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Abstract. This paper is concerned with the spreading and vanishing of an epidemic disease, which is described by a partially
degenerate reaction–diffusion system with the nonlocal term and double free boundaries. We first consider the sign of the
corresponding principal eigenvalue, which is determined by some given conditions. Then, we get the sufficient conditions
that ensure the disease spreading or vanishing. At last, when spreading occurs, some rough estimates of the asymptotic
spreading speed are given under some conditions.
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1. Introduction

The spreading phenomenon of the epidemic is one of the important subjects in mathematical epidemiology.
To model the spatial spreading of a class of bacteria or viral diseases, Capasso and Maddalena [7] proposed
the following reaction–diffusion model

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut = dΔu − au + cv, (t, x) ∈ (0,+∞) × Ω,

vt = −bv + G(u), (t, x) ∈ (0,+∞) × Ω,
∂u
∂n + αu = 0, ∂v

∂n + αv = 0, (t, x) ∈ (0,+∞) × ∂Ω,

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ Ω,

(1.1)

where u(t, x) and v(t, x) represent the spatial densities of the infectious agents and the infective human
population at time t and location x, respectively. The positive constant d stands for the diffusion rate of the
agents. Particularly, for malaria, the mosquito is the main spreading agents. For this case, the diffusion
coefficient for the infectious agents will be much larger than that for the infective human population.
Therefore, the diffusion coefficient of the infective human population can be set to zero. The coefficients
a, b and c are all positive constants, and 1

a accounts for the mean lifetime of the infectious agents in
the environment, 1

b measures the mean infectious period of the infective human population, and c is the
multiplicative factor of the infectious agents due to the human population. G(u) denotes the force of
infection on human population due to a concentration u of the infectious agents.

For problem (1.1), Capasso and Maddalena [7] introduced a threshold parameter θ such that the
epidemic eventually tends to extinction if 0 < θ < 1 or persistence if θ > 1, where θ does not depend
on the initial densities of the infectious agents and the infective human population. From the point of
epidemic waves, the existence of Fisher type monotone traveling waves and minimal wave speed of problem
(1.1) were obtained [40]. Wu [36] considered the existence of entire solutions of (1.1) in the bistable case.

To let the description of such a gradual spreading process be more close to the reality, the free
boundary condition has been considered in more and more ecological models recently. For example, the
readers can refer to [8–10,19,29,30,43] for single-species models. More works related to the system can
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be found, such as [11,14,15,25,27,32,35,42] for Lotka–Volterra competition systems, [28,31,34,39] for
predator–prey systems, [18,21] for cooperative systems and [5,20] for epidemic models.

Recently, Ahn et al. [1] introduced the free boundary to describe the expanding fronts of an infective
environment in problem (1.1), in which sufficient conditions for the bacteria to vanish or spread are
given. Their main results reveal that if the multiplicative factor of the infectious agents is small, the
epidemic will vanish eventually and the human population is safe. Otherwise, the spreading or vanishing
of the epidemic depends on the initial infected habitat, the diffusion rate and the initial density. For
this kind of partially degenerate reaction–diffusion systems, besides [1], Tarboush et al. [22] considered
the spreading and vanishing in a West Nile virus model with expanding fronts, and Wang et al. [26]
studied the spreading frontiers in the model which the reaction terms are described by more general
form. Recently, Tian et al. [23] proposed a partially degenerate reaction–diffusion–advection model with
free boundary to investigate the invasive process of Aedes aegypti mosquitoes.

However, some infectious agents u at a point x and time t usually depend not only on the infective
humans v at the point x, but also on v in a neighborhood of x, and even on v in the whole region Ω. To
describe the mechanism of the infectious agents due to the infective human population better, Capasso [6]
used

∫

Ω
K(x, y)v(t, y)dy instead of cv to model the growth rate of the agents. The reason why this is a

global term is that the infective human population are moving, and then, the growth of the agents is
related to the infective human population in a neighborhood of the original position. Hence, the growth
of the agents can be represented as a spatial weighted average. For the above reasons, Capasso proposed
an epidemic reaction–diffusion model described by the following system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut = dΔu − au +
∫

Ω
K(x, y)v(t, y)dy, (t, x) ∈ (0,+∞) × Ω,

vt = −bv + G(u), (t, x) ∈ (0,+∞) × Ω,

β(x) ∂u
∂n + α(x)u = 0, β(x) ∂v

∂n + α(x)v = 0, (t, x) ∈ (0,+∞) × ∂Ω,

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ Ω,

(1.2)

where the readers can refer to [4, Section 1.5.4] for what the functions β(x) and α(x) mean. Capasso [6]
introduced

θ1 =
G′

+(0)
(a + dλ∗)b

maxx∈Ω

∫

Ω
K(x, y)φ1(y)dy

minx∈Ω φ1(x)

and

θ2 =
G′

+(0)
(a + dλ∗)b

minx∈Ω

∫

Ω
K(x, y)φ1(y)dy

maxx∈Ω φ1(x)
,

where φ1 ∈ H1(Ω) is the eigenfunction associated with the first eigenvalue λ∗ of −Δ in Ω with the
condition β(x)∂φ1

∂n + α(x)φ1 = 0 on ∂Ω. The author proved that if θ1 < 1, then the trivial solution
is globally asymptotically stable in X+ = {(u, v) ∈ X|(u, v) ≥ 0}, where X is an ordered Banach
space with pointwise partial order. While for θ2 > 1, the system admits a unique nontrivial equilibrium
which is globally asymptotically stable in X+\{(0, 0)}. For problem (1.2), Xu and Zhao [37] obtained the
asymptotic speed of spread for solutions and minimal wave speed of monotone traveling waves.

Motivated by the work of Ahn et al. [1], we will introduce the free boundary condition to describe such
a gradual spreading process of the epidemic described by problem (1.2). The main purpose of this paper
is to study the effect of the nonlocal term on the spreading of epidemic disease. Meanwhile, we want to
see whether the modified model can explain the reality better than problem (1.2). For these reasons, we
think it is worth studying.

We assume that the infectious agents and the infective population occupy a common region [−h0, h0]
with population density u0(x) and v0(x) at the very early stage. The varying infected environment
is denoted by [g(t), h(t)]. Since the spread of epidemic discussed here is mainly due to the growth of
infectious agents which results from the infective human population, it is reasonable to assume that the
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free boundary is caused only by the infectious agents. Just like the Stefan condition in [3], we can further
assume that the spreading front expands at a speed that is proportional to the gradient of the infectious
agents’ population density at the front, namely h′(t) = −μ1ux(t, h(t)) and g′(t) = −μ2ux(t, g(t)). For
simplicity, we mainly focus on the case that μ1 = μ2 = μ. For the case that μ1 �= μ2, we leave it for
further consideration. For a nonlinear diffusion equation with different moving parameters, the readers
can refer to [41].

In consideration of the above reasons, we shall use the following free boundary problem to describe
the spreading of the epidemic disease,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = duxx − au +
∫

R
K(x − y)v(t, y)dy, t > 0, g(t) < x < h(t),

vt = −bv + G(u), t > 0, g(t) < x < h(t),
u(t, x) = v(t, x) = 0, t ≥ 0, x ≤ g(t) or x ≥ h(t),
g(0) = −h0, g′(t) = −μux(t, g(t)), t > 0,

h(0) = h0, h′(t) = −μux(t, h(t)), t > 0,

u(0, x) = u0(x), v(0, x) = v0(x), −h0 < x < h0.

(1.3)

We are interested in the dynamics of positive solution (u(t, x), v(t, x), g(t), h(t)) of above problem. In
(1.3), x = g(t) and x = h(t) are the moving boundaries to be determined with u(t, x) and v(t, x). The
constants d, a, b, h0 and μ are positive. Define I0

.= (−h0, h0),

X1(h0)
.=
{
u0(x) ∈ W 2

p (I0): u0(x) > 0 for x ∈ I0, u0(x) = 0 for x ∈ R\I0

}
,

X2(h0)
.= {v0(x) ∈ C(I0): v0(x) > 0 for x ∈ I0, v0(x) = 0 for x ∈ R\I0} ,

where p > 3. The initial function (u0(x), v0(x)) ∈ X1(h0) × X2(h0). Assume that K(x) satisfies

(K) K ∈ C1(R) is nonnegative, symmetric and
∫

R
K(x − y)dy = 1 for any x ∈ R.

and there exists M∗ such that G(u) satisfies the following two conditions:

(A1) G ∈ C2([0,∞)), G(0) = 0, 0 < G′(z) ≤ M∗, ∀z ≥ 0;
(A2) G(z)

z is decreasing and

lim sup
z→+∞

G(z)
z

< ab.

An example is G(z) = z
1+z . Here we emphasis that conditions (A1) and (A2) make sure that problem

(1.3) has a positive constant equilibrium point. Otherwise, the solution may blow up. For this case, we
leave it for further consideration.

The rest of this paper is organized as follows. The global existence, uniqueness and estimates of solution
and comparison principle are given in Sect. 2. To establish the criteria for spreading and vanishing, in
Sect. 3 we provide some basic results about the principal eigenvalue. Section 4 is devoted to the long time
behavior of (u, v), and we get a spreading–vanishing dichotomy and give the criteria for spreading and
vanishing. In Sect. 5, we give the rough estimation of asymptotic spreading speed under some specific
situation. A brief discussion will be presented in Sect. 6.

2. Preliminaries

Before studying problem (1.3), we should obtain the global existence and uniqueness of solutions to
problem (1.3) at first. In fact, the proof is essentially the same as in [1]. Here, we give the main results
as follows:
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Theorem 2.1. For any given (u0(x), v0(x)) ∈ X1(h0) ×X2(h0) and any α ∈ (0, 1), there is a T > 0 such
that problem (1.3) admits a unique solution

(u, v, g, h) ∈ W 1,2
p (DT ) × C(DT ) × [C1+ α

2 ([0, T ])
]2

;

moreover,

‖u‖
C

1+α
2 ,1+α(DT )

+ ‖v‖C(DT ) + ‖g‖
C1+ α

2 ([0,T ])
+ ‖h‖

C1+ α
2 ([0,T ])

≤ C,

where

DT :=
{
(t, x) ∈ R

2 : t ∈ [0, T ], x ∈ [g(t), h(t)]
}

,

C and T depend only on h0, α, ‖u0‖W 2
p ([−h0,h0]) and ‖v0‖C([−h0,h0]).

Proof. Since v has no diffusion term, we can use u to represent v, define

GT = {g ∈ C1([0, T ]) : g(0) = −h0, g′(t) ≤ 0, 0 ≤ t ≤ T},

HT = {h ∈ C1([0, T ]) : h(0) = h0, h′(t) ≥ 0, 0 ≤ t ≤ T}.

We introduce the mapping

Et(u)(t, x) =

{
u(t, x), g(t) ≤ x ≤ h(t),
0, x < g(t) or x > h(t);

then, for 0 ≤ t ≤ T and x ∈ R,

v(t, x) = e−bt[E0(v0)(x) +

t∫

0

ebsG(Es(u))(s, x)ds] .= H(t, x, u).

Then, u satisfies
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ut = duxx − au +
∫

R
K(x − y)H(t, y, u(t, y))dy, 0 < t ≤ T, g(t) < x < h(t),

u(t, x) = 0, 0 < t ≤ T, x ≤ g(t) or x ≥ h(t),
g(0) = −h0, g′(t) = −μux(t, g(t)), 0 < t ≤ T,

h(0) = h0, h′(t) = −μux(t, h(t)), 0 < t ≤ T,

u(0, x) = u0(x), −h0 < x < h0.

(2.1)

For the existence and uniqueness of the solution u in problem (2.1), we can prove it as those in [10]. We
first straighten the free boundary by the transformation:

r =
2x

h(t) − g(t)
− h(t) + g(t)

h(t) − g(t)
,

u(t, x) = u(t,
h(t) − g(t)

2
r +

h(t) + g(t)
2

) = w(t, r).

Then, problem (2.1) can be transformed into
⎧
⎪⎨

⎪⎩

wt − A(t)wrr − B(t, r)wr = −aw + f(t, r, w), 0 < t ≤ T, −1 < r < 1,

w(t, r) = 0, 0 ≤ t ≤ T, r ≤ −1 or r ≥ 1,

w(0, r) = u0(h0r), −1 ≤ r ≤ 1,

(2.2)

and
{

h′(t) = −μ 2
h(t)−g(t)wr(t, 1), g′(t) = −μ 2

h(t)−g(t)wr(t,−1), 0 ≤ t ≤ T,

h(0) = h0, g(0) = −h0,
(2.3)
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where

A(t) =
4d

[h(t) − g(t)]2
, B(t, r) =

h′(t) − g′(t)
h(t) − g(t)

r +
h′(t) + g′(t)
h(t) − g(t)

and

f(t, r, w) =
∫

R

K

(
h(t) − g(t)

2
r +

h(t) + g(t)
2

− y

)

H

(

t,
h(t) − g(t)

2
y +

h(t) + g(t)
2

, w (t, y)
)

dy.

Let g∗ = − μ
h0

u′
0(−h0) and h∗ = − μ

h0
u′

0(h0). For 0 < T ≤ h0
2(1+|g∗|+h∗) , denote IT = [0, T ] × [−1, 1],

D1
T = {w ∈ C(IT ) : w(t,±1) = 0, w(0, r) = u0(h0r), ‖w − u0‖C(IT ) ≤ 1},

D2
T = {g ∈ C1([0, T ]) : g(0) = −h0, g′(0) = g∗, ‖g′ − g∗‖∞ ≤ 1},

D3
T = {h ∈ C1([0, T ]) : h(0) = h0, h′(0) = h∗, ‖h′ − h∗‖∞ ≤ 1}.

Clearly, DT = D1
T × D2

T × D3
T is a bounded and closed convex set of C(IT ) × C1([0, T ]) × C1([0, T ]).

When g ∈ D2
T and h ∈ D3

T , we have

|g(t) + h0| ≤ T‖g′‖∞ ≤ T (1 + g∗) <
h0

2
,

|h(t) − h0| ≤ T‖h′‖∞ ≤ T (1 + h∗) <
h0

2
.

Since K ∈ C1(R), v0(x) ∈ X2(h0) and G ∈ C2([0,∞)), we can compute that

‖f(t, r, w)‖p
Lp(IT ) ≤

1∫

−1

T∫

0

⎡

⎣

1∫

−1

K

(
h(t) − g(t)

2
r +

h(t) + g(t)
2

− y

)

H

(

t,
h(t) − g(t)

2
y +

h(t) + g(t)
2

, w(t, y)
)

dy

]p

dtdr

≤ 2Cp
1

T∫

0

⎡

⎣

1∫

−1

e−bt

⎛

⎝v0(h0y) +

t∫

0

ebsG(w)(s, y)ds

⎞

⎠ dy

⎤

⎦

p

dt

≤ 2Cp
1

T∫

0

{

2
[(

C2 − C3

b

)

e−bt +
C3

b

]}p

dt < ∞,

where

C1 = max
(t,r,y)∈IT ×[−1,1]

K

(
h(t) − g(t)

2
r +

h(t) + g(t)
2

− y

)

,

and

C2 = max
y∈[−1,1]

v0(h0y), C3 = max
(s,y)∈[0,T ]×[−1,1]

G(w)(s, y).

Applying standard Lp theory and Sobolev imbedding theorem, we find, for any given (w, g, h) ∈ DT ,
problem

⎧
⎪⎨

⎪⎩

w̃t − A(t)w̃rr − B(t, r)w̃r = −aw + f(t, r, w), 0 < t ≤ T, −1 < r < 1,

w̃(t, r) = 0, 0 ≤ t ≤ T, r ≤ −1 or r ≥ 1,

w̃(0, r) = u0(h0r), −1 ≤ r ≤ 1
(2.4)
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has a unique solution w̃(t, r) ∈ W 1,2
p (IT ) ↪→ C

1+α
2 ,1+α(IT ), and

‖w̃‖W 1,2
p (IT ) + ‖w̃‖

C
1+α
2 ,1+α(IT )

≤ C4.

By the continuous dependence on the given data, w̃ in C
1+α
2 ,1+α(IT ) depends continuously on (w, g, h) ∈

DT . For such w̃, problem (2.3) has a unique solution (g̃, h̃),

g̃(0) = −h0, h̃(0) = h0, g̃′(0) = g∗, h̃′(0) = h∗

and

(g̃′, h̃′) ∈ [C
α
2 ([0, T ])]2, ‖g′‖

C
α
2 ([0,T ])

+ ‖h′‖
C

α
2 ([0,T ])

≤ C5. (2.5)

Now we define a mapping F : DT → [C1([0, T ])]2 by

F (w, g, h) = (w̃, g̃, h̃).

By (2.5), we have

‖w̃ − u0‖C(IT ) ≤ ‖w̃ − u0‖
C

1+α
2 ,0(IT )

T
1+α
2 ≤ C4T

1+α
2 ,

‖g̃′ − g∗‖C([0,T ]) ≤ ‖g̃′‖
C

α
2 ([0,T ])

T
α
2 ≤ C5T

α
2 ,

‖h̃′ − h∗‖C([0,T ]) ≤ ‖h̃′‖
C

α
2 ([0,T ])

T
α
2 ≤ C5T

α
2 ,

Therefore, if T ≤ min
{

h0
2(1+|g∗|+h∗) , C

− 2
1+α

4 , C
− 2

α
5

}

, then F maps DT into itself.

Next we prove that F is a contraction mapping on DT for T > 0 sufficiently small. Let (wi, gi, hi) ∈
DT (i = 1, 2), and denote (w̃i, g̃i, h̃i) = F (wi, gi, hi). Set ω = w̃1 − w̃2. We can see that ω satisfies

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ωt − A1(t)ωrr − B1(t, r)ωr = −aω + (A1(t) − A2(t))w̃2rr

+(B1(t, r) − B2(t, r))w̃2r + f1(t, r, w1) − f2(t, r, w2), 0 < t ≤ T, −1 < r < 1,

ω(t, r) = 0, 0 < t ≤ T, r ≤ −1 or r ≥ 1,

ω(0, r) = 0, −1 ≤ r ≤ 1,

(2.6)

where

Ai(t) =
4d

[hi(t) − gi(t)]2
, Bi(t, r) =

h′
i(t) − g′

i(t)
hi(t) − gi(t)

r +
h′

i(t) + g′
i(t)

hi(t) − gi(t)

and

fi(t, r, wi) =
∫

R

K

(
hi(t) − gi(t)

2
r +

hi(t) + gi(t)
2

− y

)

H

(

t,
hi(t) − gi(t)

2
y +

hi(t) + gi(t)
2

, wi(t, y)
)

dy.

The rest of proof can be done by those in [10]. By applying the Lp estimates for parabolic equations
and Sobolev’s imbedding theorem, we can deduce that F is a contraction mapping on DT for T > 0
sufficiently small. Then, it follows from the contraction mapping theorem that F has a unique fixed point
(w, g, h) in DT ; namely, (2.2) and (2.3) have a unique solution (w, g, h). Then, (2.1) has a unique solution
(u, g, h). v can be derived by (u, g, h). Hence, problem (1.3) exists a unique solution (u, v, g, h). �

To get the global existence and uniqueness, we need the following comparison principle to derive the
estimates of the solution to problem (1.3).
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Theorem 2.2. (Comparison principle) Assume that

g, h ∈ C1([0,+∞)), u(t, x) ∈ C(D) ∩ C1,2(D), v(t, x) ∈ C(D) ∩ C1,0(D)

with

D :=
{
(t, x) ∈ R

2 : 0 < t < ∞, g(t) < x < h(t)
}

,

and
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut ≥ duxx − au +
∫

R
K(x − y)v(t, y)dy, t > 0, g(t) < x < h(t),

vt ≥ −bv + G(u), t > 0, g(t) < x < h(t),
u(t, x) = v(t, x) = 0, t ≥ 0, x ≤ g(t) or x ≥ h(t),
g(0) ≤ −h0, g′(t) ≤ −μux(t, g(t)), t > 0,

h(0) ≥ h0, h
′
(t) ≥ −μux(t, h(t)), t > 0,

u(0, x) ≥ u0(x), v(0, x) ≥ v0(x), −h0 < x < h0.

(2.7)

Then, the solution (u, v, g, h) of the free boundary problem (1.3) satisfies

h(t) ≤ h(t), g(t) ≥ g(t) for t ≥ 0,

u(t, x) ≤ u(t, x), v(t, x) ≤ v(t, x) for all t ≥ 0 and g(t) ≤ x ≤ h(t).

Proof. The proof can be done by using the argument of [35, Lemma 2.3]. �

Remark 2.3. The pair (u, v, g, h) in Theorem 2.2 is usually called an upper solution of (1.3). We can
define a lower solution (u, v, g, h) by reversing all of the inequalities in appropriate places.

For (ω1(x), ω2(x)) ∈ X1(h0)×X2(h0), let (u0, v0) = σ(ω1, ω2). We write (uσ, vσ, gσ, hσ) to emphasize
the dependence of the solution on σ. The following corollary results directly from Theorem 2.2.

Corollary 2.4. If σ1 ≤ σ2, then uσ1 ≤ uσ2 and vσ1 ≤ vσ2 for all t ≥ 0 and gσ1 ≤ x ≤ hσ1 , gσ1 ≥ gσ2 and
hσ1 ≤ hσ2 for all t ≥ 0.

Now we exhibit the estimates of the solution.

Lemma 2.5. Let (u, v, g, h) be a solution to (1.3) defined for t ∈ (0, T0], where T0 ∈ (0,+∞). Then, there
exist constants M1, M2 and M3 independent of T0 such that:

0 < u(t, x) ≤ M1 for all 0 < t ≤ T0 and g(t) < x < h(t),

0 < v(t, x) ≤ M2 for all 0 < t ≤ T0 and g(t) < x < h(t),

0 < −g′(t), h′(t) ≤ M3 for all 0 < t ≤ T0.

Proof. The positivity of u and v is obvious. Next we consider its upper bounds. Note that limz→∞
G(z)

z <
ab by condition (A2), there exist M1 and M2 such that

M1 ≥ u0(x), M2 ≥ v0(x) in [−h0, h0], −aM1 + M2 < 0, −bM2 + G(M1) < 0.

Denote DT0

.= {(t, x) ∈ R
2 : 0 ≤ t ≤ T0, g(t) ≤ x ≤ h(t)}. Let

(U(t, x), V (t, x)) = (M1 − u,M2 − v)e−(1+M∗)t

for 0 ≤ t ≤ T0 and x ∈ R, then

G(u) = G(M1 − Ue(1+M∗)t) = G(M1) − G′(ξ)Ue(1+M∗)t,
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where M∗ is given in condition (A1) and ξ is between M1 and u. Meanwhile, (U, V ) satisfies:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ut > dUxx − (a + 1 + M∗)U
+
∫

R
K(x − y)V (t, y)dy, 0 < t ≤ T0, g(t) < x < h(t),

Vt = −(b + 1 + M∗)V + G(ξ)U, 0 < t ≤ T0, g(t) < x < h(t),
U(t, x) = M1e−(1+M∗)t, 0 < t ≤ T0, x ≤ g(t) or x ≥ h(t),
V (t, x) = M2e−(1+M∗)t, 0 < t ≤ T0, x ≤ g(t) or x ≥ h(t),
u(0, x) ≥ 0, v(0, x) ≥ 0, −h0 < x < h0.

(2.8)

Next we claim that min{U(t, x), V (t, x)} ≥ 0 in DT0 . Otherwise, there exists (t0, x0) ∈ (0, T0] ×
(g(t), h(t)) such that

min{U(t0, x0), V (t0, x0)} = min
(t,x)∈DT0

min{U(t, x), V (t, x)} < 0.

If U(t0, x0) = min{U(t0, x0), V (t0, x0)} < 0, then Ut(t0, x0) − dUxx(t0, x0) ≤ 0. However,

− (a + 1 + M∗)U(t0, x0) +
∫

R

K(x0 − y)V (t0, y)dy

> −(a + 1 + M∗)U(t0, x0) +

h(t0)∫

g(t0)

K(x0 − y)V (t0, y)dy

> −(a + M∗)U(t0, x0) +

⎛

⎜
⎝

h(t0)∫

g(t0)

K(x0 − y)dy − 1

⎞

⎟
⎠U(t0, x0) > 0,

which leads a contradiction to the first inequality in (2.8). The case of that V (t0, x0) = min{U(t0, x0),
V (t0, x0)} < 0 can be done by the similar arguments of [1, Lemma 2.2]. Hence, min(t,x)∈DT0

(U(t, x),
V (t, x)) ≥ 0, namely u ≤ M1 and v ≤ M2 in DT0 .

The rest of the proof is similar to that of [10, Lemma 2.2], and we omit it here. �
The following conclusion about global existence and uniqueness of the solution results from Theorem

2.1 and Lemma 2.5.

Theorem 2.6. The solution of (1.3) exists and is unique for all t > 0.

It follows from Lemma 2.5 that x = h(t) is strictly increasing and x = g(t) is strictly decreasing.
Hence, there exist h∞, −g∞ ∈ (0,+∞] such that limt→+∞ h(t) = h∞ and limt→+∞ g(t) = g∞. The
next lemma shows that (g∞, h∞) can never be a half-infinite interval, and can be proved by the same
arguments as in [1, Lemma 3.1] (see also [12, Lemma 2.8]).

Lemma 2.7. Suppose that (u, v, g, h) is a solution to (1.3) defined for all t ≥ 0 and g(t) ≤ x ≤ h(t).
Then,

−2h0 < g(t) + h(t) < 2h0 for t ∈ [0,+∞).

3. The principal eigenvalue

Now we study the principal eigenvalue of the following problem
⎧
⎪⎨

⎪⎩

ut = duxx − au +
∫

R
K(x − y)v(t, y)dy, t > 0, −l < x < l,

vt = −bv + G(u), t > 0, −l < x < l,

u(t, x) = v(t, x) = 0, t > 0, x ≤ −l or x ≥ l.

(3.1)
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Due to the nonlocal term, the method in [26] cannot be used directly. This needs us to make some
modification.

Linearizing (3.1) at zero solution, we obtain
⎧
⎪⎨

⎪⎩

ut = duxx − au +
∫

R
K(x − y)v(t, y)dy, t > 0, −l < x < l,

vt = −bv + G′(0)u, t > 0, −l < x < l,

u(t, x) = v(t, x) = 0, t > 0, x ≤ −l or x ≥ l.

(3.2)

Define

Π(l) .=
{
φ | φ ∈ H1

0 ((−l, l)), φ ≥ 0 and φ �≡ 0 in (−l, l), φ = 0 in R\(−l, l)
}

;

let φ, ψ ∈ Π(l). Substituting u(t, x) = e−λtφ(x) and v(t, x) = e−λtψ(x) into (3.2), we obtain the associated
eigenvalue problem

⎧
⎪⎨

⎪⎩

−λφ = dφ′′ − aφ +
∫

R
K(x − y)ψ(y)dy, −l < x < l,

−λψ = −bψ + G′(0)φ, −l < x < l,

φ(x) = ψ(x) = 0, x ≤ −l or x ≥ l.

(3.3)

By a similar manner to [24, Lemma 3.4] (see also [38, Lemma 3.1]), we can prove the nonlocal elliptic
eigenvalue problem (3.3) has a principal eigenvalue denoted by λ0 which is associated with a strongly
positive eigenvector (φ, ψ) � 0. It is easy to see that φ = θψ, where

θ =
b − λ0

G′(0)
.

We have λ0 < b. In fact, if λ0 ≥ b, then φψ = b−λ0
G′(0)ψ

2 ≤ 0, which is a contradiction.

For any φ ∈ Π(l), we substitute ψ = G′(0)
b−λ φ into the first equation of (3.3) to get the following

eigenvalue problem
{

−λφ = dφ′′ − aφ + G′(0)
b−λ

∫

R
K(x − y)φ(y)dy, −l < x < l,

φ(x) = 0, x ≤ −l or x ≥ l.
(3.4)

Multiplying the first equation of (3.4) by φ and integrating over (−l, l) give

−λ

l∫

−l

φ2dx = d

l∫

−l

φ′′ · φdx − a

l∫

−l

φ2dx +
G′(0)
b − λ

l∫

−l

+∞∫

−∞
K(x − y)φ(y)dyφ(x)dx;

then,

−λ

l∫

−l

φ2dx = −d

l∫

−l

φ′2dx − a

l∫

−l

φ2dx +
G′(0)
b − λ

l∫

−l

+∞∫

−∞
K(x − y)φ(y)dyφ(x)dx.

Then, simple computations yield

Aλ2 + Bλ + C = 0, (3.5)

where

A =

l∫

−l

φ2dx, B = −(a + b)

l∫

−l

φ2dx − d

l∫

−l

φ′2dx
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and

C = ab

l∫

−l

φ2dx + bd

l∫

−l

φ′2dx − G′(0)

l∫

−l

+∞∫

−∞
K(x − y)φ(y)dyφ(x)dx.

Direct calculation yields

B2 − 4AC >

⎡

⎣−(a + b)

l∫

−l

φ2dx − d

l∫

−l

φ′2dx

⎤

⎦

2

− 4

l∫

−l

φ2dx

⎛

⎝ab

l∫

−l

φ2dx + bd

l∫

−l

φ′2dx

⎞

⎠

=

⎡

⎣(a − b)

l∫

−l

φ2dx + d

l∫

−l

φ′2dx

⎤

⎦

2

≥ 0,

which implies (3.5) has two roots denoted by −B±√
B2−4AC
2A .

Next, we will prove the following lemma.

Lemma 3.1. The lower bound of −B−√
B2−4AC
2A exists for any φ ∈ Π(l).

Proof. Since
l∫

−l

∞∫

−∞
K(x − y)φ(y)dyφ(x)dx

≤
∞∫

−∞

∞∫

−∞
K(x − y)

φ2(y) + φ2(x)
2

dydx

=
1
2

∞∫

−∞

∞∫

−∞
K(x − y)dxφ2(y)dy +

1
2

∞∫

−∞

∞∫

−∞
K(x − y)dyφ2(x)dx

=

l∫

−l

φ2(x)dx,

we have

C ≥ (ab − G′(0))

l∫

−l

φ2(x)dx + bd

l∫

−l

φ′2(x)dx.

Here, we should emphasis that the equality holds if and only if K(x) = δ(x). Define

s =

l∫

−l

φ2(x)dx and t =

l∫

−l

φ′2(x)dx.

It is well known that t
s (φ) attains its minimum π2

4l2 at φ(x) = cos
(

π
2lx
)
. Direct calculation yields

−B − √
B2 − 4AC

2A
≥ (a + b)s + dt −√[(a + b)s + dt]2 − 4s[(ab − G′(0))s + bdt]

2s

=
a + b

2
+

d

2
· t

s
−
√
(

a + b

2
+

d

2
· t

s

)2

−
(

ab − G′(0) + bd
t

s

)

:= f1

(
t

s

)

.
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Let

r =
a + b

2
+

d

2
· t

s
,

then

f1

(
t

s

)

= f1

(
2
d

(

r − a + b

2

))

= r −
√

r2 − 2br + b2 + G′(0) .= f2(r).

It is easy to check that

f ′
2(r) = 1 − r − b

√
(r − b)2 + G′(0)

> 0.

In view of

r ≥ a + b

2
+

dπ2

8l2
,

then we have

f2(r) ≥ f2

(
a + b

2
+

dπ2

8l2

)

.

Hence, the lower bound of −B−√
B2−4AC
2A exists. �

By Lemma 3.1, we can define the infimum of −B−√
B2−4AC
2A . Then, the principal eigenvalue λ0 of (3.3)

has the following form:

λ0 = inf
φ∈Π(l)

{
−B − √

B2 − 4AC

2A

}

. (3.6)

Consider the elliptic eigenvalue problem
⎧
⎪⎨

⎪⎩

−dΦ′′ − ∫
R

K(x − y)Ψ(y)dy + aΦ = 0, −l < x < l,

bΨ = λ̂G′(0)Φ, −l < x < l,

Φ(x) = Ψ(x) = 0, −l ≤ x or x ≥ l.

(3.7)

By arguments similar to those in [17], it follows that (3.7) has a principal eigenvalue denoted by λ̂0 which
is associated with a strongly positive eigenvector (Φ,Ψ) � 0. λ̂0 has the following variational formula

λ̂0 = inf
Φ∈Π(l)

⎧
⎨

⎩

b
(
a
∫ l

−l
Φ2dx + d

∫ l

−l
Φ′2dx

)

G′(0)
∫ l

−l

∫ +∞
−∞ K(x − y)Φ(y)dyΦ(x)dx

⎫
⎬

⎭
.

Define

Θ(d, l) .=
1

λ̂0

= sup
Φ∈Π(l)

⎧
⎨

⎩

G′(0)
∫ l

−l

∫ +∞
−∞ K(x − y)Φ(y)dyΦ(x)dx

b
(
a
∫ l

−l
Φ2dx + d

∫ l

−l
Φ′2dx

)

⎫
⎬

⎭
;

we have the following lemma.

Lemma 3.2. 1 − Θ(d, l) has the same sign as λ0.

Proof. When λ0 ≤ 0, the proof can be done by modifying the argument of part (d) in [2, Lemma 2.3].
Here, we give the details below for completeness.

According to the definition of Θ(d, l), there exists a positive function Φ(x) ∈ Π(l) such that

− dΦ′′ − G′(0)
bΘ(d, l)

+∞∫

−∞
K(x − y)Φ(y)dy + aΦ(x) = 0 in (−l, l). (3.8)
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It follows from (3.4) and (3.8) that

dφ′′ − aφ +
G′(0)
b − λ0

+∞∫

−∞
K(x − y)φ(y)dy + λ0φ = 0, x ∈ (−l, l), (3.9)

dΦ′′ +
G′(0)

bΘ(d, l)

+∞∫

−∞
K(x − y)Φ(y)dy − aΦ(x) = 0, x ∈ (−l, l). (3.10)

Recall that K(x) is symmetric and Φ = φ = 0 in R\(−l, l). We multiply (3.9) by Φ and (3.10) by φ,
integrate over (−l, l) and subtract the resulting equations to obtain

G′(0)

l∫

−l

+∞∫

−∞
K(x − y)Φ(y)dyφ(x)dx

(
1

bΘ(d, l)
− 1

b − λ0

)

= λ0

l∫

−l

φ(x)Φ(x)dx.

Since

G′(0)

l∫

−l

+∞∫

−∞
K(x − y)Φ(y)dyφ(x)dx

and
∫ l

−l
φ(x)Φ(x)dx are both positive, we conclude that 1

bΘ(d,l) − 1
b−λ0

and λ0 have the same sign. Then,
1 − Θ(d, l) < 0 when λ0 < 0, 1 − Θ(d, l) = 0 when λ0 = 0.

While for λ0 > 0, it follows directly from (3.5) and (3.6) that C > 0. Then, from the definition of
Θ(d, l), we know 1 − Θ(d, l) > 0. �

Next, we consider the elliptic eigenvalue problem
{

−dφ′′ + aφ − G′(0)
b

∫∞
−∞ K(x − y)φ(y)dy = γφ, −l < x < l,

φ(x) = 0, x ≤ −l or x ≥ l.
(3.11)

We denote by γ0 the unique principal eigenvalue of (3.11). It is well known that γ0 has the following
variational formula

γ0 = inf
φ∈Π(l)

{
d
∫ l

−l
φ′2dx + a

∫ l

−l
φ2dx − G′(0)

b

∫ l

−l

∫∞
−∞ K(x − y)φ(y)dyφ(x)dx

∫ l

−l
φ2dx

}

.

Similarly to Lemma 3.2, we have the following lemma.

Lemma 3.3. 1 − Θ(d, l) has the same sign as γ0.

It follows from Lemmas 3.2 and 3.3 that λ0 and γ0 have the same sign, which implies that we can give
the sign of λ0 by the conditions which determine the sign of γ0. Next, we show the properties of γ0.

In the following, we show the monotonicity and sign of γ0 with respect to l and d. We write γ0(l, d) =
γ0(l) for any fixed d and varying l for brevity. Similarly, we write γ0(l, d) = γ0(d) for any fixed l and
varying d.

For any fixed d, we denote

P (l) = a − G′(0)
b

∫ l

−l

∫ l

−l
K(x − y) cos

(
π
2ly
)
dy cos

(
π
2lx
)
dx

∫ l

−l
cos2
(

π
2lx
)
dx

.

To study the sign of γ0, we need the limit behavior of P (l) as l tends to ∞. Firstly, we give the following
condition:
(H) liml→∞ P (l) exists and liml→∞ P (l) < 0.
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Lemma 3.4. For any fixed d, the following statements are valid:
(i) γ0(l) is strictly decreasing in l.
(ii) liml→0 γ0(l) > 0.
(iii) If a − G′(0)

b > 0, then γ0(l) > 0 for all l > 0.
(iv) If the condition (H) holds, then the equation γ0(l) = 0 has a unique positive root denoted by l∗(d).

Furthermore, if 0 < l < l∗(d), then γ0(l) > 0, and if l > l∗(d) then γ0(l) < 0.

Proof. Part (i) can be done by the similar argument of part (a) in [43, Theorem 3.2].
For part (ii), since

d
∫ l

−l
φ′2dx + a

∫ l

−l
φ2dx − G′(0)

b

∫ l

−l

∫∞
−∞ K(x − y)φ(y)dyφ(x)dx

∫ l

−l
φ2dx

≥ dπ2

4l2
+ a − G′(0)

b
,

we have γ0(l) ≥ dπ2

4l2 + a − G′(0)
b . Then, liml→0 γ0(l) > 0.

For part (iii), since

γ0 = inf
φ∈Π(l)

{
d
∫ l

−l
φ′2dx + a

∫ l

−l
φ2dx − G′(0)

b

∫ l

−l

∫∞
−∞ K(x − y)φ(y)dyφ(x)dx

∫ l

−l
φ2dx

}

≥ inf
φ∈Π(l)

{
d
∫ l

−l
φ′2dx

∫ l

−l
φ2dx

}

+ a − G′(0)
b

sup
φ∈Π(l)

{∫ l

−l

∫∞
−∞ K(x − y)φ(y)dyφ(x)dx

∫ l

−l
φ2dx

}

≥ dπ2

4l2
+ a − G′(0)

b
,

We have liml→+∞ γ0(l) ≥ a − G′(0)
b > 0. Combining this with part (i), we can derive part (iii).

For part (iv), let

χ(x) =

{
cos
(

π
2lx
)
, x ∈ (−l, l),

0, x ∈ R\(−l, l);

since

γ0 = inf
φ∈Π(l)

{
d
∫ l

−l
φ′2dx + a

∫ l

−l
φ2dx − G′(0)

b

∫ l

−l

∫∞
−∞ K(x − y)φ(y)dyφ(x)dx

∫ l

−l
φ2dx

}

≤ d
∫ l

−l
φ′2dx + a

∫ l

−l
φ2dx − G′(0)

b

∫ l

−l

∫∞
−∞ K(x − y)φ(y)dyφ(x)dx

∫ l

−l
φ2dx

∣
∣
∣
∣
∣
φ=χ

=
dπ2

4l2
+ a − G′(0)

b
·
∫ l

−l

∫ l

−l
K(x − y) cos

(
π
2ly
)
dy cos

(
π
2lx
)
dx

∫ l

−l
cos2
(

π
2lx
)
dx

,

we have liml→+∞ γ0(l) ≤ liml→+∞ P (l) < 0. Combining this with parts (i) and (ii), we get part (iv). �

Due to the unknown form of K(x), we cannot prove the existence of liml→∞ P (l) easily and calculate
it in detail for any K(x) satisfying condition (K). But we can give some specific kernel function K(x)
which makes liml→∞ P (l) exist; please see the following remark.

Remark 3.5. Since
l∫

−l

l∫

−l

K(x − y) cos
( π

2l
y
)

dy cos
( π

2l
x
)

dx ≤
l∫

−l

cos2
( π

2l
x
)

dx,
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Fig. 1. The effect of nonlocality on l∗(d)

P (l) ≥ a − G′(0)
b . In particular, if K(x) = δ(x) (δ(x) is the Dirac delta function), then

P (l) ≡ a − G′(0)
b

.

In this case, problem (1.3) reduces to the problem without nonlocal term studied by Ahn. et al. [1].
For some other specific kernel functions, liml→∞ P (l) can also exist and be equal to a − G′(0)

b . For
example,

(i) K(x) = 1
2L1[−L,L](x),

lim
l→∞

P (l) = a − G′(0)
b

lim
l→∞

2l

πL
sin

πL

2l
= a − G′(0)

b
.

(ii) K(x) = 1
2ρe− |x|

ρ ,

lim
l→∞

P (l) = a − G′(0)
b

lim
l→∞

1

1 + π2ρ2

4l2

= a − G′(0)
b

.

Comparing with the work by Ahn. et al. [1], we show the effect of nonlocality on l∗(d).

Remark 3.6. For any fixed d, we take K1(x) = 1
2L1[−L,L](x) (or 1

2ρe− |x|
ρ ) and K2(x) = δ(x), for example,

and denote by γ1
0(l) and γ2

0(l) the principal eigenvalue of (3.11) with K(x) = K1(x) and K(x) = K2(x),
respectively. For K(x) �= δ(x), since

l∫

−l

∞∫

−∞
K(x − y)φ(y)dyφ(x)dx <

l∫

−l

φ2(x)dx,

it follows from the expression of γ0 that γ1
0(l) > γ2

0(l). Hence, l∗1(d) > l∗2(d), which means that the
nonlocality will increase l∗(d). We use Fig. 1 to show it clearly.

For any fixed l, we have the following result.

Lemma 3.7. For any fixed l, the following statements are valid:
(i) γ0(d) is strictly increasing in d.
(ii) limd→+∞ γ0(d) > 0.
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(iii) If a − G′(0)
b > 0, then γ0(d) > 0 for all d > 0.

(iv) If P (l) < 0, then the equation γ0(d) = 0 has a unique positive root denoted by d∗(l). Furthermore,
if 0 < d < d∗(l), then γ0(d) < 0, and if d > d∗(l), then γ0(d) > 0.

Proof. The proof of part (i) is similar to the argument of [2, Lemma 2.2]. Parts (ii)–(iv) can be proved
by modifying the arguments of Lemma 3.4. We omit the proof here. �

Similarly to Remark 3.6, we have

Remark 3.8. The nonlocality will decrease d∗(l).

The following corollary results directly from Lemmas 3.2, 3.3, 3.4 and 3.7.

Theorem 3.9. The following statements are valid:

(i) If a − G′(0)
b > 0, then λ0 > 0 for all l, d > 0.

(ii) If the condition (H) holds, then for any fixed d, there exists l∗(d) > 0, such that λ0 > 0 for
0 < l < l∗(d), λ0 = 0 for l = l∗(d), and λ0 < 0 for l > l∗(d).

(iii) If P (l) < 0 for any fixed l, then there exists d∗(l) > 0, such that λ0 < 0 for 0 < d < d∗(l), λ0 = 0
for d = d∗(l), and λ0 > 0 for d > d∗(l).

4. Spreading and vanishing dichotomy

Before giving the main results, we first give a definition of the spreading and vanishing of the epidemic:
(i) The epidemic spreads if

h∞ − g∞ = ∞ and lim sup
t→∞

(‖u(t, ·)‖C([g(t),h(t)]) + ‖v(t, ·)‖C([g(t),h(t)])) > 0;

(ii) The epidemic vanishes if

h∞ − g∞ < ∞ and lim
t→∞(‖u(t, ·)‖C([g(t),h(t)]) + ‖v(t, ·)‖C([g(t),h(t)])) = 0.

Before giving the vanishing case, we first derive an estimate.

Lemma 4.1. Let (u, v, g, h) be the solution of (1.3). If h∞ − g∞ < ∞, then there exists a constant C > 0
such that

‖u(t, ·)‖C1([g(t),h(t)]) ≤ C, ∀ t > 1. (4.1)

Moreover,

lim
t→∞ g′(t) = lim

t→∞ h′(t) = 0. (4.2)

Proof. We can use the method in the proof of [30, Theorem 2.1] to get (4.1). Then, the proof of (4.2) can
be done by the method of [34, Theorem 4.1]. �

Next, we give the following result which can be proved by modifying the arguments of [34, Theorem 4.2]
(see also [33, Theorem 2.2]).

Lemma 4.2. Let d, μ and h0 be positive constants, w ∈ C
1+α
2 ,1+α([0,∞) × [g(t), h(t)]) and g, h ∈ C1+ α

2

([0,∞)) for some α > 0. We further assume that w0(x) ∈ X1(h0). If (w, g, h) satisfies
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

wt ≥ dwxx − aw, t > 0, g(t) < x < h(t),
w(t, x) = 0, t ≥ 0, x ≤ g(t) or x ≥ h(t),
g(0) = −h0, g′(t) ≤ −μwx(t, g(t)), t > 0,

h(0) = h0, h′(t) ≥ −μwx(t, h(t)), t > 0,

w(0, x) = w0(x) ≥, �≡ 0, −h0 < x < h0,

(4.3)
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and

lim
t→∞ g(t) = g∞ > −∞, lim

t→∞ g′(t) = 0,

lim
t→∞ h(t) = h∞ < ∞, lim

t→∞ h′(t) = 0,

‖w(t, ·)‖C1([g(t),h(t)]) ≤ M, ∀ t > 1

for some constant M > 0. Then,

lim
t→∞ max

g(t)≤x≤h(t)
w(t, x) = 0.

Lemma 4.3. If h∞ − g∞ < ∞, then

lim
t→∞(‖u(t, ·)‖C([g(t),h(t)]) + ‖v(t, ·)‖C([g(t),h(t)])) = 0.

Proof. First, we can use the method in the proof of [30, Theorem 2.1] to get

‖u‖
C

1+α
2 ,1+α([0,∞)×[g(t),h(t)])

+ ‖g‖
C1+ α

2 ([0,∞))
+ ‖h‖

C1+ α
2 ([0,∞))

≤ C.

Recall that u satisfies (4.3). Using Lemmas 4.1 and 4.2, we can get

lim
t→∞ ‖u(t, ·)‖C([g(t),h(t)]) = 0.

Note that v(t, x) satisfies

vt = −bv + G(u), t > 0, g(t) < x < h(t)

and G(u) → 0 uniformly for x ∈ [g(t), h(t)] as t → ∞; therefore, we have

lim
t→∞ ‖v(t, ·)‖C([g(t),h(t)]) = 0.

�

The following result is a sufficient condition such that vanishing occurs.

Theorem 4.4. If a − G′(0)
b ≥ 0, then h∞ − g∞ < ∞.

Proof. Direct calculations yield

d
dt

h(t)∫

g(t)

⎡

⎣u(t, x) +
1
b

∫

R

K(x − y)v(t, y)dy

⎤

⎦dx

=

h(t)∫

g(t)

⎡

⎣ut(t, x) +
1
b

∫

R

K(x − y)vt(t, y)dy

⎤

⎦dx

+ h′(t)

⎡

⎣u(t, h(t)) +
1
b

∫

R

K(h(t) − y)v(t, y)dy

⎤

⎦

− g′(t)

⎡

⎣u(t, g(t)) +
1
b

∫

R

K(g(t) − y)v(t, y)dy

⎤

⎦

=

h(t)∫

g(t)

⎧
⎨

⎩
duxx − au +

∫

R

K(x − y)v(t, y)dy
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+
1
b

∫

R

K(x − y)[−bv(t, y) + G(u(t, y))]dy

⎫
⎬

⎭
dx

+ h′(t)
1
b

∫

R

K(h(t) − y)v(t, y)dy − g′(t)
1
b

∫

R

K(g(t) − y)v(t, y)dy

= − d

μ
(h′(t) − g′(t)) +

h(t)∫

g(t)

⎡

⎣−au +
1
b

∫

R

K(x − y)G(u(t, y))dy

⎤

⎦ dx

+ h′(t)
1
b

∫

R

K(h(t) − y)v(t, y)dy − g′(t)
1
b

∫

R

K(g(t) − y)v(t, y)dy.

For the ODE system,
⎧
⎪⎨

⎪⎩

du
dt = −au + v, t > 0,
dv
dt = −bv + G(u), t > 0,

u(0) = ‖u0‖L∞ , v(0) = ‖v0‖L∞ ,

(4.4)

when G′(0) ≤ ab, namely the corresponding basic reproduction number R0 ≤ 1; then, the epidemic always
tends to extinction; namely, the solution (ũ(t), ṽ(t)) of problem (4.4) tends to (0, 0) as t → ∞. By the
comparison principle, we have u(t, x) ≤ ũ(t) and v(t, x) ≤ ṽ(t). So we can choose ε small enough and T0

large enough such that ε < bd
μ and v(t, x) < ε for t ≥ T0. Integrating from T0 to t gives

h(t)∫

g(t)

⎡

⎣u(t, x) +
1
b

∫

R

K(x − y)v(t, y)dy

⎤

⎦dx

≤
h(T0)∫

g(T0)

⎡

⎣u(T0, x) +
1
b

∫

R

K(x − y)v(T0, y)dy

⎤

⎦dx

+
(

d

μ
− ε

b

)

(h(T0) − g(T0)) −
(

d

μ
− ε

b

)

(h(t) − g(t))

+

t∫

T0

h(s)∫

g(s)

⎡

⎣−au(s, x) +
1
b

∫

R

K(x − y)G(u(s, y))dy

⎤

⎦ dxds.

For all T0 ≤ s ≤ t, since G′(0)
ab ≤ 1,

∫ h(s)

g(s)
K(x − y)dx ≤ 1 by condition (K) and u(t, x) = 0 for

x ∈ R\(g(t), h(t)),

G′(0)
ab

∫

R

h(s)∫

g(s)

K(x − y)u(s, y)dxdy ≤
h(s)∫

g(s)

u(s, x)dx.

By Fubini theorem, we have

h(s)∫

g(s)

⎡

⎣
G′(0)

ab

∫

R

K(x − y)u(s, y)dy − u(s, x)

⎤

⎦ dx ≤ 0.
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Since G(z)
z ≤ G′(0) by the monotonicity of G(z)

z , we have

h(s)∫

g(s)

⎡

⎣−au(s, x) +
1
b

∫

R

K(x − y)G(u(s, y))dy

⎤

⎦ dx ≤ 0.

Hence, we have

(
d

μ
− ε

b

)

(h(t) − g(t)) ≤
h(T0)∫

g(T0)

⎡

⎣u(T0, x) +
1
b

∫

R

K(x − y)v(T0, y)dy

⎤

⎦dx

+
(

d

μ
− ε

b

)

(h(T0) − g(T0));

then, we can get that h∞ − g∞ < ∞ by letting ε → 0 and t → ∞. �

Theorem 4.5. Assume that the condition (H) holds. If h0 ≥ l∗(d), then h∞ = −g∞ = ∞ and spreading
occurs.

Proof. We first consider the case that h0 > l∗(d). Denote by λ0 and (φ, ψ) the principal eigenvalue and
the corresponding eigenfunction of problem (3.3) with l = h0, respectively, where (φ, ψ) = (θψ, ψ) � 0
in (−h0, h0) and ‖φ‖L∞ = 1. It follows from Theorem 3.9 that λ0 < 0.

Now, we construct a suitable lower solution of problem (1.3). Define

u(t, x) =

{
εφ(x), t ≥ 0, −h0 ≤ x ≤ h0,

0, t ≥ 0, x < −h0 or x > h0,

v(t, x) =

{
εψ(x), t ≥ 0, −h0 ≤ x ≤ h0,

0, t ≥ 0, x < −h0 or x > h0,

where positive constant ε will be selected later.
Direct computations show that

ut − duxx + au −
∫

R

K(x − y)v(t, y)dy

= −dεφ′′ + aεφ − ε

∫

R

K(x − y)ψ(y)dy

= ελ0φ ≤ 0,

and

vt + bv − G(u) = bεψ − G′(ξ)u

= ελ0ψ + (G′(0) − G′(ξ))εθψ

= εψ[λ0 + θ(G′(0) − G′(ξ))],

for all t > 0 and −h0 < x < h0, where ξ(t, x) ∈ (0, u). Noting that λ0 < 0 and 0 < ξ(t, x) < u(t, x) ≤ ε,
we can choose ε small enough such that

λ0 + θ(G′(0) − G′(ξ)) < 0

and

εφ(x) ≤ u0(x), εψ(x) ≤ v0(x) for ∀ x ∈ [−h0, h0].
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Hence,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut ≤ duxx − au +
∫

R
K(x − y)v(t, y)dy, t > 0, −h0 < x < h0,

vt ≤ −bv + G(u), t > 0, −h0 < x < h0,

u(t, x) = v(t, x) = 0, t ≥ 0, x ≤ −h0 or x ≥ h0,

−h′
0 = 0 ≥ −μux(t,−h0), t > 0,

h′
0 = 0 ≤ −μux(t, h0), t > 0,

u(0, x) ≤ u0(x), v(0, x) ≤ v0(x), −h0 < x < h0.

(4.5)

Thus, Remark 2.3 implies that u(t, x) ≥ u(t, x) and v(t, x) ≥ v(t, x) in [0,∞) × [−h0, h0]. It follows that

lim inf
t→∞ (‖u(t, ·)‖C([g(t),h(t)]) + ‖v(t, ·)‖C([g(t),h(t)]))

≥ lim inf
t→∞ (‖u(t, ·)‖C([−h0,h0]) + ‖v(t, ·)‖C([−h0,h0]))

≥ ε(‖φ(·)‖C([−h0,h0]) + ‖ψ(·)‖C([−h0,h0])) > 0,

By Lemma 4.3, we know that h∞ − g∞ = +∞.
If h0 = l∗(d), then for any time t0, we have h(t0) > l∗(d). Replacing the initial time 0 by the time t0,

we can derive that h∞ − g∞ = +∞ as above. �

Theorem 4.6. Assume that the condition (H) holds. If h0 < l∗(d) and

‖u0(x)‖C([−h0,h0]), ‖v0(x)‖C([−h0,h0])

are sufficiently small, then h∞ − g∞ < ∞ and

lim
t→∞(‖u(t, ·)‖C([g(t),h(t)]) + ‖v(t, ·)‖C([g(t),h(t)])) = 0.

Proof. We construct a suitable upper solution. Denote by λ0 and (φ, ψ) the principal eigenvalue and the
corresponding eigenfunction of problem (3.3) with l = h0, respectively, where (φ, ψ) = (θψ, ψ) � 0 in
(−h0, h0) and ‖φ‖L∞ = 1. Since h0 < l∗(d), it follows from Theorem 3.9 that λ0 > 0.

We set

σ(t) = h0

(

1 + δ − δ

2
e−δt

)

, t ≥ 0,

u(t, x) =

{
εe−δtφ

(
xh0
σ(t)

)
, t ≥ 0, −σ(t) ≤ x ≤ σ(t),

0, t ≥ 0, x < −σ(t) or x > σ(t),

v(t, x) =

⎧
⎨

⎩

ε
(

h0
σ(t)

)2

e−δtψ
(

xh0
σ(t)

)
, t ≥ 0, −σ(t) ≤ x ≤ σ(t),

0, t ≥ 0, x < −σ(t) or x > σ(t),

where positive constant ε and δ will be selected later. Applying [16, Lemma 2.35] to problem (3.4), one
can easily see that xφ′(x) ≤ 0 for −h0 ≤ x ≤ h0. By the direct computations, we have

ut − duxx + au −
∫

R

K(x − y)v(t, y)dy

= −δu − εe−δtφ′ xh0σ
′

σ2
− εe−δtdφ′′

(
h0

σ

)2

+ au

−
∫

R

K(x − y)v(t, y)dy
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≥ εe−δt

⎧
⎨

⎩
−δφ +

(
h0

σ

)2
⎡

⎣−aφ +
∫

R

K(x − y)ψ
(

yh0

σ(t)

)

dy + λ0φ

⎤

⎦

+aφ −
(

h0

σ

)2 ∫

R

K(x − y)ψ
(

yh0

σ(t)

)

dy

⎫
⎬

⎭

= εe−δt

{

−δφ +
(

h0

σ

)2

λ0φ +

[

1 −
(

h0

σ

)2
]

aφ

}

> εe−δtφ

{

−δ +
1

(
1 + δ − δ

2e−δt
)2 λ0 +

[

1 − 1
(
1 + δ − δ

2e−δt
)2

]

a

}

.

For any −σ(t) < x < σ(t), since λ0 > 0, we can always find some δ1 sufficiently small such that
1

(1 + δ)2
λ0 ≥ δ;

then,

ut − duxx + au −
∫

R

K(x − y)v(t, y)dy > εe−δtφ

[

−δ +
1

(1 + δ)2
λ0

]

≥ 0,

for all t > 0 and −σ(t) < x < σ(t).
Moreover,

vt + bv − G(u) = −2σ′(t)
σ(t)

v − δv −
(

h0

σ

)2

εe−δtψ′ xh0σ
′

σ2
+ b

(
h0

σ

)2

εe−δtψ − G(u)

≥ −2σ′(t)
σ(t)

v − δv +
(

h0

σ

)2

εe−δt(λ0ψ + G′(0)φ) − G′(ξ)u

= v

{

− δ2e−δt

1 + δ − δ
2e−δt

− δ + λ0 +

[

G′(0) −
(

1 + δ − δ

2
e−δt

)2

G′(ξ)

]

θ

}

,

for all t > 0 and −σ(t) < x < σ(t), where ξ ∈ (0, u). Since u ≤ ε, we can choose δ2 and ε sufficiently
small such that

−δ2 − δ + λ0 +
[
G′(0) − (1 + δ)2 G′(ξ)

]
θ ≥ 0

and

ε ≤ −δ2h0(1 + δ)
2μφ′(h0)

.

Then,

vt + bv − G(u) ≥ 0.

On the other hand, we have that

σ′(t) = h0
δ2

2
e−δt ≥ −με

h0

σ(t)
φ′(h0)e−δt = −μux(t, σ(t)),

and

−σ′(t) = −h0
δ2

2
e−δt ≤ με

h0

σ(t)
φ′(h0)e−δt = − με

h0

σ(t)
φ′(−h0)e−δt

= − μux(t,−σ(t)).
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We take δ = min{δ1, δ2}. For this δ and above ε, if u0 and v0 are small enough such that

‖u0‖C([−h0,h0]) ≤ εφ

(
x

1 + δ
2

)

and ‖v0‖C([−h0,h0]) ≤ ε

(
1

1 + δ
2

)2

ψ

(
x

1 + δ
2

)

,

then

u0(x) ≤ u(0, x), v0(x) ≤ v(0, x) for x ∈ [−h0, h0].

Thus, it follows from Theorem 2.2 that g(t) ≥ −σ(t) and h(t) ≤ σ(t) for all t ≥ 0. Then, h∞ − g∞ ≤
limt→∞ 2σ(t) = 2h0(1 + δ) < ∞. �

Theorem 4.7. Assume that the condition (H) holds. If h0 < l∗(d) and

‖u0(x)‖C([−h0,h0]), ‖v0(x)‖C([−h0,h0])

are sufficiently large, then h∞ − g∞ = ∞ and

lim inf
t→∞

(‖u(t, ·)‖C([g(t),h(t)]) + ‖v(t, ·)‖C([g(t),h(t)])

)
> 0.

Proof. We first note that Theorem 3.9 implies that there exists T ∗ > 0 such that λ0(d,
√

T ∗) < 0.
Inspired by the argument of [12, Proposition 5.3] (see also [1, Theorem 4.2]), let ν0 be the eigenvalue

of
{

−dϕ′′ − sgn(x)
2 ϕ′ = ν0ϕ, −1 < x < 1,

ϕ(−1) = ϕ(1) = 0,

the corresponding function ϕ > 0 and ‖ϕ‖L∞(−1,1) = 1.
Now we construct a suitable lower solution to (1.3). Define

η(t) =
√

t + �, t ≥ 0,

u(t, x) =

{
m

(t+�)k ϕ
(

x√
t+�

)
, t ≥ 0, −η(t) ≤ x ≤ η(t),

0, t ≥ 0, |x| > η(t),

v(0, x) =

{
v0(x), −√

� ≤ x ≤ √
�,

0, |x| >
√

�,

v(t, x) = e−bt

⎛

⎝

t∫

0

ebτG(u(τ, x))dτ + v(0, x)

⎞

⎠ , t ≥ 0, −η(t) ≤ x ≤ η(t),

where the constants �, m, k are chosen as follows:

0 < � ≤ min
{
1, h2

0

}
, k ≥ ν0 + a(T ∗ + 1), m ≥ (T ∗ + 1)k

−2μϕ′(1)
.

Direct computations yield

ut − duxx + au −
h(t)∫

g(t)

K(x − y)v(t, y)dy

≤ − m

(t + �)k+1

[

kϕ +
x

2
√

t + �
ϕ′ + dϕ′′ − a(t + �)ϕ

]

≤ − m

(t + �)k+1

[

kϕ +
sgn(x)

2
ϕ′ + dϕ′′ − a(T ∗ + 1)ϕ

]
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≤ − m

(t + �)k+1

[

dϕ′′ +
sgn(x)

2
ϕ′ + ν0ϕ

]

= 0,

and

vt + bv − G(u) = 0 for all 0 < t ≤ T ∗ and − η(t) < x < η(t).

Moreover,

η′(t) + μux(t, η(t)) =
1

2
√

t + �
+

μm

(t + �)k+ 1
2
ϕ′(1) ≤ 0 for 0 < t ≤ T ∗.

If

u(0, x) =
m

�k
ϕ

(
x√
�

)

≤ u0(x) in [−√
�,

√
�],

then we have
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut ≤ duxx − au +
∫

R
K(x − y)v(t, y)dy, 0 < t ≤ T ∗, −η(t) < x < η(t),

vt = −bv + G(u), 0 < t ≤ T ∗, −η(t) < x < η(t),
u(t, x) = v(t, x) = 0, 0 ≤ t ≤ T ∗, x ≤ −η(t) or x ≥ η(t),
−η′(t) ≥ −μux(t,−η(t)), 0 < t ≤ T ∗,
η′(t) ≤ −μux(t, η(t)), 0 < t ≤ T ∗,
u(0, x) ≤ u0(x), v(0, x) = v0(x), −η(0) < x < η(0).

Noting that η(0) =
√

� ≤ h0, we can use Remark 2.3 to conclude that h(t) ≥ η(t) and g(t) ≤ −η(t) in
[0, T ∗]. Specially, we obtain

h(T ∗) ≥ η(T ∗) =
√

T ∗ + � >
√

T ∗

and g(T ∗) < −√
T ∗. Then,

(−l∗, l∗) ⊆ (−
√

T ∗,
√

T ∗) ⊆ (g(t), h(t)).

Hence, we have h∞ − g∞ = +∞ by Theorem 4.5. �

The following theorem is a direct result of Theorems 4.5, 4.6 and 4.7.

Theorem 4.8. Assume that the condition (H) holds. For some σ > 0 and any given (ω1(x), ω2(x)) ∈
X1(h0)×X2(h0), let (u, v, g, h) be a solution to problem (1.3) with (u0(x), v0(x)) = σ(ω1, ω2), then there
exists σ∗ ≥ 0 such that spreading occurs if σ > σ∗, and vanishing occurs if 0 < σ ≤ σ∗. Moreover, σ∗ = 0
if h0 ≥ l∗(d), and σ∗ > 0 if h0 < l∗(d) for some fixed d.

Proof. For the reason why σ∗ exists, the readers can refer to [19, Theorem 5.7]. Here we omit the details
for brevity. �

Similarly, we have the following result.

Theorem 4.9. Assume that P (h0) < 0. The conclusions except the last one in Theorem 4.8 still hold. For
σ∗ in Theorem 4.8, σ∗ = 0 if 0 < d ≤ d∗(h0), and σ∗ > 0 if d > d∗(h0).

When spreading happens, we have the following lemma:

Lemma 4.10. Assume that the condition (H) holds. If spreading occurs, then

lim sup
t→∞

(u(t, x), v(t, x)) ≤ (u∗, v∗)
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uniformly for x ∈ R, where (u∗, v∗) is the unique positive equilibrium of
⎧
⎪⎨

⎪⎩

du(t)
dt = −au(t) + v(t), t > 0,

dv(t)
dt = −bv(t) + G(u(t)), t > 0,

u(0) = ‖u0‖L∞([−h0,h0]), v(0) = ‖v0‖L∞([−h0,h0]).

(4.6)

Proof. We denote by (u(t), v(t)) the solution of (4.6). Applying the comparison principle gives

(u(t, x), v(t, x)) ≤ (u(t), v(t))

for t > 0 and g(t) ≤ x ≤ h(t). Since P (l) ≥ a− G′(0)
b for any l, the condition (H) implies that a− G′(0)

b < 0,
namely the basic reproduction number R0(=

G′(0)
ab ) > 1 for problem (4.6). Hence, problem (4.6) has a

unique positive equilibrium denoted by (u∗, v∗) and limt→∞(u(t), v(t)) = (u∗, v∗). Hence,

lim sup
t→∞

(u(t, x), v(t, x)) ≤ (u∗, v∗)

uniformly for x ∈ R. �

Combining Lemmas 4.3 and 4.10, we immediately have the following spreading–vanishing dichotomy
theorem.

Theorem 4.11. Let (u, v, g, h) be the solution of the free boundary problem (1.3). Assume that the condition
(H) holds. Then, the following alternative holds:

(i) Spreading: h∞ − g∞ = ∞ and

(0, 0) < lim inf
t→∞ (u(t, x), v(t, x)) ≤ lim sup

t→∞
(u(t, x), v(t, x)) ≤ (u∗, v∗)

uniformly for x ∈ R;
(ii) Vanishing: h∞ − g∞ < ∞ and limt→∞(‖u(t, ·)‖C([g(t),h(t)]) + ‖v(t, ·)‖C([g(t),h(t)])) = 0.

5. Spreading speed

When the spreading happens, we give some rough estimates of the asymptotic spreading speed in this
section. In particular, if a and b are small enough and the condition (H) holds, then the spreading will
happen for some suitable initial value u0, v0 and h0. Similarly to the argument of [11,28], we can provide
an upper bound for lim supt→∞

h(t)
t and lim supt→∞

−g(t)
t , which shows that the asymptotic spreading

speed (if exists) for problem (1.3) cannot be faster than the minimal speed of traveling wave fronts of
{

ut = duxx − au +
∫

R
K(x − y)v(t, y)dy, t > 0, x ∈ R,

vt = −bv + G(u), t > 0, x ∈ R.
(5.1)

Xu and Zhao [37] proved that there exists c∗ > 0 such that for any c ≥ c∗, the following problem
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−cU ′(ξ) = dU ′′(ξ) − aU(ξ) +
∫

R
K(y)V (ξ − y)dy, ξ ∈ R,

−cV ′(ξ) = −bV (ξ) + G(U(ξ)), ξ ∈ R,

(U, V )(−∞) = (u∗, v∗), (U, V )(+∞) = (0, 0),
U ′(ξ) < 0, V ′(ξ) < 0, ξ ∈ R

(5.2)

has a solution (U(ξ), V (ξ)) with ξ = x − ct, while problem (5.2) has no solution for c < c∗. c∗ is called
the minimal speed of the traveling waves of (5.1).
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Theorem 5.1. Let (u, v, g, h) be a solution of (1.3). When spreading occurs, if a and b are sufficiently
small and

max
x∈[−h0,h0]

u0(x) < u∗, max
x∈[−h0,h0]

v0(x) < v∗, (5.3)

then we have

lim sup
t→∞

h(t)
t

, lim sup
t→∞

−g(t)
t

≤ c∗.

Proof. We will construct a suitable upper solution to (1.3) and then apply Theorem 2.2.
In (5.1), we replace a by ã = a − ε1 and replace b by b̃ = b − ε2, where ε1 and ε2 are small positive

constants. We then denote by c̃∗ the minimal speed of the traveling waves to the modified problem of
(5.1). We thus have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−c̃∗U ′(ξ) = dU ′′(ξ) − ãU(ξ) +
∫

R
K(y)V (ξ − y)dy, ξ ∈ R,

−c̃∗V ′(ξ) = −b̃V (ξ) + G(U(ξ)), ξ ∈ R,

(U, V )(−∞) = (ũ∗, ṽ∗), (U, V )(+∞) = (0, 0),
U ′(ξ) < 0, V ′(ξ) < 0, ξ ∈ R,

where (ũ∗, ṽ∗) = (u∗ + ε3, v
∗ + ε4), (ε3, ε4) → (0, 0) as (ε1, ε2) → (0, 0).

Let ϑ(x) be a smooth function satisfying

ϑ(x) ∈ [0, 1], ϑ(x) = 0 for x ≤ −1, ϑ(x) = 1 for x ≥ 0, ϑ′(x) ≥ 0.

Since U ′(ξ) < 0, V ′(ξ) < 0 and limξ→+∞(U, V )(ξ) = (0, 0), we can find L > h0 large enough such
that

c̃∗ ≥ −μU ′(L) and ε1 +
1
L

(

ϑ′c̃∗ − dϑ′′

L

)

> 0.

We now define
h(t) = R + c̃∗t, g(t) = −R − c̃∗t, t ≥ 0,

u(t, x) =

⎧
⎨

⎩

U(x − c̃∗t − R + L) − ϑ
(

x−c̃∗t−R+1
L

)
U(L), t ≥ 0, 0 ≤ x ≤ h(t),

U(−x − c̃∗t − R + L) − ϑ
(

−x−c̃∗t−R+1
L

)
U(L), t ≥ 0, g(t) ≤ x < 0,

v(t, x) =

⎧
⎨

⎩

V (x − c̃∗t − R + L) − ϑ
(

x−c̃∗t−R+1
L

)
V (L), t ≥ 0, 0 ≤ x ≤ h(t),

V (−x − c̃∗t − R + L) − ϑ
(

−x−c̃∗t−R+1
L

)
V (L), t ≥ 0, g(t) ≤ x < 0,

where R > L will be determined later.
For given ϑ(x), if a and b are small enough such that

a <
V (L)
U(L)

inf
x∈(−1,∞)

{∫

R
K(x − y)ϑ(y)dy

ϑ(x)

}

and b <
U(L)
V (L)

min
Uθ∈(0,ũ∗)

G′(Uθ), (5.4)

then for all t > 0 and 0 ≤ x < h(t), direct computations yield

ut − duxx + au −
∫

R

K(x − y)v(t, y)dy

= −c̃∗U ′ +
ϑ′c̃∗

L
U(L) − dU ′′ − dϑ′′

L2
U(L)

+ a(U − ϑU(L)) −
∫

R

K(x − y)(V − ϑV (L))dy
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= ε1U +
ϑ′c̃∗

L
U(L) − dϑ′′

L2
U(L) − aϑU(L) +

∫

R

K(x − y)ϑV (L)dy

=
(

ε1 +
ϑ′c̃∗

L
− dϑ′′

L2

)

U(L) − aϑU(L) +
∫

R

K(x − y)ϑdy · V (L)

> 0,

and

vt + bv − G(u) = − c̃∗V ′ +
ϑ′c̃∗

L
V (L) + b(V − ϑV (L)) − G(U − ϑU(L))

= ε2V +
ϑ′c̃∗

L
V (L) − bϑV (L) + G(U) − G(U − ϑU(L))

> − bϑV (L) + G′(Uξ)ϑU(L)

≥ − bϑV (L) + min
Uθ∈(0,ũ∗)

G′(Uθ)ϑU(L)

> 0,

where Uξ ∈ (U − ϑU(L), U) ⊂ (0, ũ∗). Similarly, for all t > 0 and g(t) < x < 0, we have

ut − duxx + au −
∫

R

K(x − y)v(t, y)dy ≥ 0,

and

vt + bv − G(u) ≥ 0.

Clearly, h(0) = R > h0, g(0) = −R < −h0 and

h
′
(t) = c̃∗ ≥ −μU ′(L) = −μux(t, h(t)), g′(t) = −c̃∗ ≤ μU ′(L) = −μux(t, g(t)).

Since (U, V )(−∞) = (ũ∗, ṽ∗) > (u∗, v∗), we can choose R ≥ L + h0 + 1 large enough such that

U(h0 − R + L) > u∗ and V (h0 − R + L) > v∗.

For this R, it follows from the definition of ϑ(x) that

ϑ

(
x − R + 1

L

)

= ϑ

(−x − R + 1
L

)

= 0 for x ∈ [−h0, h0].

By the condition

max
x∈[−h0,h0]

u0(x) < u∗ and max
x∈[−h0,h0]

v0(x) < v∗,

we have

u(0, x) = U(x − R + L) > U(h0 − R + L) > u∗ > u0(x),

and

v(0, x) = V (x − R + L) > V (h0 − R + L) > v∗ > v0(x),

for −h0 ≤ x ≤ h0. Finally, we note that

u(t, h(t)) = u(t, g(t)) = v(t, h(t)) = v(t, g(t)) = 0.

Hence, we can apply the comparison principle to conclude that h(t) ≤ h(t) and g(t) ≥ g(t). It follows
that

lim sup
t→∞

h(t)
t

, lim sup
t→∞

−g(t)
t

≤ c̃∗.
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Due to the continuous dependence of c̃∗ on the parameters, the desired result follows by letting
ε1, ε2 → 0. �

Remark 5.2. Because it is hard to describe lim inft→∞
h(t)

t and lim inft→∞
−g(t)

t precisely and further
prove

lim inf
t→∞

h(t)
t

= lim sup
t→∞

h(t)
t

and lim inf
t→∞

−g(t)
t

= lim sup
t→∞

−g(t)
t

,

we cannot give the estimates of the asymptotic spreading speed, namely the value of limt→∞
h(t)

t and
limt→∞

−g(t)
t . But if limt→∞

h(t)
t and limt→∞

−g(t)
t exist, it follows from the property of the limit and

Theorem 5.1 that

lim
t→∞

h(t)
t

≤ c̃∗ and lim
t→∞

−g(t)
t

≤ c̃∗.

Hence, if spreading occurs, the asymptotic spreading speed of the front (if exist) will not be faster than
the minimal speed of corresponding traveling wave.

6. Discussion

Comparing with the problem without the nonlocal term, we find it is difficult to consider the principal
eigenvalue of problem (3.1), which is mainly due to the existence of the nonlocal term. As in [1,26],
we should build the relationship between the principal eigenvalue λ0 of problem (3.4) and the principal
eigenvalue γ0 of problem (3.11). By using Θ(d, l) as a bridge, we derive that γ0 has the same sign as λ0.
Then, we only need to study the sign of γ0.

The main results show that the nonlocal term has an influence on the spreading of the epidemic
disease. For the problem without nonlocal term, the results in [26] indicated that vanishing will occur if
a − G′(0)

b ≥ 0. While for a − G′(0)
b < 0, there exists d̂ such that spreading always occurs if 0 < d ≤ d̂, and

whether spreading occurs or not depends on the initial data for d > d̂. In fact, this special case is exactly
K(x) = δ(x). For problem (1.3) with nonlocal term, we deduce the similar results; see Theorems 4.4 and
4.9. But it follows from Remark 3.8 that the nonlocal term will decrease d∗.

Theorem 4.8 illustrates that for some fixed diffusion rate d, the epidemic will spread if condition (H)
holds and the initial habit is large enough. While if the initial habit is small but the initial densities of
the infectious agents and infective human population are large enough, the epidemic will also spread.
Otherwise, vanishing will happen.

In Sect. 5, we consider a specific situation; namely, a and b are small enough such that (5.4) holds;
in addition, u0 and v0 are suitably small such that (5.3) holds. Under this specific situation, we estimate
roughly the asymptotic spreading speed when spreading happens. Here, we should emphasis that these
conditions are added only for the convenience of constructing a suitable upper solution. For a two species
system with free boundaries, Du et al. [13] firstly gave the precise asymptotic spreading speed determined
by a certain traveling wave type system of one space dimension, which is called a semi-wave. For the
precise asymptotic spreading speed of problem (1.3), due to the complexities and difficulties arising in
constructing suitable upper–lower solutions precisely, we leave it for further consideration.
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