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Transition metal phosphide alloys possess the metalloid characteristics and superior electrical conductivity and are a kind of high
electrical conductive pseudocapacitive materials. Herein, high electrical conductive cobalt phosphide alloys are fabricated through
a liquid phase process and a nanoparticles structure with high surface area is obtained.The highest specific capacitance of 286 F g−1
is reached at a current density of 0.5 A g−1. 63.4% of the specific capacitance is retained when the current density increased 16
times and 98.5% of the specific capacitance is maintained after 5000 cycles. The AC//CoP asymmetric supercapacitor also shows a
high energy density (21.3Wh kg−1) and excellent stability (97.8% of the specific capacitance is retained after 5000 cycles). The study
provides a new strategy for the construction of high-performance energy storage materials by enhancing their intrinsic electrical
conductivity.

1. Introduction

Supercapacitors exhibit high power density, fast charging,
and long cycling life; they have potential applications in
electronic devices, hybrid electric vehicles, and military
devices [1–3]. However, the energy density of supercapacitors
(4-5Whkg−1 for carbon based supercapacitors) is still lower
than batteries (30–60Whkg−1) and prevents their practical
applications [4, 5]. Therefore, many researchers are focused
on improving the energy density of supercapacitors while
maintaining their high power density [6–8]. The energy
storage of pseudocapacitors is based on the Faraday reactions
occurring at the surface of electroactive materials, such as
RuO2,MnO2, IrO2, andCo3O4 [9–13], and the energy density
is higher than carbon based electric double-layer capacitors.
Transition metal oxides provide higher specific capacitance
and energy density than carbonmaterials [14, 15], which have
been considered as promising pseudocapacitive materials.

Among transition metal oxides, cobalt oxides are widely
studied as pseudocapacitive materials due to their high
specific capacitance, excellent rate capability, and good cycle
stability [16–18]. However, the cobalt oxides still suffer from
poor electrical conductivity which limits charge/discharge
performance at larger current densities [19, 20]. The gen-
eral strategy for improving conductivity of cobalt oxides is
compositing them with high electrical conductive carbons
or graphene. For example, Co3O4-reduced graphene oxide
scrolls [21], ordered mesoporous carbon composite films
containing cobalt oxide and vanadia [22], nitrogen dop-
ing graphene based cobalt oxide [23], multiwalled carbon
nanotubes, and cobalt oxide film [24] have been fabricated
and exhibited better performance than pure cobalt oxide
due to the improved electrical conductivity. Unfortunately,
the electrical conductivity improvement of adding carbons
is limited and the specific capacitance will be decreased
when too much carbon is added (because carbon materials
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would not contribute pseudocapacitance to the composite
materials) [25]. Therefore, it is important to look for a
new strategy for improving conductivity of cobalt based
pseudocapacitive materials. Interestingly, cobalt phosphides
possess the metalloid characteristics and superior electri-
cal conductivity (3.17 S cm−1 compared with 10−4 to 10−2
of Co3O4) [26, 27] and are a promising high electrical
conductive electrode material of pseudocapacitors. This is
because both of the oxidized and reduced cobalt exist in the
cobalt phosphide alloys, rather than only oxidized cobalt in
the cobalt oxides. The oxidized cobalt in cobalt phosphides
could store charges and provide high capacitance through
Faradaic reactions, while the reduced cobalt could provide
free electrons and greatly improve electrical conductivity.
This means that cobalt phosphides will not only possess
high capacitance, but also provide high electrical conductivity
and excellent rate capability. This inspires us to study the
pseudocapacitive performance of high electrical conductive
cobalt phosphide alloys.

Because of the high electrical conductivity, cobalt phos-
phides have been studied as materials of lithium ion batteries
[28, 29] and supercapacitors [30]. For example, Wang and
coworkers [30] have proved that Co2P is an ideal super-
capacitive material with good cycle performance and high
specific capacity. The study indicates that cobalt phosphide
is a promising high electrical conductivity energy storage
material. This inspires us to further design and study the
electrochemical properties of cobalt phosphide with other
crystal phases.

Herein, high electrical conductivity CoP nanoparticles
with a triangular-pyramid-like structure are further synthe-
sized through a liquid phase process using cobalt acetylaceto-
nate as cobalt precursor and trioctylphosphine as phosphorus
source. They show ideal pseudocapacitive properties; the
highest specific capacitance is 286 F g−1 at a current density
of 0.5 A g−1. 63.4% of the specific capacitance is retained
when the current density increased 16 times and 98.5% of
the specific capacitance is maintained after 5000 cycles. The
AC//CoP asymmetric supercapacitor was assembled using
CoP as the positive electrode and activated carbon as the
negative electrode which also shows a high energy density
(21.3Wh kg−1) and an excellent stability (97.8% of the specific
capacitance is retained after 5000 cycles).The studymanifests
that CoP alloys are ideal pseudocapacitive materials and have
great potential for high-performance electrochemical energy
storage systems.

2. Experimental Section

CoP particles were synthesized through a liquid phase
reaction. 0.5 g cobalt acetylacetonate (purity 98%, shanghai
Macklin Biochemical Co., Ltd.), 5ml of 1-octadecene (purity
90%, SA Chemical Technology (Shanghai) Co., Ltd.), and
0.3ml of trioctylphosphine (purity 90%, SA Chemical Tech-
nology (Shanghai) Co., Ltd.) were added in a three-necked
round-bottomed flask.Then the mixture was stirred at 300∘C

for 5 h. After cooling to room temperature, the sample was
washed with normal hexane several times and dried at 80∘C
for 12 h in vacuum oven. The structure characterizations,
electrochemical evaluations, and the preparation of the CoP
electrodes are shown in supporting information.

3. Results and Discussions

Cobalt andphosphorus atoms arose from the thermal decom-
position of cobalt acetylacetonate and trioctylphosphine
during the liquid phase reaction, and then CoP particles
are formed through the combination between cobalt and
phosphorus atoms. Figure 1(a) shows the X-ray diffraction
(XRD) pattern of the CoP particles. It is obvious that the
pattern of CoP is corresponding to the standard patterns
of CoP (PDF, card number 29-0497). The diffraction peaks
located at 31.62∘, 34.56∘, 36.34∘, 47.74∘, 56.70∘, 63.06∘, 67.95∘,
and 77.06∘ can be indexed as (011), (200), (111), (211), (301),
(311), (220), and (222) planes of CoP, respectively. The sharp
peaks indicate the high crystallinity that is favorable for the
CoP to exhibit a high electrical conductivity and even excel-
lent rate capability. However, the XRD pattern of the sample
also shows the presence of Co2(P4O12) (PDF, card number
86-2161) in the sample. The low content of Co2(P4O12)
phase may be formed through the oxidation of CoP. X-ray
photoelectron spectroscopy (XPS) is used to investigate the
chemical bonding states of Co and P in cobalt phosphide.The
survey spectrum of CoP (as shown in Figure 1(b)) contains
the peaks of Co, P, C, and O elements, where the C element
is added as master standard for peak position calibration and
the O element is derived from surface adsorption of sample
when exposed to the air. Figure 1(c) is the Co 2p spectrum.
The peaks at binding energy of 781.3 eV and 797.2 eV can
be assigned to the Co 2p3/2 and Co 2p1/2 peaks of oxidized
Co2+ [31], while the peaks at 778.9 eV and 794.5 eV are
corresponding to the Co 2p3/2 and Co 2p1/2 peaks of reduced
Co [32]. Besides, the peaks located at 786.0 eV and 803.1 eV
are satellites peaks (denoted as “Sat.”). The results indicate
that there are two kinds of cobalt (the oxidized Co2+ and the
reducedCo) existing in theCoP.Co2+will be oxidized toCo3+
during the electrode reaction process, which contributes
specific capacitance to the CoP electrode, while the reduced
Co will provide free electrons and greatly improve electrical
conductivity of CoP. It is suggested that the CoP will not
only possess high capacitance, but also provide high electrical
conductivity, which will serve as an ideal electrode material
for pseudocapacitors.

The surface morphology and microstructure are shown
in Figure 2. It can be seen from the scanning electron
microscopy (SEM) image (Figure 2(a)) that the CoP exhibits
a loosely packed nanoparticles structure and there are
abundant interspaces existing between the nanoparticles.
This result can further be shown as transmission elec-
tron microscope (TEM) image in Figure 2(b). The CoP
nanoparticles show a triangular-pyramid-like structure and
the size of triangular-pyramid-like nanoparticles is about
20–30 nm. The small size of the CoP nanoparticles will
introduce a larger surface area and provide more active
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Figure 1: (a) XRD pattern of CoP particles. XPS spectra of the CoP (b) survey spectrum and (c) Co 2p.
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Figure 2: (a) SEM image and (b) TEM image of CoP particles.
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Figure 3: Pseudocapacitive properties of CoP electrode. (a) CV curves at different scan rates, (b) charge/discharge curves at various current
densities, (c) specific capacitance at different current densities, and (d) cycling stability at 2 A g−1.

sites for the Faraday reactions during charge/discharge
process, which will contribute a high specific capacitance.
The TEM image also indicates the existence of the inter-
spaces between triangular-pyramid-like nanoparticles. This
will provide convenient transportation channels for elec-
trolyte ions and lead to excellent rate capability. The results
indicate that the CoP exhibits an ideal morphology and
microstructure to serve as pseudocapacitive materials. The
porous structure is further characterized by the nitrogen
adsorption/desorption experiment (the nitrogen adsorp-
tion/desorption isotherms and pore size distribution of CoP
are shown in Figure S1 in Supplementary Material available
online at https://doi.org/10.1155/2017/9728591). The results
indicate that the CoP nanoparticles show a high surface area
of 35.4m2 g−1. It is necessary to possess a large electrode
specific surface area for improving the specific capacitances.

Figure 3(a) shows the CV curves of CoP nanoparticles
electrode. The weak redox peaks are observed in each curve,

suggesting that the capacitance of CoP electrode is mainly
based on the redoxmechanism. It is obvious that the shapes of
CV curves are close to quasi-rectangular and their enclosed
areas are almost distributed in the whole potential window.
This means that the surface Faraday reactions of CoP can
occur at the whole potential window, suggesting its ideal
pseudocapacitive properties. The shape of the CV curves
is not significantly influenced by the increase of the scan
rates. This indicates the improved mass transportation and
electron conduction in the host materials. The fast mass
transportation of electrolyte ions to the surface of the CoP
electrode could be ascribed to the abundant interspaces
between the nanoparticles which provide convenient dif-
fusion channels for electrolyte ions transportation, while
the fast electron conduction in the host materials will be
attributed to the high electronic conductivity of the CoP.
Both the fast mass transportation of electrolyte ions to the
surface of the electrode and fast electron conduction in the

https://doi.org/10.1155/2017/9728591
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host materials are beneficial to improve the rate capability of
the CoP electrode. To further understand the rate capability
and calculate the specific capacitance of the CoP electrode,
charge/discharge measurements were performed at various
current densities, as shown in Figure 3(b). The curves have
a shape like an isosceles triangle that indicates its ideal
capacitive behavior. This result is also in accordance with the
CV curves. Figure 3(c) exhibits the specific capacitance of
the CoP electrode calculated according the discharge curves
from the following equation:

𝐶𝑚 =
𝐼 × Δ𝑡

Δ𝑉 × 𝑚
, (1)

where C is the total capacitance, I is the discharge current,
Δ𝑡 is the discharge time, Δ𝑉 represents the potential window,
C𝑚 is the specific capacitance, and m is the mass of active
materials. The specific capacitance of the CoP electrode is
286 F g−1 at a discharge current density of 0.5 A g−1 and
remains 175 F g−1 when the current density is increased to
8A g−1.Though the specific capacitances gradually decreased
at higher current density due to the incremental (IR) voltage
drop and insufficient active materials being involved in the
redox reaction at higher current, 63.4% of the specific capac-
itance is still retained when the current density increased 16
times that shows excellent rate capability. This is attributed
to the fast mass transportation of electrolyte ions to the
surface of the CoP electrode and the fast electron conduction
in the host materials of CoP. The cycling stability of the
CoP nanoparticles electrode is demonstrated in Figure 3(d).
The specific capacitance for the first cycle is 224 F g−1 and
then gradually increased in the later cycles due to the fully
electrochemical activation of theCoP electrode. Interestingly,
the specific capacitance of CoP electrode reached the highest
value of 272.2 F g−1 at 2000 cycles and no visible decrease
of specific capacitance was found after 5000 cycles. Besides,
the coulomb efficiency of the CoP electrode reached 98.5%
during 5000 cycles and indicated excellent reversibility of the
CoP. Combined with the high specific capacitance, excellent
stability, and rate capability, the as-prepared CoP is an ideal
material for pseudocapacitors.

For further evaluation of the properties of the CoP elec-
trode, an AC//CoP asymmetric supercapacitor was assem-
bled with CoP as the positive electrode and activated carbon
(AC) as the negative electrode.The capacitive performance of
AC electrode is shown in Figure S2. It is obvious that the AC
electrode exhibits excellent electric double-layer capacitive
properties. The specific capacitance reached 206 F g−1 at
a discharge current density of 0.5 A g−1. Combined with
the specific capacitance and potential window of the CoP
electrode, the mass ratio between CoP and AC is calculated
according to

𝑚+

𝑚−
=
𝐶−𝑚 × Δ𝑉−

𝐶+𝑚 × Δ𝑉+
, (2)

where 𝐶−𝑚 and 𝐶+𝑚 are the specific capacitance of the AC
and CoP electrode, Δ𝑉 is potential window, and m is the
mass of activematerials.The calculatedmass ratio of CoP/AC
is 1 : 1.3. An appropriate voltage window is very important
to AC//CoP asymmetric supercapacitor; otherwise there is
a risk of damaging the cell when charging it in the high
potential. It is considered that the appropriate operation
voltage window of AC//CoP asymmetric supercapacitor is
0–1.6 V (Figure S3).

The electrochemical test of the AC//CoP capacitor indi-
cates its excellent properties. It shows quasi-rectangular
CV curves (Figure 4(a)) in the whole voltage range with
weak redox peaks, suggesting its ideal pseudocapacitive
properties. The shapes of the CV curves remain the same
with the increase of the sweep rate, indicating the fast
charge/discharge property that is desirable for power devices.
The results are also in accordance with charge/discharge
curves (as shown in Figure 4(b)) which show a triangle
shape. The calculated specific capacitance according to the
discharge times is shown in Figure 4(c). It reached 60.3 F g−1
at a discharge current density of 0.5 A g−1 and still retained
44.5 F g−1 at a large discharge current density of 8A g−1,
showing a good rate capability. The excellent cycle stability
at a current density of 0.5 A g−1 is also demonstrated in
Figure 4(d). The specific capacitance gradually decreased
with increase of the cycle numbers and finally 97.8% of the
specific capacitance is retained after 5000 cycles.

Figure 5 shows Ragone plots of AC//CoP, AC//AC, and
AC//Co9S8 capacitors. The AC//CoP asymmetric superca-
pacitor shows higher energy density (21.3Wh kg−1) than
AC//AC symmetric supercapacitors (4.9Wh kg−1), which
reveals that the application of the CoP as the positive
electrode can improve energy density of the supercapacitor.
What is more, the AC//CoP asymmetric supercapacitor also
shows higher energy density than AC//Co9S8 asymmetric
supercapacitors (15.1Wh kg−1) [33], indicating the excellent
pseudocapacitive performance and application potentials of
the prepared high electrical conductive CoP. The results
indicate that the as-prepared high electrical conductive CoP
is an ideal pseudocapacitive material.

4. Conclusion

In summary, high electrical conductive CoP alloys are fab-
ricated through a liquid phase process and a nanoparticles
structure with high surface area is obtained. The highest spe-
cific capacitance of 286 F g−1 is reached at a current density
of 0.5 A g−1. 63.4% of the specific capacitance is retained
when the current density increased 16 times and 98.5%
of the specific capacitance is maintained after 5000 cycles.
The AC//CoP asymmetric supercapacitor also shows a high
energy density of 21.3Wh kg−1 and excellent stability (97.8%
of the specific capacitance is retained after 5000 cycles). The
study provides a new strategy for the construction of high-
performance energy storage materials by enhancing their
intrinsic electrical conductivity.
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Figure 4:The performance AC//CoP asymmetric supercapacitor. (a) CV curves at different scan rates, (b) charge/discharge curves at various
current densities, (c) specific capacitance at different current densities, and (d) cycling stability at 4A g−1.
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