecasting
results of SVM model which set residual from the
SARIMA model of first step as input data, it regard
as non-linear component for final model. Third, two
weights variable are represented in the dynamic rela-
tionship between linear and non-linear components
with optimization by PSO algorithm. It is calculated
best weight variable that combine linear and non-
linear components of the above discussion, product
forecasting resulting with minimum errors. Finally,
the linear and non-linear components by final model
are represented linear regression expression with
optimization weight variable, and final forecasts are
produced.

1.1. Our contributions

The electric load is a complexity process and influ-
enced by many factors such as holiday, climate,
economy, and so on. It is challenging for the improve-
ment of forecasting precision. Electric load dataset

is of special characteristics involved linear, nonlin-
ear and both together. Linear forecasting model is
particularly useful for handling the dataset which
hypothesize that the unknown parameters of the
model to expect relation and proportion of dataset.
Nonlinear forecasting model is applied in collection
with strong randomness and irregular volatility of
random error. However, pure linear or pure nonlin-
ear models rarely exist in reality, the two components
are often mixed together and become major compo-
nent alternately in time series. In order to precisely
depict the real situation of the above discussion, in
this study, the effective novel model was proposed
and marked SSPM to improve forecasting accuracy
in electricity load dataset in NSW. In this way, the
accuracy of electric demand forecasting is improved
significantly.

The remainder of this paper is organized as follows.
Section 2 illustrates the innovation and the major
idea. Section 3 illustrates the SARIMA model and
SVM technique respectively, and the proposed com-
bining model is described in details. Section 4 shows
and discusses the results of numerical experiments,
including the introduction of the criteria and the per-
formance of the model. Finally, Section 5 deals with
the conclusions and future research.

2. Methodology

This section will conduct a literature review includ-
ing the description of SARIMA model, SVM model
and a proposed combining model.

2.1. Seasonal autoregressive integrated moving
average models (SARIMA)

Auto-Regressive Integrated Moving Average
(ARIMA) is a statistics model proposed by Box and
Jenkins in 1976 [19]. Specially, SARIMA model is
extended from ARIMA model and considers seasonal
factors, which is more suitable for time-series analy-
sis than traditional ARIMA.

Time series {xt|t = 1, 2, . . . , n} is created by a
SARIMA (p, d, q) (P, D, Q) model if:

�p(L)AP (Ls)(�d�D
s yt) = �q(L)BQ(Ls)vt (1)

In which P and Q show seasonal regression; p

and q demonstrate no seasonal auto-regression; d

and D show separately no seasonal difference and
seasonal difference, s is the period length of season.
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The above equation is named seasonal time series
model or product seasonal model.

ϕ(L) = 1 − ϕ1L − ϕ2L
2 − · · · − ϕpLp, is the

periodical operator of autoregressive (AR) of index p.
�(Ls) = 1 − �1L

s − �2L
2s − · · · − �PLPs, is

the periodical operator of seasonal autoregressive
(SAR) of index P .

θ(L) = 1 − θ1L − θ2L
2 − · · · − θpLp, is the peri-

odical operator of moving average (MA) of index q.
�(L) = 1 − �1L

s − �2L
2s − · · · − �spLsp, is

periodical operator of seasonal moving average
(SMA) of index Q.

In the equation, d and D are special presented num-
bers of regular differences and seasonal differences.
νt is a white noise signal that is the estimated resid-
ual by time t (i.i.d) as a normal random variable with
an average value equal to zero and a variance sigma
σ2

ε [23, 24]. To establish the SARIMA model, the
following four steps are considered:

Step 1: Confirm variable differences d and D, and
original sequence conversion to stationary sequence
by regular difference and seasonal difference. Order
new sequence xt = �d�D

s yt .
Step 2: Confirm p, q, P , Q values by parameters

estimate of SARIMA.
Step 3: Build suitable model with Equation (1) and

test the accuracy of the chosen model.
Step 4: Utilize the chosen model to predict the

future data of the sequence, and delivered in a confi-
dence interval.

From the above introduction, the conventional
SARIMA model is good at analyzing data with sea-
sonal factors and upward trend in time series. The
parameter of SARIMA is adjustable for available
experimental data and texted with statistical tech-
niques.

2.2. Support Vector Machine (SVM)

Vapnik et al. firstly proposed SVM conception as
a tool of statistics learning [20]. The model is often
applied in range of classification and regression prob-
lems and has obtained a good effect. The algorithm
solves complex surfaces in spatial of high dimen-
sion with support vector which represents vector of
sample.

The principal advantage of SVM is made of
empirical risk for minimization and validation with
possibility of determining an acceptable error. The
SVR can solve problems of regression based on prin-
ciple of SVM. On the basis of literature survey, some
researcher begins to study how to use SVR model

for the prediction of time series and function. The
principle of SVM is as follows.

Suppose the training dataset {xi, yi}, (i =
1, 2, . . . , n) where xi is the input vector of dimen-
sion n and xi ∈ Rn, yi is output value of xi, name
labels of output yi ∈ R. Given a positive real number
e, a function f (xi) does not deviate from yi by more
than e, the SVM approximates is defined as follows:

f (x) = 〈w, ϕ(x)〉 + b, (2)

The minimization standard weight is given as fol-
lows:

min
1

2
‖w‖2 (3)

s.t |yt − 〈w, ϕ(xi)〉 − b| ≤ ε, i = 1, . . . N

In which ϕ(x) is feature function and maps a non-
linear function from input vector x, w is weights
of vector, and b is a constant. In order to improve
recognition of excessive noise or outliers, the slack
variables ξi, ξ∗

i are introduced to the new formula:

min
1

2
‖w‖2 + C

N∑
i=1

(ξi + ξ∗
i ) (4)

with the following constraints:

yi − 〈w, ϕ(xi)〉 − b ≤ ε + ξi

〈w, ϕ(xi)〉 + b − yi ≤ ε + ξ∗
i

ξi, ξ∗
i ≥ 0, i = 1, . . . , N

in which ξi and ξ∗
i are present absolutely error scope

whose values are positive or negative. Constant C

named hyper-parameter is used to adjust the flatness
of the function f and the amount of authorized error.
Error function |ξ|ε is used to validate formulation data
range:

|y − f (x)|ε

=
{ |y − f (x)| − ε, for |y − f (x)| > ε

0, otherwise
(5)

In order to facilitate the calculation process, the
Equation (4) is translated by Lagrange formulation
as follow:

L = −1

2

N∑
i, j=1

(αi − α∗
i )(αj − α∗

j )k(xi, xj)

−ε

N∑
i=1

(αi + α∗
i ) +

N∑
i=1

yi(αi − α∗
i ) (6)
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The constants αi and α∗
i must be positive and are

named Lagrange multipliers with the condition of∑N
i=1 (αi − α∗

i ) = 0 αi, α∗
i ∈ [0, C]. The formula of

the model’s weight is described as follow:

w =
n∑

i=1

(αi − α∗
i )ϕ(xi) (7)

Thus, the model can be described through the oper-
ation:

f (x) =
N∑

i=1

yi(αi − α∗
i )k(xi, x) + b (8)

The function k is called kernel function and it maps
nonlinear dataset into high dimension space with con-
ditions of Karush-Kuhn-Tucker (KKT). Thereby, the
Equation (8) generates linear classification from non-
linear dataset [21].

2.3. Combining model

The principal aim is to develop the forecasting per-
formance of the combining model with respect to the
electricity load in short-term time series. Literature
[22] proposed forecasting models which process fore-
casting results of linear and non-linear components
respectively to improve forecasting accuracy. How-
ever, the variables of the two components are only
simple combination to produce forecasting results
and do not show the dynamic relationship of lin-
ear and non-linear, because in the real dataset, the
main degree of linear and non-linear are dynamic
change in the time series, it is important to differ-
entiate relationship of two components, and it has
a great influence on the final forecasting precision.
From the above, the weight variables of α1 and α2 are
proposed to reflect the relationship between of linear
and non-linear components, the calculation as follow:

ŷt = α1L̂t + α2N̂t, t = 1, 2 · · · n α1 + α2 = 1 (9)

in which variables of α1 and α2 are weight factors
of L̂t and N̂t components. In order to indicate
the relation of the two components and improve
accuracy of prediction, the two variables α1 and
α2 are optimized by PSO algorithm with capability
of obtaining global optimal solution [23]. Then,
the SSPM is applied for forecasting with optimal
variable weights and the performance of the novel
model is tested by statistics technique.

The objective function of optimization for PSO is
defined as follow:

Algorithm 1. SSPM

Input:
X = (xt1, xt2 . . . xti), t = 1, 2 · · · k, i = 1, 2 · · · n— a
sequence of time series data.
Y = (yt1, yt2 · · · yti), t = 1, 2 · · · k, i = 1, 2 · · · n— the
value of correspond to a sequence of time series data.
Output:
ŷt— final forecasting value for setting cycle range.
Parameters:
q — the number of non-seasonal moving average terms.
p — the number of non –seasonal autoregressive terms.
d — the number of regular differences.
P — the number of seasonal autoregressive terms.
Q — the number of seasonal moving average terms.
D — the number of seasonal differences.
S — the seasonality of the model.
popsize — the population size of the solution space.
iternum— the max time of particle iteration.
α1, α2 — the weight values of linear and non-linear
components.
1:/* Confirm variable differences d and D, and original
sequence conversion to stationary sequence by regular
difference and seasonal difference. */
2: FOR EACH p, q, P, Q DO
Confirm p, q, P, Q values by parameters estimate of
SARIMA. Illustration is in Section 2 of SARIMA.
3: Utilize statistics test ACF and PCF to determined
feasibility of model.
4: The forecasting value by generated SARIMA is regard as
linear component for final model and set L̂t

5: END FOR
/*The residual by produced SARIMA as the input data series
for SVM model*/
6: SET the residual is divided into training data and testing
data DO
7: The forecasting value of SVM is regarded as non-linear
component for final model and set N̂t .
8: Initialization the value of α1 and α2 for fitness function.
Illustration in Equation 9.
9: FOR EACH i > 1 AND i <= popsize DO
10: α1 = ARRAY (1, rang); α2 = ARRAY (1, rang);
11: END FOR
12: P = {α1, α2}; iter = 1;
13: WHILE (iter <= iternum) DO
14:/* Find the global value of special range*/
15: FOR EACH pi DO
16: Calculation the fitness(pi) value based on function

foptimze =
n∑

t=1

∣∣yt − α1 × L̂t − α2 × N̂t

∣∣
17: IF (pBesti > fitness(pi)) THEN
18: pBesti = fitness(pi);
19: END IF
20: END FOR
21: FOR EACH i in P DO
22: Update gBest and record the best particle;
23: Update value
vi+1 = w × vi + c1 × rnd × (pBesti − pi) + c2 × rnd ×
(gBest − pi)
24: pi+1 = pi + vi;
25: END FOR
26: iter = iter+1;
27: END WHILE
28: RETURN α1best and α2best

29: Calculation value ŷt = α1L̂t + α2N̂t ,
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foptimze =
n∑

t=1

∣∣∣yt − α1 × L̂t − α2 × N̂t

∣∣∣ (10)

in which the variables α1 and α2 are parameters of
optimization in the range from 0 to 1 by means of
PSO method, L̂t and N̂t are linear and nonlinear com-
ponents for SSPM and yt is an actual data. In order to
obtain minimum values, the optimization function is
defined as the non-negative function and the popula-
tion size of the optimization process of PSO algorithm
is 50, the range of popular size will be discussed in
Section 4.1. The SSPM algorithm and flow chart are
show in Algorithm 1 and Fig. 1, respectively.

In this section, first, the dataset was detection by
SARIMA model. Weather detection SARIMA model
will validate the model through statistical techniques.

The seasonal factors have been considered in deter-
mining model.

The Auto Correlation Function (ACF) and Partial
Correlation Function (PCF) method have been used to
test the feasibility of the SARIMA model. Second, the
six cases were proposed based on different parameter
of SARIMA model, the best case selected with perfor-
mance analysis criteria and regard as best SARIMA
model. By the adoption of the best SARIMA model,
the forecasting results are regarded as linear compo-
nent for SSPM and the residual has been regarded as
the input data for SVM model. Finally, two weight
variables are optimized by PSO algorithm and the
final model is obtained.

By the adoption of the PSO algorithm, the global
optimal solution is obtained, and then forecast the
value with α1best and α2best to calculate the linear
and non-linear component.

Fig. 1. The flow chart of proposed model combined SARIMA and SVM method.
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3. Experiment and discussion

The proposed model utilizes the advantages of
SARIMA for linear component and SVM for non-
linear component. So in the first step, the input data
of regularization base on seasonal ARIMA model
and linear components have been obtained with
marked L̂t . The second step, the residual generated by
SARIMA model is taken as input data of SVM model
with strongly capable of nonlinear processing. In this
way, the nonlinear component is generated by SVM
and labeled N̂t . Finally, two weights variable of a1
and a2 are optimized by PSO algorithm, by the adop-
tion of linear and non-linear components with best
weighs variable, the final forecast results by Equation
9 is calculated.

3.1. Electric load dataset

The experimental dataset was conducted by adopt-
ing every 30 min data of NSW in Australia from
AEMO, it is the largest energy market in Australia,
and then precision electricity load forecasting is
important for operating and planning of the power
system. Every day has 48 points value, the day dataset
is generated for raw data with average of the 48
data points as data points. From the above, the data
collection of electric demand from January 2009
to December 2011 (3 years), and averaged 48 time
points as one day data. Figure 2 illustrates the electric
load data of NSW with seasonal and random factors
in the time series. In order to pass statistical testing,
an auto correlation analysis has been applied to find a

seasonal pattern. The auto correlation of original data
was shown in Fig. 2(b), which has obvious seasonality
pattern.

Figure 2 shows day dataset, which were repre-
sentative of electric data. Because the monthly data
of January is a first time for this year, the monthly
data of May is a time which alternated spring and
summer, this show changed electrocution consump-
tion in the two seasons. The monthly data September
and November were shown the difficult consumption
trend of autumn and winter. During the period of the
observation, the time series maintain a weekly sea-
sonality and keep 12 units in one month seasonality.
In order to improve forecasting accuracy, the working
day datasets are extracted, which means that datasets
are a composition of observation data from Monday
to Friday on a week.

In order to improve forecast precision, the original
data are progressed to collect the same point in every
month, and the range of day is represented λ. The set
input method is show in Fig. 3. This means that if the
day ith is forecast by used same day in lag λ month,
Experiment show the variable of λ is 5. In the same
way, the rest set are preprocessed.

3.2. Performance criteria

In order to obtain useful results for predictions and
evaluating the performance of the proposed model,
several criteria have been taken into account. The
final aim is to assure the proposed optimization of
the model. The generalization error of estimation
has been calculated by adopting four performance

Fig. 2. (a) Showing electric load dataset of three years in Australia and (b) showing auto correlation of sample.
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Fig. 3. Set input series pattern.

Table 1
The Performance criteria and their definitions for forecasting

models

Criterion Calculation

R R =
∑N

i=1 (Oi − Ō)(Pi − P̄)/√∑N

i=1 (Oi − Ō)2 · (Pi − P̄)2

RMSE RMSE =
√

1
N

∑N

i=1 (Oi − Pi)2

MAE MAE = 1
N

∑N

i=1
|Oi − Pi|

MAPE MAPE = 1
N

∑N

i=1

∣∣ Pi−Oi
Oi

∣∣ × 100%

indexes: the Root Mean Square Error (RMSE),
the Mean Absolute Error (MAE) and the Mean
Absolute Percentage Error (MAPE). Table 1 shows
these performance criteria and calculation formulae
separately.

In Table 1, Oi is the observed value, Pi is the pre-
dicted value in time i and N is the sample number in
the data series. The lower values of RMSE, MAPE
and MAE show better performance.

3.3. Experimental setup

The simulate programmer compared the perfor-
mance of SSPM with other models of SARIMA,
SVM and other hybrid models of SARIMA com-
bining SVM model which was marked SSM
and SARIMA combining artificial neutral network
(ANN) model which was marked SNNM. All the
models have forecasting one month period.

At first the six cases with different parameters of
SARIMA models were processed and tested by statis-
tical technique, the best case was selected and regard
as best SARIMA model in which parameter set the
q = 1 and p = 2, the season variable of Q and P are 1
and 1, the diffident variable d is 0 and D is 12. SVM
model parameter c and σ are equal to 1.5 and 2, the

data set of preprocess were divided into train dataset
and test dataset, the train to verify ratio was set 5:1,
the kernel function was adopted RBF.

For the hybrid method, the other commonly mod-
els were considered, such as ARMA, hidden Markov
forecasting model, classification and regression tree
(CART) model, and the experiment result of these
commonly models were of poor performance for this
instance, so the combining model of SSM and SNNM
were the only consideration in this experiment.

3.4. Experiment

The SSPM model is used to forecast electric-
ity of one month period. At first set, the six cases
were proposed from SARIMA model with diffi-
dence parameters, these cases have marked case1 to
case6. The translate cases were used to determine
best parameter of SARIMA model of the experiment
result. Next, the residual is generated by selecting
the best case and regarded as the input dataset for
SVM model, the forecasting results of SVM model as
non-linear component for final model. The third step,
weights variables were optimized by PSO algorithm
and the final forecasting results are obtained.

The SARIMA model tested by statistical criteria
of ACF and PCF was shown in Fig. 4, the six cases
are executed and cases errors analysis were shown
in Fig. 5, the six cases performance analysis with
statistical technique were shown in Table 2.

In order to pass the statistical testing for model,
an analysis method of the residuals has been imple-
mented to ensure that the residual data satisfy a white
noise process. Figure 4 (c) and (d) show no signifi-
cant autocorrelation in the residual errors. It shows
that the all parameter values of SARIMA models sat-
isfy the statistical testing. The experiment results and
six cases errors analysis were shown in Fig. 5.

The electricity load data was divided into two parts
with train and verify ratio, which was analyzed by
ACF and PCF, six cases were classified with different
parameters of q, p, P , Q, d and D, thus, the six dif-
ferent executing result were produced. The case6 was
best case which has lowest average error in six cases
and does not exceed 0.75%, the case3 has maximum
average error and reached 2.163%, the forecasting
errors of six cases with testing dataset, were shown
in Fig. 5. It shows that the case3 has larger volatility in
per time point than other cases, the case5 has similar
error with case6, from the plot showing, and it obvi-
ously seemed that the red color curve of case6 has
always low error than other cases at per point, so the
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Fig. 4. (a) The residual patterns of SAIRMA model; (b) The standard residuals histogram; (c) Sample ACF of residual; (d) Partial ACF of
residual.

Fig. 5. Comparison of forecasting errors for six cases on per time point with testing dataset.

Table 2
Results of the SARIMA model in the first step with best model in bold

Model (parameters) Performance indexes
R-squared RMSE MAPE(%) MAE

Case1 (SARIMA(1,0,1)(1,0,1)7) 0.9112 309.29 1.641 207.204
Case2 (SARIMA(1,0,1)(1,1,1)7) 0.9112 317.403 1.002 207.696
Case3 (SARIMA(2,0,1)(1,0,1)7) 0.8309 418.01 2.163 297.94
Case4 (SARIMA(2,0,1)(1,1,1)7) 0.9147 306.58 1.016 206.74
Case5 (SARIMA(1,0,1)(1,0,1)12) 0.9326 298.84 0.904 196.098
Case6 (SARIMA(2,0,1)(1,1,1)12) 0.9357 290.87 0.720 187.820

sixth case was the best model. The experiment results
of six cases were shown in Table 2 with performance
criteria.

Considering one-month period prediction, the cho-
sen best case from the conversion dataset was case6
which was equal to SARIMA (2,0,1)(1,1,1)12, the
case6 have lowest RMSE, MAPE and MAE were
290.87, 0.720% and 187.820 respectively, this illus-
trated that the case6 has more fitness the actual data

and the value R was 0.9357, it indicates that case6 is
the best than the other five cases. The case6 has been
selected as the best case, the forecasting results be
taken as linear component for final model.

The forecasting results of models of SSPM,
SARIMA, SNNM, SSM and SVM, and their errors
were shown in Fig. 6. The performance of the five
models are compared with statistical criterion, and
indicated in Table 3.
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Fig. 6. Compares the forecasting results from three models.

Table 3
Prediction errors compared of SSPM, SARIMA, SVM, SNNP and SSM models separately for one month

Site α1 α2 Methods MAPE (%) MAE (MW/h) RMSE (MW/h)

NSW – – SVM 4.655 348.914 467.491
– – SARIMA 2.348 187.82 290.87

1.000 1.000 SNNM 2.458 188.797 271.317
1.000 1.000 SSM 2.159 166.719 233.93
0.901 0.098 SSPM 1.974 149.745 232.797

The five forecasting models have fitness the actual
curve well and the SSPM performance outperformed
than other models. The forecasting curves shows that
SSPM almost coincide with raw data in overall time
period. For the time zone of 23 to 26, all the models
have large errors and the reason is that the electricity
load is greater in the end of month than other time,
such as at weekends.

The MAPE of forecasting errors for SSPM,
SARIMA, SVM, SNNM and SSM were 1.974%,
2.348%, 4.655%, 2.458% and 2.159%, respectively,
the max values of five models does not exceed 10%,
this indicates that these models satisfy the electricity
forecasting. The SSPM has lowest MAE and RMSE
in five models, so the SSPM outperform than the
SARIMA, SVM, SNNM and SSM. However, the val-
ues of RMSE and MAE for SSPM were close to SSM,
because the parts of linear component of SSPM were
made from SARIMA model and two models both

used the linear component as parts of forecasting
results.

The two components for SSPM were optimized
by PSO algorithm, in order to represent relationship
between linear and non-linear components. The argu-
ment of α1 and α2 dynamic weight changes by PSO
algorithm are shown in Tabe.4.

From Table 4, it is obviously that the absolute
errors change with parameter values of α1 and α2,
when α1 was close to 0.9 and α2 is near 0.1, the abso-
lute error decreases rapidly. In this section, the best
weight value of α1 was 0.9019, the weight value of
α2 was 0.0981 and the global best value was 4642.25
with optimization by PSO algorithm.

From the experiment results, the SSPM model is
lowest in RMSE, MAPE and MAE, is 232.797, 1.974
and 149.745, respectively, the performance is bet-
ter than other four models. The SVM model has
maximum values of RMSE, MAPE and MAE, are
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Table 4
The weight values of variable α1 and α2 with the corresponding absolute errors base on PSO algorithm

No. α1 α2 Absolute error No. α1 α2 Absolute error

1 0.3012 0.6988 17714.84 26 0.2967 0.7033 12391.56
2 0.4709 0.5291 18274.41 27 0.3188 0.6812 17202.90
3 0.2305 0.7695 15944.06 28 0.4242 0.5758 16129.24
4 0.8443 0.1557 9064.37 29 0.5079 0.4921 11576.76
5 0.1948 0.8052 5310.24 30 0.0855 0.9145 13740.16
6 0.2259 0.7741 6773.60 31 0.2625 0.7375 14874.65
7 0.1707 0.8293 13626.59 32 0.8010 0.1990 17741.59
8 0.2277 0.7723 12817.41 33 0.0292 0.9708 8670.62
9 0.4357 0.5643 14452.43 34 0.9289 0.0711 9849.04
10 0.3111 0.6889 12224.56 35 0.7303 0.2697 13441.75
11 0.9234 0.0766 5171.77 36 0.4886 0.5114 19575.74
12 0.4302 0.5698 9934.06 37 0.5785 0.4215 14282.62
13 0.1848 0.8152 15603.13 38 0.2373 0.7627 10059.39
14 0.9049 0.0951 5183.24 39 0.4588 0.5412 9474.66
15 0.9797 0.0203 5180.04 40 0.9631 0.0369 7286.42
16 0.4389 0.5611 17829.36 41 0.5468 0.4532 13671.24
17 0.1111 0.8889 6749.84 42 0.9019∗ 0.0981∗ 4642.25∗
18 0.2581 0.7419 14005.04 43 0.2316 0.7684 21521.76
19 0.4087 0.5913 14036.42 44 0.4889 0.5111 10480.83
20 0.5949 0.4051 12707.76 45 0.6241 0.3759 12024.93
21 0.2622 0.7378 14907.08 46 0.6791 0.3209 16381.16
22 0.6028 0.3972 10050.45 47 0.3955 0.6045 16369.19
23 0.7112 0.2888 9650.45 48 0.3674 0.6326 14476.55
24 0.2217 0.7783 18103.97 49 0.9880 0.0120 53082.32
25 0.1174 0.8826 12236.35 50 0.0377 0.9623 13226.14

∗The best weights variable for α1 and α2 were bold by optimized PSO algorithm.

467.491, 4.655 and 348.914, respectively, this exper-
imental results shows that the performance of SVM
was impacted with large fluctuation values in the
whole testing dataset. The performance of SSM is
similar to SSPM, but SSM has large error at part
time points of 23 to 26 days in a month, the rea-
son is that the electricity consumption dramatically
changed in time interval and the relationship of lin-
ear and non-linear components have large volatility
which affected precision of final forecasting results.

4. Forecasting error analysis

4.1. Population size

The decline trend of the absolute error values by
PSO algorithm was shown in Fig. 7, the error val-
ues reduce quickly and convergence with increasing
iterations. With no more than 500 iterations, the best
values are calculated and the relationship between
two components was found out by PSO algorithm.
The comparison results of three population sizes with
three iterations were shown in Fig. 7(a-c).

An illustration of particle evolution with the fitness
function was compared in electricity load, Fig. 7 (a-c)
compare the evolutions among PSO algorithm with

three epochs, Fig. 7(a) shows changes of fitness val-
ues in 10, 20 and 50 population size with 50 epochs,
Similarly Fig. 7(b-c) shows that fitness changes the
values in 10, 20 and 50 populations size with 200
epochs and 500 epochs, respectively. From the above,
it has shown that the lager population size can make
particle faster convergence for globe optimal solu-
tion. However, large population size has high runtime,
the increase time complexity depends on both num-
ber of epochs and size of population. According to
this experiment study, the iteration number can be set
100–200 and population size can be set 30–50. On
the other hand, too large population can make particle
excessive divergence, it is not convergence to globe
solution in per processing and need run multiple times
to find solution.

4.2. Model evaluation

The evaluation hybrid model performance meth-
ods of Dynamic Time Warping (DTW) and the Two-
Order Forecasting Validity (TOFV) were used to ana-
lyze the performance of the each model in this paper
[24]. DTW method measures the similarity between
two temporal sequences which may vary in speed.
DTW has often been applied in temporal sequence of
video and graphics data. The method of two-order
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Fig. 7. The value of absolute error for PSO algorithm which obtained weight variable α1 and α2.

Table 5
Evaluation the prediction performance of five forecasting engines based on evaluation models of DTW and TOFV

Data Set Methods SVM SARIMA SNNM SSM SSPM

NSW DTW 431.4365 192.4535 173.993 203.4061 161.096
TOFV 0.9741 0.9832 0.9815 0.9807 0.9854

forecasting validity uses prediction accuracy and
standard deviation of prediction to evaluate the per-
formance of combining forecasting models. The two
methods are used to evaluate the prediction perfor-
mance of five methods for forecasting electric load in
NSW of Australian. The comparison of forecasting
results and experimental analysis in details are shown
in Table 5. The lower values of DTW and higher
values of TOFV show better performance of models.

The forecasting error analysis illustrated that the
SSPM model has better performance than other
model, it indicated that the SSPM have lower error
throughout the whole dataset, but at some time point
large errors like both ends points of the testing dataset
will appear, the reason was that the information is
lack of the previous day’s history and unable esti-
mated the beginning trend for dataset. However,
the forecasting accuracy will make balance between
consumption and supply of electricity, and rational
utilization power resources. A low forecasting error
will lead to precise reserve estimation effectively
and reduce risk of administration for power grid and
operation costs. The forecasting error increased 1%,
the corresponding operating cost will increase $10
million [35]. Therefore, it is important to improve
the accuracy of electricity load. In this paper, the
SSPM forecasting performance exceeds the conven-
tional models and combining model, and satisfies the
forecasting electricity load.

5. Conclusion

For classical models, some models are good at
dealing with linear components and other methods

are good at handling nonlinear components in time
series. Several researchers have found that combing
approach is able to outperform either of the models
used separately [2]. However, some studies pointed
out that discrepancy in the research finding arising
from their hypothesis.

To overcome limitations existed in the above dis-
cussed models and obtain more accurate prediction
results, a novel optimization approach is proposed
and marked SSPM model for electric load forecast-
ing, which is able to do predict in time series with
noisy data. The SSPM was evaluated and compared
with not only SARIMA and SVM models, but also
compared with other well-known combining models
such as SSM and SNNM models, in the daily electric
load data at NSW in Australia. The performance and
capability of the models are measured and evaluated
with criteria R, RMSE, MAPE and MAE. The experi-
mental results show that the SSPM outperforms other
models. Furthermore, the weights variables of α1 and
α2 optimized by PSO algorithm in Equation 9 can
finally generate more accurate prediction; it improves
the forecasting accuracy of one month period. This
study indicates that the SSPM is an inerrable, suitable
and hopeful methodology to predict electric load in
electricity economy. The contribution of this paper is,
by the adoption of dynamic weight variables α1 and
α2, to accurately describe relationship between linear
and nonlinear components from SSPM and optimized
values of α1 and α2 by PSO algorithm. Therefore,
it provides relevant information for power produc-
tion sector for decision making and carrying out more
effective energy plans.

The SSPM methods can be applied in the real world
to forecast problem and can achieve good results,
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however SSPM has some lacks such as multiple
factors of holidays, weather, temperature and envi-
ronment were not taken into consideration in the
model. To overcome this limitation and improve the
efficiency for prediction models are the future study.
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