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a b s t r a c t 

Nonlinear term is critical for emergence of chaos in autonomous dynamical systems. The 

sampled time series in chaotic system are dependent on the initial selection of variables, 

while the attractors are invariant for fixed parameters. In this paper, the dynamical be- 

havior of a class of dynamical system is investigated at fixed parameter region. It is found 

that the state selection is dependent on the initials and the potential mechanism is dis- 

cussed. It is confirmed that the system can be switched between stable state, periodical 

state and even chaotic state by selecting appropriate initials even the parameters are fixed. 

We think that nonlinear cross terms with higher order could account for the emergence of 

this behavior. It indicates that initial selection and resetting can be also effective to con- 

trol some chaotic systems, and these chaotic systems could enhance security for possible 

secure communication because the chaotic attractor depends on the parameter and initials 

selection as well. In the case of secure communication, the reconstruction of phase space 

becomes more difficult because the attractors are changed arbitrarily, thus the safety for 

secure keys is enhanced. For chaos control, when the initials are reset, the controller can 

be removed and the system can develop to step into the desired target by itself. 

© 2016 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Chaos is observed in chemical, physical and biological systems, and nonlinear analysis is helpful to understand the

dynamical behavior and properties of sampled time series for observable variables from chaotic systems [1–12] . The topics

about chaos, hyperchaos and spatiotemporal chaos have been investigated extensively [13,14] . The electrical activities in

neuron also show chaotic properties and can be verified in neuron models by setting appropriate parameters and external

forcing currents [15–18] . Some researchers prefer to find and design different chaotic, hyperchaotic circuits, dynamical

models [19–21] . For example, Azzaz et al. [20] proposed an auto-switched chaotic system and its FPGA implementation

was verified. Trejo-Guerra et al. [21] presented a review on the electronic design of chaotic oscillators, the integrated

realizations were listed, and the key points for future research on the design of multi-scroll chaotic oscillators were

discussed. It is believed that the brain normally works in a chaotic mode, while during attention it shows ordered behavior,

as a result, Arama et al. [22] presented a novel model for human memory based on the chaotic dynamics of artificial neural

networks. Complex dynamical behaviors are observed in nonlinear dynamical systems for economic models, Tacha et al.

[23] presented a scheme adaptive control to regulate the finance system’s behavior. Fractional chaotic systems seem to

present more complex dynamical behavior, Xu et al. [24] dealed with a synchronization scheme for two fractional chaotic
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systems and its possible application on image encryption was discussed. Mata-Machuca [25] dealed with the synchroniza-

tion and parameter estimations of an uncertain Rikitake system and its application in secure communications employing

chaotic parameter modulation was also discussed. The gains of the receiver system were adjusted continually according

to a convenient high order sliding-mode adaptive controller (HOSMAC), until the measurable output errors converged to

zero. Ghosh and Chowdhury [26] introduced an adaptive learning rule for estimating all unknown parameters of delay

dynamical system using a scalar time series, and Krasovskii–Lyapunov theory was used to derive sufficient condition for

synchronization. 

More researchers would like to explore more effective schemes to suppress chaos, parameter estimation and realize

synchronization between chaotic systems [27–36] . Indeed, many chaotic dynamical systems have been set up for bifurca-

tion analysis and synchronization control. Some researchers thought that fractional-order chaotic systems could be much

interesting and more important to be worthy of investigation, for example, Zhou et al. [37,38] investigated the stabiliza-

tion and synchronization on fractional-order chaotic systems with fractional-order 1 < q < 2 by using adaptive scheme. It

is known that chaotic systems are much dependent on the initials selection and the time series or orbits show much di-

versity even slight difference occurs in the initial values. However, the attractor and attracted basin could be invariable

when the bifurcation parameters for the chaotic system are fixed. These known chaotic and hyperchaotic systems can

generate finite attractors while some chaotic systems can produce infinite attractors under appropriate control scheme,

for example, jerk circuit [39,40] can be controlled to generate a large number of attractors by applying periodical sig-

nal forcing [41] . The dynamical properties can also be discerned by estimating the Hamilton energy [42] on these di-

mensionless dynamical systems, and it is found that chaotic systems with multi-attractors [43] can hold smaller Hamil-

ton energy and neurons under bursting state also hold smaller Hamilton energy as well. It has been confirmed that

nonlinear term is important and necessary for nonlinear dynamical system so that chaotic state can be triggered un-

der appropriate parameters selection. In fact, coupled oscillators and networks can present more complex spatiotempo-

ral dynamics and it is important to explore effective schemes that spatiotemporal chaos can be suppressed and syn-

chronization can be realized in complex network [44–46] . In practical verification, many realistic factors should be con-

sidered, for example, the effect of time delay, the control cost (power consumption of controller), as a result, intermit-

tent schemes are used to reach this target. Under the framework of Filippov systems and a linear controller, the expo-

nential synchronization and anti-synchronization criteria for memristor-based neural networks can be guaranteed by the 

matrix measure and Halanay inequality [47] . Mathiyalagan et al. [48] investigated the impulsive synchronization of mem-

ristor based bidirectional associative memory (BAM) neural networks with time varying delays. Then the impulsive time

dependent results are derived for the exponential stability of the error system by using linear matrix inequality (LMI)

approach. 

Nonlinear circuits [49–53] are useful to investigate the chaotic problems, and many researchers thought chaotic circuits

could be useful for secure communication and image encryption [54–57] . In fact, nonlinear devices such as negative resis-

tance, negative conductor, negative capacitor are important devices for a setting a chaotic circuit. It is important to mention

another important device, memristor [58,59] , which the memductance is dependent on the external forcing current and

thus it is initial-dependent. As a result, the memristor-coupled oscillators hold more complex dynamical behaviors. The

circuit composed of memristor is dependent on the bifurcation parameter and also the initials selection [60] . For most of

the well-known chaotic systems, the attractors and basin of attracts keep invariable when the parameters are fixed though

the output time series can show some differences by setting different initial values for variables. Therefore, it is interesting

to investigate these dynamical systems and its potential mechanism why the developed state also depends on the initial

selection. In fact, the initial-independence is associated with memory, it is confirmed that memristor-coupled circuit or

oscillator can be switched between different kinds of attractors by resetting the initials. Can we find an effective scheme

to develop more chaotic systems which are dependent on initials selection and parameter setting? In this paper, we ar-

gue that initial dependence could be associated with nonlinear cubic terms composed of different variables, the potential

mechanism on other chaotic systems are discussed. Firstly, the memristor-coupled oscillator is used for preliminary discus-

sion. Secondly, the Rössler model is improved by adding quadratic term into the dynamical system, and the spectrum of

Lyapunov exponents, phase portrait and basin of attractor are calculated to discern the dependence of initials selection on

attractors. 

2. Model, scheme and discussion 

It is known that the memductance for memristor is dependent on the initial inputs, as a result, the nonlinear cir-

cuits or systems composed of memristor could be dependent on the initial selection for magnetic flux across the mem-

ristor. At first, we investigate the dynamics for a class of circuit composed memristor and then explore the poten-

tial mechanism for this initial-dependent property on other nonlinear systems so that desired nonlinear circuits can

be set up for possible application for secure communication and control. The memristor-coupled circuit [61–63] can

be illustrated in Fig. 1 . The outputs of circuit can be described by nonlinear equations according to Kirchhoff’s law as

follows 
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Fig. 1. The schemematic diagram for memristor-coupled circuit, which is improved from the Chua circuit by using a flux-controlled memristor. The mem- 

ductance is defined by W ( ϕ) = a ϕ + b ϕ 3 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

d v 1 
dt 

= 

1 

R C 1 
[ v 2 − v 1 + GR v 1 − RW (ϕ) v 1 ] 

d v 2 
dt 

= 

1 

R C 2 
( v 1 − v 2 + R i 3 ) 

d v 3 
dt 

= −1 

L 
( v 2 + r i 3 ) 

dφ

dt 
= v 1 

(1)

where the flux-controlled memristor is defined by W ( ϕ) = a ϕ + b ϕ 

3 , and ϕ is magnetic flux. Furthermore, the circure equa-

tions can be mapped into dimensionless dynamical equations after scale transformation by setting x = v 1 , y = v 2 , z = i 3 ,

w = ϕ, α = 1 / C 1 , β = 1 / L , γ = R / L , ξ = G , C 2 = R = 1, and a time scale factor k are used reproduce a dimensionless dynami-

cal equations as follows 
⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

dx 

dt 
= kα(y − x + ξx − W (w ) x ) 

dy 

dt 
= k (x − y + z) 

dz 

d t 
= −k (βy + γ z) 

dw 

dt 
= kx 

(2)

For simplicity, the time scale factor is set k = 1, and other parameters are selected as α = 10, β = 14, γ = 0.1, ξ = 2.2,

W(w) = 1 + 3 w 

2 . The basin and size of attractors depend on the maximal value of variables, for simplicity, the statistical

function for the sum of variables are defined by 

θ (x, y, z) = ( x 2 + y 2 + z 2 ) Max (3)

The developed state depends on the parameter selection but also the initials selection for variable w (or ϕ), and thus it is

very important for the emergence and transition of attractors for the dynamical system. In Fig. 2 , the maximal function for

Eq. (3) is estimated at fixed initials as x 0 = 0.0 , y 0 = 0.001 ,z 0 = 0.0 , w 0 is the initials for variable w mapped from magnetic

flux. 

To our knowledge, the phase space should be large enough so that complete attractors can be formed, as mentioned in

Refs. [ 64 , 65 ], phase compression could be effective to control chaos and spatiotemporal chaos by resetting the boundary

of attractors thus appropriate periodical orbits can be selected. As a result, larger values for θ ( x , y , z ) in Fig. 2 mean that

chaotic attractors can be induced under appropriate initials selection for w , otherwise, periodical attractor with finite basin

or size can be found. Extensive numerical studies calculated the Lyapnuov exponents under different initials, and the results

are consistent with the chaos occurrence. To present readable illustration for this problem, some phase portraits are plotted

by setting different initials on variable w , and the results are plotted in Figs. 3 –5. 

It is confirmed in Fig. 4 that different chaotic attractors can be generated under appropriate initials selection which also

induces different largest Lyapunov exponents. It is also interesting to find appropriate initials so that the dynamical system

can be stabilized, and the results are plotted in Fig. 5. 
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Fig. 2. The largest Lyapunov exponent (a) and maximal function θ ( x , y , z ) (b) is respectively calculated under different initials w 0 . The other initials are 

selected as x 0 = 0.0, y 0 = 0.001, z 0 = 0.0. 

Fig. 3. The phase portrait (a) and time series for variable W (b) are calculated at fixed w 0 = 0.0. 

 

 

 

 

It is found in Fig. 5 that limit circle and stable state can be selected under appropriate initials even the parameters were

kept the same. It is interesting to check the possible generality in other nonlinear oscillators or systems. In this way, the

well-known Rössler model is checked in the next section. The above mentioned results are carried on the oscillator com-

posed of memristor, it is interesting to explore this problem on another chaotic system. For simplicity, further investigation

is carried on the Rössler model, and the dynamical equations are described by 
⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

dx 

dt 
= −y − z 

dy 

dt 
= x + ay 

dz = b + z(x − c) 

(4) 
d t 
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Fig. 4. The phase portrait are calculated at initial values for w 0 = −0.1(a), w 0 = 0.1(b), w 0 = −0.4(c), w 0 = 0.4(d). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where a , b , c are parameters, the Eq. (4) can exist chaos at fixed parameters as a = 0.2, b = 0.2, c = 0.8. This chaotic system

holds simple form with only one nonlinear term xz being included. To generate a initials-dependent system, the nonlinear

term is changed by replacing the variable z in the nonlinear term z(x − c) with quadratic nonlinearities z 2 , and it reads as

follows ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

dx 

dt 
= −y − z 

dy 

dt 
= x + ay 

dz 

d t 
= b + z 2 (x − c) 

(5)

Similar the same discussion for Eq. (2) , the largest Lyapunov exponent and statistical function θ ( x , y , z ) are calculated

under different initials z 0 , and the results are plotted in Fig. 6 . 

It is found that the maximal phase size begins to increase monotonously with increasing the initials for variable z and

the decreased from a peak. The maximal Lyapunov exponent is small to zero for most of the initials for variable z , which

means that periodic state can be induced under appropriate initials for variable z , extensive numerical studies are carried

out and phase portraits are detected in Fig. 7. 

The results in Fig. 7 confirmed that different periodic states can be approached under this group of parameters even

the initials are changed. It is important to check another group of parameters and find the attractor dependence on

initials. For simplicity, the parameters are selected as a = 0.2, b = 0.2, c = 2.3, and the distribution for the maximal Lya-

punov exponent and maximal statistical function θ ( x,y,z ) are calculated in Fig. 8 , furthermore, phase portraits are plotted in

Fig. 9. 

It is found that periodic state or chaotic state can be selected by applying appropriate initials for variable z . According

to the distribution for the largest Lyapunov exponent in Figs. 6 (a) and 8 (a), it is found that the largest Lyapunov exponent

is much small and close to zero with an order 10 −3 , therefore, most of the initials could be effective to make periodic

attractor be dependent on the initials selection. Indeed, the other parameters can be selected appropriately so that the

chaotic attractor can be dependent on the initial selection as well. That is to say, under appropriate parameter setting, the

improved Rössler system is kept chaos but the chaotic attractor could be different when different initials are used. As a

result, initial selection can be used to switch between different chaotic attractors. 

It is interesting to discuss the potential mechanism for the state dependence on initials selection though most of us

ever believed that chaotic attractors should depend on the parameter selection. In fact, the conductance for memristor

W ( ϕ) (or W ( w )) is quadratic nonlinearity could be regarded as a time-varying parameter, the initial selection for ϕ 0 (or w 0 )

just triggers the oscillating of the system and then parameter switch occurs for the next time units and bifurcation could
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Fig. 5. The phase portrait are calculated at initial values for w 0 = 2.0(a), w 0 = 3.0(b), w 0 = −6.0(c), w 0 = 6.0(d). 

Fig. 6. The largest Lyapunov exponent (a) and maximal function θ ( x, y, z ) (b) is respectively calculated under different initials z 0 . The other initials are 

selected as x 0 = 0.0, y 0 = 0.0, and parameters are given with a = 0.2, b = 0.2, c = 0.8. 

 

 

 

 

be induced under appropriate parameter region. In the case of improved Rössler system, the nonlinear term z 2 plays as

sensitive and time-varying parameter, which can switch to another value after the oscillator is cheered up. As a result, we

believe that quadratic nonlinearity in nonlinear terms could account for the potential formation mechanism that attractors

could be dependent on the initials selection. It is worthy of investigating this scheme on Rössler model by applying other
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Fig. 7. The phase portrait are calculated at initial values for z 0 = 0.0(a), z 0 = 0.0(b), z 0 = 2.0(c), z 0 = 2.0(d). 

Fig. 8. The maximal Lyapunov exponent (a) and maximal function θ ( x, y, z ) (b) is respectively calculated under different initials z 0 . The other initials are 

selected as x 0 = 0.0, y 0 = 0.0, and parameters are given with a = 0.2, b = 0.2, c = 2.3. 

 

 

type of quadratic nonlinearity and the improved model is described by 
⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

dx 

dt 
= −y − z − k z 2 x 

dy 

dt 
= x + ay 

dz 

d t 
= b + z(x − c) 

(6)

where k is control parameter, so that the attractors could be selected from periodic, chaotic type if possible. In Fig. 10 , the

distribution for largest Lyapunov exponent is calculated under different initials at fixed control parameter k . 
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Fig. 9. The phase portrait are calculated at initial values for z 0 = 1.0(a), z 0 = 4.8(b), z 0 = 2.0(c), z 0 = 4.0(d). 

Fig. 10. The maximal Lyapunov exponent is calculated under different initials z 0 . For k = 0.1( a ), k = 0.01( b ), k = 0.005( c ), k = 0.0 0 01( d ). The other initials 

are selected as x 0 = 0.0, y 0 = 0.0, and parameters are given with a = 0.2, b = 0.2, c = 2.3. 



J. Ma et al. / Applied Mathematics and Computation 298 (2017) 65–76 73 

Fig. 11. The maximal Lyapunov exponent (a) and Lyapunov dimension (b) is respectively calculated under different initials z 0 . The other initials are selected 

as x 0 = 0.0, y 0 = 0.0, and parameters are given with a = 0.4, b = 0.2, c = 2.3, k = 0.1. 

 

 

 

 

 

 

 

 

 

 

The results in Fig. 10 found that the largest Lyapunov exponent is beyond zero but it is also close to zero greatly and

the York dimension is close to 1, which indicates the chaotic state is much weak and possible periodic state is approached.

The Lyapnov exponent can reach a peak in the curve when the initial value z 0 is set zero, in this case, initial selection can

trigger a chaotic orbit in the begging. Extensive numerical results confirmed that Lyapunov exponent is switched to negative

value by further increasing the initial value z 0 . Furthermore, chaotic state can be enhanced by adjusting another parameter,

for example, a = 0.4, and the distribution for largest Lyapunov exponents is calculated in Fig. 11. 

It is found in Fig. 11 that different largest Lyapunov exponents can be approached under appropriate initials selection, and

the chaotic attractors show some difference as well. As a result, the chaotic attractors and basin can be switched by applying

different initials for the third variable. Similar results can be confirmed by adding nonlinearity as −kz 2 y on the second

variable under appropriate parameter selection. In fact, this scheme can be extended to construct more initial-dependent

dynamical system, for example, a nonlinear term as kx 2 y, kx 2 z can make the system is dependent on the initials selection

x , a nonlinear term as ky 2 x, ky 2 z can create a dynamical system to be dependent on the initial selection y . 
0 0 
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3. Open problems and further investigation 

There is some difference between the dissipative system (e.g., memristor coupled oscillator) and emanative system (e.g.,

Rössler oscillator) when an initial-dependent system is designed. For the emanative system, initials selection can produce

different periodic states or stable states or different chaotic states (state region is not continuous), while dissipative system

can select different periodic, chaotic, and even stable states (state region is continuous). As a result, these improved dy-

namical system with higher nonlinearity (quadratic terms multiply other variable) makes the system be dependent on the

parameter region and the initial selection as well, it could be helpful to enhance the security in communication because the

attack could be blocked. For chaos control, we can switch the initial-dependent variable to certain value thus chaotic state

can be suppressed and chaotic attractors can be switched if necessary. It is interesting to clarify the realization on general

dimensionless dynamical systems presented with the following dynamical equations 
⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

d x 1 
dt 

= f 1 ( x 1 , x 2 , x 3 , ... ) 

d x 2 
dt 

= f 2 ( x 1 , x 2 , x 3 , . . . ) 

d x 3 
dt 

= f 3 ( x 1 , x 2 , x 3 , . . . ) 

. . . 
d x i 
dt 

= f i ( x 1 , x 2 , x 3 , . . . ) 

(7) 

where x 1 , x 2 ,…, x i represents the variable and this dimensionless system can be mapped into nonlinear circuit with same

order. These observable variables can be detected from the equivalent circuit, surely, memristor and capacitor will be used.

Most of the variables will be described by the outputs for voltages from the capacitors via scale transformation. For exam-

ple, x 1 = V 1 / V 0 , x 1 = V 2 / V 0 , x 3 = V 3 / V 0 ,…, x i = ϕ / ϕ 0 , t = τ / (LC) 1/2 , where L , C is the inductance, capacitance value, ϕ 0 , V 0 is

standard unit for magnetic flux and voltage, respectively. To produce a dynamical system dependent on the variable x i , a

nonlinear term kx i 
2 x j is formed, where x j is the output variable from the system ( i � = j ), and k is the feedback gain. When

the variable x i is controlled by a memristor, the dynamical system will be dependent on the initials selection by adding the

nonlinear term kx i 
2 x j on any formula of the systems and setting appropriate feedback gain. Furthermore, it is interesting to

discuss potential application for this initial-dependent chaotic system, for example, it is suggested that this system is de-

pendent on the i th variable. As a result, intermittent disturbance on the i th variable by applying feedback in the following

form ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

d x 1 
dt 

= f 1 ( x 1 , x 2 , x 3 , ... ) 

d x 2 
dt 

= f 2 ( x 1 , x 2 , x 3 , . . . ) 

d x 3 
dt 

= f 3 ( x 1 , x 2 , x 3 , . . . ) − k x i 
2 x 3 

. . . 
d x i 
dt 

= f i ( x 1 , x 2 , x 3 , . . . ) + k 1 ( S random 

− x i ) 

(8) 

where k 1 is feedback coefficient, S random 

is stochastic or random values. By applying feedback coefficient k 1 , the i th variable

will be reset for new values to trigger a new phase portrait thus the reconstruction of phase space become more difficult.

As a result, the outputs from the system (8) can be used for generating secure keys and masked waves. On the other hand,

carefully selection for S random 

with intermittent period can also control the system to reach arbitrary orbit. When the initials

are reset, the controller can be removed and the system can develop to step into the desired target in its own way. In the

case of network, the initial-dependent oscillators can be used to describe local kinetics for the node of the network. As a

result, the network becomes dependent on the initial selection. For example, readers can design a chain network, regular

network or small-world network for patter selection and control. Due to its initial-dependent properties, multi-channels

inputs on the network will be helpful to check the stability of pattern and memory robustness of network. The authors of

this paper will feel much pleasure to find more extensive works can be carried out on these initial-dependent dynamical

systems. 

4. Conclusions 

In this paper, the state dependence on initials selection in dynamical system is investigated. The distribution for largest

Lyapunov exponent and maximal phase size for attractors is calculated respectively by changing the initials under fixed

parameter region. It is found in the oscillator composed memristor and improved Rössler oscillator, which quadratic nonlin-

earity z 2 is used for generating new nonlinear terms, periodic and chaotic state can be controlled and selected by applying
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appropriate initials. The potential mechanism could be that quadratic nonlinearity plays as more sensitive bifurcation pa-

rameter, and bifurcation can be induced during the switch of time-varying parameters. Furthermore, intermittent switch for

one variable (initial-dependent) is used to control the nonlinear dynamical system, and the switch between periodical and

chaotic states can be selected arbitrarily. This property could be useful to design some chaotic systems for possible secure

communication thus the safety can be enhanced because there construction of phase space becomes more difficult. 
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