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This paper considers a three-axle railway locomotive bogie running on a straight track and presents pattern 

diversity and bifurcation characteristics of its hunting behaviors at forward speeds higher than the hunting critical 

speed. Poincaré sections describing the cycle characteristic and wheel-rail impacts of the bogie system are defined 

according to the geometric structure of phase space of the dynamical system for carrying out multi-target and 

multi-parameter co-simulation analysis. The influences of dynamical parameters of the locomotive bogie on the 

wheel–rail impacts are studied and some important features of hunting behaviors in the presence of the flange 

contact nonlinearity are found. A series of grazing bifurcations induce the pattern diversity of hunting behaviors. 

The impacts of the middle and trailing wheelsets on the rail fall behind that of the leading wheelset, and the 

impact lag of the hunting motion of the middle wheelset is the most obvious of the three wheelsets. The top 

branch of impact velocity bifurcation diagram of period 1 hunting motion of the trailing wheelset is slightly 

lower than those of the leading and middle wheelsets. The instability speed of period 1 hunting-impact motion 

of the bogie system with worn wheelsets is lower than that with new wheelsets and the impact velocities of the 

worn wheelsets on the rail become smaller. A method of reasonable matching of primary suspension parameters, 

which brings about the substantial increase of the instability speed of periodic hunting behavior in the presence 

of the flange forces, is presented and the matching effect is verified by bifurcation diagrams of impact velocities 

of the new and worn leading wheelsets versus the forward speed. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

With the increase of the forward speeds of railway vehicles, vehicle
esigners are interested in achieving higher critical hunting speeds of
he vehicles they design than before. High-speed trains need to have a
igher critical speed. If the train loses its stability, the hunting motion
ill appear in the operation. The severe hunting motion will deterio-

ate the running quality of the railway vehicles, reduce ride comfort,
ead to strong interactions between wheels and rails, and even cause
erailment in a major accident. In everyday operation, the locomotive
nd cars usually do not run at speeds which are higher than the critical
peed. It may, however, happen that the critical speed has decreased
elow the operating speed due to heavily worn wheel profiles or other
easons, so there is a demand to further know what can happen for
he railway vehicles running at speeds which are higher than the corre-
ponding critical speeds. Some studies can be found on railway vehicle
ateral stability, hunting bifurcation behaviors and chaotic hunting mo-
ions. Cooperrider [1] first formulated the railway vehicle systems and
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eported the results of an analysis of nonlinear equations of motion writ-
en for a railway truck, including the influence of the nonlinear effects
n stability, the character of the hunting motion, the effects of flange
ontact, wheel slip and Coulomb friction described by nonlinear expres-
ions, etc. Nó and Hedrick [2] discussed the problem of maximizing the
ritical speed through design of the primary and secondary suspension
ut with control only over the range of wheel/rail geometry and fric-
ion characteristics. Kaas-Petersen et al. [3,4] studied the hunting mo-
ion in the complex Cooperrider bogie, both with and without the flange
orce that was represented as a very stiff spring with a dead band. They
ound symmetry-breaking bifurcations in the model without the flange
orce and chaotic motions in the latter model with flanged wheels. True
t al. [5,6] put forward an improved dynamical model on the basis of
he Cooperrider bogie, analyzed the asymmetry-breaking bifurcation,
eimark–Sack bifurcation, saddle-node bifurcation and pitchfork bifur-
ation appearing in the symmetric railway bogie system and discussed
he mode interactions near a degenerate bifurcation. On the basis of the
arameter study of hunting and chaos in railway vehicle dynamics [7] ,
rue [8] defined various equilibrium states of railway vehicle systems,
iscussed the important case of multiple equilibrium states and their
ependence on parameters, and presented the applications in vehicle
imulations. Zeng [9] put forward a numerical computation method for
017 
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a  
opf bifurcation and limit cycles of railway vehicle systems through
sing the QR algorithm to calculate the eigenvalues of the first approx-
mate system incorporating with the Gold Cut method. Ahmadian and
ang [10] investigated the effect of system parameters on hunting of a
ail vehicle with nonlinear yaw dampers and wheel–rail interface and
ound that the flange contact nonlinearities brought about a significant
ffect on the hunting behavior. In Ref. [11] , they also presented an an-
lytical investigation of Hopf bifurcation and hunting behavior of a rail
heelset with nonlinear primary yaw dampers and wheel–rail contact

orces and investigated the nonlinearities stemming from creep–creep
orce saturation and nonlinear contacts between a realistic wheel and
ail profile. Yang and Shen demonstrated the stability and Hopf bifurca-
ion of hunting motion of a locomotive bogie with hysteretic and nonlin-
ar suspensions in their monograph [12] . Using the method of multiple
cales, Kim and Seok [13] unfolded a bifurcation analysis on a nonlin-
ar railway vehicle having dual-bogies to examine the coupling effect of
he bogies on the vehicle’s hunting behavior. Based on hunting stabil-
ty analysis of high-speed railway vehicle trucks on curved tracks [14] ,
ee and Cheng derived the nonlinear coupled differential equations of
he motion of the truck systems with different degrees of freedom and
oving on curved tracks, compared the influences of the suspension
arameters on the critical hunting speeds evaluated via the linear and
onlinear creep models [15] , and analyzed the respective effects of the
ajor system parameters on the vehicle dynamics [16] , and presented

he desired regions of suspension parameters in which critical hunting
peeds exceed 300 km/h obtained using the 14-DOF and 24 DOF mod-
ls [17] . Zboinski and Dusza [18] presented a new method suitable for
nalysis on nonlinear lateral stability of rail vehicles in a curved track.
hey extended the study of the stability as compared with the method
sed by the them and discussed differences between results obtained
ith the earlier and extended approaches [19] , and further presented

he extended use of the method worked out by them to bifurcation anal-
sis of more complex rail vehicle models [20] . Hoffmann [21] analyzed
ynamics of European two-axle freight wagons with the UIC standard
uspension through the use of a multibody model developed specifically
or revealing the complex hunting behavior in the running properties
f freight wagons. The dynamical investigations of the European two-
xle railway wagons were extended to the behaviour in curves by Gi-
lleonardo et al. [22] . Zhai and Wang [23] considered the viscoelastic
roperty of railway track structure and investigated the effect of track
ystem properties such as the rail fastener stiffness and the rail profile
n the lateral hunting stability of a freight car with three-piece bogies.
hey found out the differences of the critical hunting speeds of vehi-
les on rigid track model and on elastic track model and carried out
 full-scale field experiment to investigate the hunting behavior of the
reight car on a straight track. Based on wheel/rail coupled dynamics
23] , Wang and Liu [24] developed a model to simulate dynamic per-
ormance of the heavy-haul vehicle on curved track, and put forward
 bifurcation diagram for the vehicle with three-piece bogies on the
urved track to determine the nonlinear critical speed and the hunting
otion of the heavy-haul vehicle appearing due to the larger conicity,

he initial lateral shift and the wheelset angle of attack. Gao and Li et al.
25] investigated the lateral bifurcation behavior of a high-speed four-
xle railway passenger in large speed ranges and obtained its stable and
nstable orbits and linear and nonlinear critical speeds. Subsequently,
he two-axle bogie system with the flange forces is taken as the analysis
bject in Refs. [26,27] , several kinds of nonlinear dynamical phenom-
na, such as stationary equilibrium point, symmetric or asymmetric pe-
iodic oscillations, and symmetric or asymmetric chaotic motions, are
ound and discussed in great detail from the point of the mathematics
r mechanics. Recently, True [28] discussed the easier numerical meth-
ds proposed to find the critical speed in railway dynamical problems,
nd put forward the algorithm on finding multiple attractors and criti-
al parameters. Choi and Shin [29] considered the flange contact when
ateral displacement exceeds the dead band between wheel flange and
ail and devised direct numerical integration and a shooting algorithm
322 
o calculate the response of a high-speed train. They found that the crit-
cal speed increases as the creep curve becomes stiff before saturation,
hich is more effective than the variation in suspension parameters. At
resent, the wheel–rail impact dynamics mainly focuses on the stud-
es considering the contribution due to the pitch and roll motions of
he car body and bogies. Effects of primary and secondary suspension’s
tiffness on wheel–rail impact force have been investigated by Nielsen
nd Igeland [30] , Dong [31] , Sun and Dhanasekar [32] . These studies
oncluded that vehicle suspension properties do not have significant ef-
ects on wheel–rail impact loads. This assumption has been confirmed
y both analytical and experimental data as shown in [31] . Uzzal et al.
33] investigated dynamic contact loads at wheel–rail contact point in
 three-dimensional railway vehicle–track model as well as dynamic re-
ponse at vehicle–track component levels in the presence of wheel flats.
hey considered the idealized Haversine wheel flats with the rounded
orner in the wheel–rail contact model and investigated the wheel–rail
mpact forces arising in the wheel–rail interface due to the presence of
heel flats. The wheel–rail impact properties that arise in the wheel–

ail interface due to the presence of the flange contact nonlinearities are
ncluded in a very few studies [34,35] . Definitely, the primary suspen-
ion parameters and wheel and rail profile parameters have effect on
ateral dynamic behavior of the vehicle running on the rails, including
he vehicle lateral hunting stability, hunting pattern diversity and bifur-
ation characteristics, as seen in more relevant researches [ 36–42 ]. It is
ecessary to further understand, however, how strong the effect these
arameters on the hunting motions with the flange forces is, and which
arameters have a significant influence on such hunting motions. 

This study is primarily concerned with diversity and bifurcation
haracteristics of hunting motions of a three-axle railway locomotive
ogie considering the contribution due to the yaw and lateral motions
f the frame and wheelsets in the presence of the flange contact nonlin-
arities. The remainder of this paper is organized as follows. Section 2 in-
roduces the nonlinear wheel–rail contact geometry relation, the normal
ontact forces between the wheelset and the rail, dynamical model and
ts corresponding differential equations of hunting behaviors of the lo-
omotive bogie system. In Section 3 , a numerical analysis based on the
oincaré sections describing the characteristics of lateral dynamic be-
aviors of the bogie system running on the rails is proposed to ascertain
he basic patterns, characteristics and diversity of hunting behaviors of
he leading, middle and trailing wheelsets and the frame. In Section 4 ,
he incidence relation between hunting patterns and bifurcation charac-
eristics of the bogie system and its key dynamical parameters is studied
y multi-objective and multi-parameter co-simulation analysis, the in-
uence of the primary suspension stiffness and the equivalent conicity of
heel tread on the impact of the wheelsets on the rail is discussed, and

he stiffness matching of the primary suspension, which brings about the
ncrease of instability speed of period 1 hunting motion, is presented.
ast section summarizes and concludes this paper. 

. Dynamical model of hunting behavior of the railway 

ocomotive bogie 

.1. Wheel–rail contact geometry relation 

Let us consider dynamical model of hunting behavior of a railway
ocomotive bogie, which is schematically represented in Fig. 1 [43,44] .
he locomotive bogie system consists of a bogie frame, three wheelsets,
he primary suspensions and the secondary suspension. The wheel–rail
ontact geometry relation, wheel–rail creep forces and flange forces be-
ween the wheelset and the rail are very important for the research on
ehicle system dynamics and control. The geometry and contact rela-
ions between the wheelset and the rail need to be emphasized first.
he cross-section parameters of the wheelset and rail can be introduced
y a sketch map of a single wheelset reported in Fig. 2 . The wheel–rail
ontact geometry parameters, which mainly include the rolling radius
nd the contact angle for the left and the right wheels, and the roll angle
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Fig. 1. Schematic representation of the model of a locomotive bogie for the study of the hunting motion. 

Fig. 2. The sketch map of a single wheel wheelset. 
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f the wheelset, can be approximately described by linear functions of
he lateral displacement of the wheelset. In Fig. 2 , r 0 is the nominal con-
act rolling radius of the wheel, r l and r r are the practical rolling radius
f two wheels of the wheelset, and the subscripts l and r denote the left
nd right wheels of the wheelset, respectively; 𝛿0 is the contact angle
elated to the wheelset center situated at the vertical plane through the
rack centerline, 𝛿l and 𝛿r are the actual contact angle of the wheels. As
 vehicle runs along the rail, the wheel–rail contact geometry relation,
ssociated with the lateral deviation y w of the wheelset, can be written
y the following expressions 

 𝑙 , 𝑟 𝑟 = 𝑟 0 ± 𝜆 𝑦 𝑤 , 𝛿𝑙 , 𝛿𝑟 = 𝛿0 ± 𝜀 0 𝑦 𝑤 ∕ 𝑏, 𝜙𝑤 = 𝜎 𝑦 𝑤 ∕ 𝑏, (1)

here 𝜆 denotes the equivalent conicity of the wheel tread which grad-
ally increases with the wear of the wheel, 𝜀 0 represents a variable
arameter of the contact angle due to the lateral displacement of the
heelset, 𝜎 is the parameter of the roll angle, 𝜙w denotes the roll angle
f the wheelset, and b is half of the distance between the left and right
323 
ontact points A and B of the wheelset and the rail. As for the same
ind of rolling stocks, the geometry parameters above-mentioned are
onstant values. 

In the contact forces between the wheelset and rail labeled in
ig. 2 (b), F l ( F r ) and N l ( N r ) denote the tangential and normal contact
orces corresponding to the contact point A ( B ) of the left (right) wheel ’
read, respectively. These forces will be expounded in the ensuing sec-
ion of this chapter. 

.2. The normal contact relation 

There is an extremely complex physical phenomenon when the stiff
heels with elasticity move forward on the stiff rails with elasticity at a

ertain speed. The stiff wheels slide relatively to the stiff rails and there-
ore there are some velocity differences in the contact area between the
heels and the rails. The slip includes elastic deformation and rigid slip.

t should be understood as micro-slip and indicates the local relative ve-
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t  
ocity in the given point of the contact area between two rolling bodies.
enerally, the relative sliding velocity is called the creep. The relative
elocity or relative angular velocity in wheel–rail contact point normal-
zed by the forward speed is denoted as the creepage, and the creep
orces and creep torques are produced by the relative slip of wheel and
ail on the contact area and rely heavily on the creepage. The longitudi-
al creepage 𝜉x , the lateral creepage 𝜉y and the spin creepage 𝜉sp of the
heelset are written as follows [45] 

𝜉𝑥 ( 𝑙, 𝑟 ) = 

𝑣 + 𝜓 𝑤 ̇𝑦 𝑤 + 𝑟 ( 𝑙, 𝑟 ) 
(
𝜓 𝑤 �̇�𝑤 − Ω

)
∓ 𝑏 ̇𝜓 𝑤 

𝑣 
, 

𝜉𝑦 ( 𝑙, 𝑟 ) = 

− 𝑣𝜓 𝑤 + �̇� 𝑤 + 𝑟 ( 𝑙, 𝑟 ) �̇�𝑤 

𝑣 cos 
(
𝛿( 𝑙, 𝑟 ) 

)
𝜉sp ( 𝑙, 𝑟 ) = 

∓ 

(
Ω − 𝜓 𝑤 �̇�𝑤 

)
sin 

(
𝛿( 𝑙, 𝑟 ) 

)
+ �̇� 𝑤 cos 

(
𝛿( 𝑙, 𝑟 ) 

)
𝑣 

. 

(2)

n which v is the forward running speed of the locomotive, 𝜙w is the
oll angle of the wheelset, 𝜓 w denotes yaw angle of the wheelset, and

is called the nominal angular velocity of the wheel and Ω = 𝑣 ∕ 𝑟 0 ; the
ubscript ( l, r ) denotes the left wheel and the right wheel of the wheelset,
espectively; the upper and the lower in the signs ± and ∓ respectively
orrespond to the left wheel and the right wheel, and the description of
he subscript ( l, r ) and the signs ± and ∓ are of the same meanings in
he following expressions. 

The Kalker’s linear creep theory is put forward on the basis of small
reep and small spin condition, i.e., the adhesive region dominates on
he wheel–rail contact surface. According to the Kalker linear creep the-
ry [46] , the longitudinal creep force F x , lateral creep force F y and spin
reep torque M z in the contact patch of the wheel and rail, associated
ith the linear region, can be expressed as 

 𝑥 = − 𝑓 11 𝜉𝑥 , 𝐹 𝑦 = − 𝑓 22 𝜉𝑦 − 𝑓 23 𝜉𝑠𝑝 , 𝑀 𝑧 = 𝑓 23 𝜉𝑦 − 𝑓 33 𝜉𝑠𝑝 . (3)

here the symbols f 11 , f 22 , f 23 and f 33 denote the longitudinal, lateral,
ateral/spin, spin creep coefficients, respectively. The creep coefficients
an be calculated easily, which are associated with the wheel–rail con-
act geometry parameters found in Kalker’s contact table [47] , i.e., the
esultant shear modulus of the wheel and rail materials, the lengths of
he major and minor semi-axes of the contact ellipse, and the Kalker
oefficients. 

The linear creep force components and the spin creep torque in the
ontact area are obtained from Eq. (3) when the creepages are calcu-
ated from Eq. (2) . As for large creep condition at which the sliding
egion dominates on the wheel–rail contact surface, or even completely
liding case, the linear creepage/creep force relation between the wheel
nd rail will be inevitably broken. Consequently, the creep force cannot
ncrease linearly with successive increase in the creepage, and the creep-
ge/creep force relation exhibits nonlinearity until it finally trends to-
ard the saturation limit represented by Coulomb’s friction force. There-

ore, the nonlinear creep theory put forward by Shen et al. [48] is ap-
lied in order to expand the linear results so that the nonlinear creep
orce can be calculated and the availability can also be extended to ar-
itrary value of the creepage, i.e., from zero up to total wheel slip. The
evision coefficient 𝜀 is defined as 

 = 

{ (
𝛽 − 𝛽2 ∕3 + 𝛽3 ∕27 

)
∕ 𝛽 𝛽 ≤ 3 

1 ∕ 𝛽 𝛽 > 3 
, (4)

Here 𝛽 is the normalized resultant creep force and can be calculated
y 

= 𝐹 ∕ ( 𝜇𝑁 ) = 

√ 

𝐹 2 
𝑥 
+ 𝐹 2 

𝑦 
∕ ( 𝜇𝑁 ) , (5)

here F is the resultant force of longitudinal creep force F x and lateral
reep force F y , 𝜇 denotes the friction coefficient between the wheel and
ail and N is the normal force in the contact area. 

Then the revised creep forces and creep torques given in Refs.
43,48] are 

 

′
𝑥 
= 𝜀 𝐹 𝑥 , 𝐹 

′
𝑦 
= 𝜀 𝐹 𝑦 , 𝑀 

′
𝑥 
= 𝜀 𝑀 𝑥 . (6)
324 
It needs to be emphasized that the subscript symbols l and r denoting
he left and right wheels have been omitted in Eqs. (3) –(6) for conve-
ience and simplification in the description, because these equations are
f universality for the wheel–rail systems. It is important to note that
he revised creep forces and creep torques are obtained in the contact
atch. However, the differential equations of lateral hunting motion of
ailway vehicle are generally established in the track coordinate system.
he coordinate transformation between the contact coordinate system
nd the track coordinate system is provided to switch the revised creep
orces and creep torques in the contact patch to the track coordinates
43,49] . The coordinate transformation can be achieved by the concrete
xpression 

 

 

 

 

 

𝐹 ( 𝑙, 𝑟 ) 𝑥 
𝐹 ( 𝑙, 𝑟 ) 𝑦 
𝑀 ( 𝑙, 𝑟 ) 𝑧 

⎫ ⎪ ⎬ ⎪ ⎭ 
= 

⎡ ⎢ ⎢ ⎣ 
cos ( 𝜓 𝑤 ) − cos ( 𝛿( 𝑙, 𝑟 ) ± 𝜙𝑤 ) sin ( 𝜓 𝑤 ) 0 
sin ( 𝜓 𝑤 ) cos ( 𝛿( 𝑙, 𝑟 ) ± 𝜙𝑤 ) cos ( 𝜓 𝑤 ) 0 

0 0 cos ( 𝛿( 𝑙, 𝑟 ) ± 𝜙𝑤 ) 

⎤ ⎥ ⎥ ⎦ 
⎧ ⎪ ⎨ ⎪ ⎩ 
𝐹 ′( 𝑙, 𝑟 ) 𝑥 
𝐹 ′( 𝑙,𝑟 ) 𝑦 
𝑀 

′
( 𝑙, 𝑟 ) 𝑧 

⎫ ⎪ ⎬ ⎪ ⎭ . 
(7) 

The force N ( l , r ) in the contact patch represents the normal contact
orce for the left (or right) wheel and the rail. On the straight track, the
ertical components N ( l , r ) z of the normal contact forces are supposed to
e the half of the axle load. Consequently, the lateral components can
e computed by 

 ( 𝑙, 𝑟 ) 𝑦 = ∓ 𝑁 ( 𝑙, 𝑟 ) sin ( 𝛿( 𝑙, 𝑟 ) ± 𝜙𝑤 ) , 𝑁 ( 𝑙, 𝑟 ) 𝑧 = 𝑁 ( 𝑙, 𝑟 ) cos ( 𝛿( 𝑙, 𝑟 ) ± 𝜙𝑤 ) , (8)

here N ( l , r ) z = 0.5 W, W is the axle load. 
There exists a lateral clearance 𝜂 between the wheel flange and the

ail, which is called the flange clearance. The lateral deviation y w of the
heelset is restricted by the flange clearance during the hunting motion.
s the lateral deviation of the wheelset gradually increases and exceeds

he flange clearance, a lateral contact between the wheel flange and
he rail inevitably occurs, which results in non-smooth changes in the
ynamical properties. Consequently, the restoring force F t ( y w ) is created
long with the no-smooth contact between the wheel flange and the rail,
hich is called the flange force and can be approximately modeled by
 piecewise linear function [3] 

 𝑡 

(
𝑦 𝑤 

)
= 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝑘 𝑟 
(
𝑦 𝑤 − 𝜂

)
𝑦 𝑤 > 𝜂

0 ||𝑦 𝑤 || ≤ 𝜂

𝑘 𝑟 
(
𝑦 𝑤 + 𝜂

)
𝑦 𝑤 < − 𝜂

(9)

here y w denotes the lateral displacement of the wheelset, K r represents
he flange contact stiffness and the original value presented by Cooper-
ider [1] , K r = 146.0 MN/m, is directly adopted in this paper. 

The flange contact considered using the piecewise-linear function
ith a dead zone is a simplifying hypothesis. The wheel–rail contact
eometry parameters expressed by Eq. (1) are linear functions of the
ateral displacement of the wheelset, while other factors in wheel–rail
ontact, including 𝜆, 𝜀 0 and 𝜎, are considered as constant and not de-
endent on the lateral position of the wheelset. In this paper, lateral
ynamics of the locomotive bogie is studied with emphasis on pattern
iversity and transition characteristics of its hunting behaviors from the
ew wheelset to the worn wheelset, i.e., the influence of wheel–rail wear
n hunting behaviors in the presence of the flange forces. In this way,
he equivalent conicity of the wheel tread is one of the key parameters,
o we adopt the approximate model of flange force (9) and the linear
heel–rail contact geometry parameters (1) for facilitating multi-object
nd multi-parameter collaborative simulation. As for the influence of
uspension parameters on hunting behaviors, the nonlinear wheel–rail
ontact geometry parameters, depending on lateral displacement of the
heelset, may also be considered for the more accurate descriptions of

he wheel–rail contact properties, which can be actualized by adopting
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he wheel–rail contact table from RSGEO [50] for the determination of
he kinematic contact values. 

.3. Dynamical model 

A three-axle railway locomotive bogie is considered and its dynam-
cs is studied with emphasis on bifurcation behaviors of the hunting
otion. Dynamical model of hunting behavior of the locomotive bogie

ystem is schematically shown in Fig. 1 . The suspension elements in the
odel are assumed to be of the linear elastic characteristics. As shown

n Fig. 1 , the bogie frame is supported on three wheelsets by the primary
uspensions consisting of the linear springs with stiffness K px , K py and
 pz and linear viscous dashpots with damping constant C px , C py and C pz .
imilarly, the secondary suspension elements between the bogie frame
nd the car body are composed of the linear springs with stiffness K sx ,
 sy and K sz and linear viscous dashpots with damping constant C sx , C sy 

nd C sz . The car body is supposed to move along the track centerline
ith the forward speed v . As for the analysis of lateral hunting stabil-

ty and bifurcation of the railway locomotive bogie, all the parts except
he primary and secondary suspension elements can be assumed to be
igid bodies. As we known from Eq. (9) , when the lateral deviation of
he wheelset gradually increases and exceeds the flange clearance, a
ontact between the wheel flange and the rail occurs, which results in
on-smooth changes in the dynamical properties of the bogie system.
onsequently, dynamical model illustrated in Fig. 1 is a nine-degree-
f-freedom nonlinear system with non-smooth characteristics resulted
rom the impacts between the wheelsets and rail, in which three DOFs
re used to describe the movements of the bogie frame, i.e., the lateral
isplacement y t , roll angle 𝜙t and yaw angle 𝜓 t , the remainders are used
o describe the movements of three wheelsets, i.e., the lateral displace-
ents y wi and yaw angle 𝜓 wi ( i = 1, 2, 3). In the symbols y wi and 𝜓 wi ,

he subscript i = 1, 2, 3 correspond to the leading, middle and trailing
heelsets of the locomotive bogie, respectively. 

Considering the left-right symmetry and before-after symmetry of
tructure of the bogie system, the lateral hunting motion of the three-
xle locomotive bogie system can be governed by the following equa-
ions 

𝑚 𝑤 ̈𝑦 𝑤𝑖 = − 𝐹 𝑦𝑓𝑖 + 𝐹 𝑙𝑦𝑖 + 𝐹 𝑟𝑦𝑖 + 𝑁 𝑙𝑦𝑖 + 𝑁 𝑟𝑦𝑖 − 𝐹 𝑡 ( 𝑦 𝑤𝑖 ) 

 𝑤𝑧 ̈𝜓 𝑤𝑖 = − 𝑏 1 𝐹 𝑥𝑓𝑖 + 𝑏 ( 𝐹 𝑙𝑥𝑖 + 𝑁 𝑙𝑥𝑖 − 𝐹 𝑟𝑥𝑖 − 𝑁 𝑟𝑥𝑖 ) 

+ 𝑏 𝜓 𝑤𝑖 ( 𝐹 𝑙𝑦𝑖 + 𝑁 𝑙𝑦𝑖 − 𝐹 𝑟𝑦𝑖 − 𝑁 𝑟𝑦𝑖 ) + 𝑀 𝑙𝑧𝑖 + 𝑀 𝑟𝑧𝑖 − 𝐼 𝑤𝑦 �̇�𝑤𝑖 Ω

𝑚 𝑡 ̈𝑦 𝑡 = − 𝐹 𝑦𝑡 + 𝐹 𝑦𝑓1 + 𝐹 𝑦𝑓2 + 𝐹 𝑦𝑓3 

𝐼 𝑡𝑧 ̈𝜓 𝑡 = − 𝑏 2 𝐹 𝑥𝑡 + 𝑑 𝑒 𝐹 𝑦𝑡 + 𝑏 1 ( 𝐹 𝑥𝑓1 + 𝐹 𝑥𝑓2 + 𝐹 𝑥𝑓3 ) − ( 𝑙 1 + 𝑑 𝑒 ) 𝐹 𝑦𝑓3 
− 𝑑 𝑒 𝐹 𝑦𝑓2 + ( 𝑙 1 − 𝑑 𝑒 ) 𝐹 𝑦𝑓1 

𝐼 𝑡𝑥 �̈�𝑡 = − 𝑏 1 ( 𝐹 𝑧𝑓1 + 𝐹 𝑧𝑓2 + 𝐹 𝑧𝑓3 ) − ℎ 1 ( 𝐹 𝑦𝑓1 + 𝐹 𝑦𝑓2 + 𝐹 𝑦𝑓3 ) 

− 𝑏 2 𝐹 𝑧𝑡 − ℎ 2 𝐹 𝑦𝑡 . (10) 

here M t and m w are the masses of the frame and wheelset of the bogie,
espectively; I tx and I tz are the mass moments of inertia of the bogie
rame about X -axis and Z -axis, respectively; I wy and I wz are the mass
oments of inertia of the wheelset about Y -axis and Z -axis; d e is the

ongitudinal distance from the mass center of the frame to the center
ine of the middle wheelset; h 1 is the distance from the mass center of
he frame to the plane through the center lines of the leading, middle
nd trailing wheelsets, and h 2 is the distance from the mass center of
he frame to the secondary lateral suspension. 

Based on the relative lateral displacements, roll angles and yaw an-
les between the leading, middle and trailing wheelsets and the bogie
rame, the longitudinal, lateral and vertical forces ( F xfi, F yfi and F zfi) at
he primary suspension of the wheelsets are, respectively, given by 

 𝑥𝑓𝑖 = 2 𝐾 𝑝𝑥 𝑏 1 ( 𝜓 𝑤𝑖 − 𝜓 𝑡 ) + 2 𝐶 𝑝𝑥 𝑏 1 ( ̇𝜓 𝑤𝑖 − �̇� 𝑡 ) 

𝐹 𝑦𝑓𝑖 = 2 𝐾 𝑝𝑦 ( 𝑦 𝑤𝑖 − 𝑦 𝑡 ∓ 𝑙 𝑏 𝜓 𝑡 + ℎ 1 𝜙𝑡 ) + 2 𝐶 𝑝𝑦 ( ̇𝑦 𝑤𝑖 − �̇� 𝑡 ∓ 𝑙 𝑏 �̇� 𝑡 + ℎ 1 �̇�𝑡 ) 

𝐹 𝑧𝑓𝑖 = 2 𝐾 𝑝𝑧 𝑏 1 ( 𝜙𝑤𝑖 − 𝜙𝑡 ) + 2 𝐶 𝑝𝑧 𝑏 1 ( �̇�𝑤𝑖 − �̇�𝑡 ) , (11) 
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here the subscript i = 1 , 2 and 3 in the physical quantities in the pa-
er represents the leading, middle and trailing wheelsets of the bogie,
espectively. The sign ∓ is taken upper ‘‒’ if i = 1, lower ‘+ ’ if i = 2 and
. l b = l 1 − d e , l b = d e and l b = l 1 + d e for i = 1, 2 and 3, respectively. Ac-
ording to the relative displacement, roll angle and yaw angle between
he bogie frame and the car body, we can derive the longitudinal, lateral
nd vertical forces ( F xt , F yt and F zt ) at the secondary suspension of the
ogie, which are expressed as follows 

 𝑥𝑡 = 2 𝐾 𝑠𝑥 𝑏 2 𝜓 𝑡 + 2 𝐶 𝑠𝑥 𝑏 2 �̇� 𝑡 , 𝐹 𝑦𝑡 = 2 𝐾 𝑠𝑦 ( 𝑦 𝑡 + ℎ 2 𝜙𝑡 ) + 2 𝐶 𝑠𝑦 ( ̇𝑦 𝑡 + ℎ 2 �̇�𝑡 ) , 

𝐹 𝑧𝑡 = 2 𝐾 𝑠𝑧 𝑏 2 𝜙𝑡 + 2 𝐶 𝑠𝑧 𝑏 2 �̇�𝑡 . (12) 

According to Eq. (10) , the state vector of the three-axle locomotive
ogie system can be written as 

 

T = { ̇𝑦 𝑤 1 , �̇� 𝑤 2 , �̇� 𝑤 3 , �̇� 𝑤 1 , �̇� 𝑤 2 , �̇� 𝑤 3 , �̇� 𝑡 , �̇� 𝑡 , �̇�𝑡 , 𝑦 𝑤 1 , 𝑦 𝑤 2 , 𝑦 𝑤 3 , 

𝜓 𝑤 1 , 𝜓 𝑤 2 , 𝜓 𝑤 3 , 𝑦 𝑡 , 𝜓 𝑡 , 𝜙𝑡 } T . (13) 

he state space of the bogie system can be defined by R 

18 = { Y | Y ∈ R 

18 }.

.4. Poincaré sections associated with the impacts between the leading, 

iddle and trailing wheelsets and the rail 

The steady-state solutions of Eq. (10) are relevant to the time t , the
orward speed v and the initial conditions Y 0 . For some given speeds,
here exist stationary or periodic solutions. Correspondingly, the loco-
otive bogie system exhibits the stationary and periodic hunting mo-

ions. The time response of the stationary motion, decaying to the ver-
ical plane through the track centerline, corresponds to small forward
peed v . When the forward speed v exceeds a critical speed, the station-
ry motion loses its stability and the periodic motions emerge. With pro-
ressive increase in v , the lateral displacements of the wheelsets gradu-
lly increase and finally exceed the flange clearance, and the lateral con-
acts between the wheel flange and the rail occur and lead to the impacts
f the flange on the rail. According to Eq. (9) , such impacts are referred
o as soft impacts in the piecewise smooth dynamical systems [ 51–54 ].
he word ‘soft ’ is used for describing the impact character between the
heel flange and the rail. Unlike the rigid impact described by the New-

on elementary theory with coefficient of restitution, the duration of the
oft impact is impossible to neglect. At some speed intervals, aperiodic
unting motion whose time response curve is irregular and seems like
haotic may also occur in the system. Therefore, we study dynamics of
he locomotive bogie system with emphasis on the impact characteristics
f the hunting motions and the incidence relation between the hunting
ypes and dynamical parameters. Periodic or subharmonic-impact char-
cteristics of the leading, middle and trailing wheelsets of the bogie sys-
em can be visually summarized by introducing the symbol n –p –q [55] ,
here p and q refer to the number of impacts of some wheelset occur-

ing on the left and right sides of the rail, respectively, and n represents
he lateral cycle number associated with the frame center crossing the
ertical plane through the track centerline in the positive direction of
he y wi coordinate. 

The impact characteristic of the hunting motion of the bogie sys-
em can be studied by the Poincaré map. However, the definition of
 Poincaré map needs to acknowledge the geometric structure of phase
pace of the dynamical system. So there actually is not a general method
or the definition of Poincaré map. With regard to the illustration of dif-
erent problems, the Poincaré maps of the bogie system, associated with
he impacts of the leading, middle and trailing wheelsets on the rail,
an be constructed in different ways by choosing correlative Poincaré
ections 

𝑤𝑖 = 

{ 

( 𝒀 , v ) ∈ 𝑹 

18 × 𝑽 
||| 𝑦 𝑤𝑖 = 𝜂, �̇� 𝑤𝑖 > 0; 𝑦 𝑤𝑖 = − 𝜂, �̇� 𝑤𝑖 < 0 

} 

, 

(14) 

𝑡 = 

{
( 𝒀 , v ) ∈ 𝑹 

18 × 𝑽 , 𝑦 𝑡 = 0 , �̇� 𝑡 > 0 
}
, (15) 
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Fig. 3. Bifurcation diagrams of hunting motion of the locomotive bogie system ( 𝜆 = 0.056): (a) �̇� 𝑡 ( 𝑣 ) corresponding to 𝜎t ; (b) �̇� 𝑤 1− ( 𝑣 ) corresponding the right flange of the leading 

wheelset; (c) �̇� 𝑤 2− ( 𝑣 ) corresponding to the right flange of the middle wheelset; (d) �̇� 𝑤 3− ( 𝑣 ) corresponding to the right flange of the trailing wheelset. 
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here 𝜎wi ( i = 1, 2, 3), respectively, correspond to the leading, middle
nd trailing wheelsets, y wi = 𝜂 and �̇� 𝑤𝑖 > 0 ( y wi = − 𝜂 and �̇� 𝑤𝑖 < 0 ) aim at
he condition under which the impacts occur at the right (left) side of
he rail; 𝜎t corresponds to the bogie frame and both y t = 0 and �̇� 𝑡 > 0
orrespond to the condition under which the frame center is crossing
he vertical plane through the track centerline in the positive direction
f the y t coordinate. 

The feature extraction of the hunting motion of the bogie system can
e numerically accomplished by the maps associated with the Poincaré
ections (14) and (15) . As expected, the impact number p and q of the
unting motion of the leading (middle or trailing) wheelset can be de-
ermined by the branch number of bifurcation diagram corresponding
o 𝜎w 1 ( 𝜎w 2 or 𝜎w 3 ) and the lateral cycle number n of the locomotive
ogie system can be ascertained by the branch number of bifurcation
iagram related to 𝜎t . 

. Lateral hunting motions and bifurcation characteristics of the 

ailway bogie system 

The following research target and contents focus on lateral dynam-
cs of the three-axle railway locomotive bogie with emphasis on fur-
her revealing what can happen for the railway vehicles running at
peeds which are higher than the corresponding critical speeds, how
trong the effect dynamical parameters on the hunting motions with the
ange forces is, and which parameters have a significant influence on
uch hunting motions. Lateral hunting motions and bifurcation charac-
eristics of the locomotive bogie system can be numerically analyzed
y means of Eq. (10) and Poincaré sections specially defined by the
ormulas (14) and (15) . Let us consider the basic parameters of spa-
ial bogie model of a locomotive bogie: m t = 24,373 kg, m w = 3239 kg,
 tx = 7475 kg m 

2 , I tz = 52561 kg m 

2 , I wy = 4051 kg m 

2 , I wz = 2450 kg m 

2 ,
 px = 4.113 ×10 7 N/m, K py = 5.2 ×10 6 N/m, K pz = 2.1 ×10 6 N/m,
 px = 0 N s/m, C py = 0 N s/m, C pz = 5.0 ×10 4 N s/m,
 sx = 1.2336 ×10 5 N/m, K sy = 5.36 ×10 5 N/m, K sz = 2.326 ×10 6 N/m,
 sx = 0 kN s/m, C sy = 9.0 ×10 4 N s/m, C sz = 9.0 ×10 4 N s/m,
 1 = 1.025 m, b 2 = 1.025 m, l 1 = 2.15 m, h 1 = 0.032 m, h 2 = 0.478 m,
 0 = 0.625 m, 𝜂 = 0.0091 m, b = 0.7465 m, 𝜇 = 0.15. Taking this set of pa-
ameters as the criterion parameters, we can extend the parameter space
f the locomotive bogie so as to further uncover its dynamical behav-
ors from the multi-parameter views and the system levels. Therefore,
e first need to understand and grasp dynamics of the locomotive bogie

ystem with emphasis on hunting motion and bifurcations under the cri-
erion parameter condition. Basic patterns, characteristics and diversity
f hunting behaviors of the leading, middle and trailing wheelsets and
he frame can be exactly extracted by quantitative datum from Poincaré
ections 𝜎wi (i = 1, 2, 3) and 𝜎t chosen for the special purpose, respec-
ively. Bifurcation diagrams of hunting motion of the locomotive bogie
ystem, associated with the new wheelsets with the wheel tread’s equiv-
lent conicity 𝜆 = 0.056, are shown for the criterion parameters in Fig. 3 .
ocal details of Fig. 3 are provided in Fig. 4 , in which the symbols ‘G
if ’, ‘PD Bif ’ and ‘S-N Bif ’ represent grazing, period doubling and saddle-
326 
ode bifurcations, respectively. Fig. 3 (a) shows the bifurcation diagram
̇  𝑡 ( 𝑣 ) which represents the velocity of the frame center crossing the ver-
ical plane through the track centerline in the positive direction. Except
haotic hunting motion, the cycle numbers of hunting motion of the lo-
omotive bogie, i.e., the hunting period number, can be determined by
he branch number of the bifurcation diagram. The impact velocities
f the leading, middle and trailing wheelsets on the rail are illustrated
y the bifurcation diagrams versus to the forward speed v , as seen in
ig. 3 (b)–(d). Except chaotic hunting motion, the impact numbers of the
eading wheelset on the right side of rail, in a hunting period, can be de-
ermined by the branch number of the bifurcation diagram. From the bi-
urcation diagram shown in Fig. 3 (b), we can observe that 1-1-1 hunting
otion of the leading wheelset is derived from the non-smooth bifurca-

ion of the hunting motion without impact (1-0-0 motion) induced by
he symmetric grazing contracts between the left and right wheel flanges
nd the rail, i.e., grazing bifurcation (or grazing singularity of impact
oincaré map) [56] . The pioneer work in the grazing bifurcation was
one by Nordmark [56] , who studied analytically the occurrence and
ransition mechanism of grazing singularities in a piecewise linear sys-
em. Thereafter, this work has been further expanded by discontinuity-
eometry approaches of maps to a series of piecewise smooth oscillators,
here some geometric characteristics of grazing bifurcations of impact
aps have been revealed [ 57–60 ]. Similarly, symmetric 1-2-2 motion is
erived from the grazing bifurcation of symmetric 1-1-1 motion. At the
unning speed corresponding to grazing bifurcation, the flange of the
eading wheelset, associated with 1-1-1 symmetric hunting motion, be-
ins to touch the rail. It can be regarded as the 1-2-2 hunting motion, but
he impact velocities of the additional left and right two impacts degen-
rate to touching. This means that a new hunting motion is characterized
y 1-2-2, in which the velocities of pair of impacts occurring on the left
nd right sides of the rail increase gradually from zero with increasing
he forward speed v . Subsequently, the transition from symmetric 1-2-2
o symmetric 1-5-5 hunting motion, caused by grazing bifurcations of
ymmetric 1-2-2, 1-3-3 and 1-4-4 hunting motions in sequence, occurs
ith increase in forward speed v , as seen in Fig. 3 (b). Pitchfork bifurca-

ion of symmetric 1-5-5 hunting motion occurs along with the increase
f forward speed v . Consequently, asymmetric 1-5-5 hunting motion is
reated, two antisymmetric forms of which can exist in the dependence
n the initial conditions of the locomotive bogie system. The complex
ransition from asymmetric 1-5-5 hunting motion to asymmetric 1-4-4
unting motion occurs through a series of non-smooth bifurcations in-
uced by asymmetric grazing contacts between the left and right wheel
anges and the rail, and for local details; see Fig. 4 (a). Thereafter, 2-8-8
unting motion stabilizes via period doubling bifurcation of asymmetric
-4-4 motion. However, the branches of impact velocity of 2-8-8 hunting
otion versus the forward speed v are nonsmooth or even discontinuous
ue to four grazing bifurcations supervening so that 2-7-8, 2-7-9 and 2-
-9 motion appear in sequence and 2-8-8 hunting motion finally arise
gain. The grazing bifurcation of 2-8-9 motion brings about that the im-
act velocity of one of nine impacts occurring on the right side of the
ail degenerates to touching. Consequently, one impact of 2-8-9 motion
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Fig. 4. Bifurcation diagrams of hunting motion of the locomotive bogie system: (a) detail of Fig. 3 (b), v ∈ [115, 123]m/s; (b) detail of Fig. 3 (c); (c) detail of Fig. 3 (d); (d) grazing 

bifurcation diagrams �̇� 𝑤𝑖 − ( 𝑣 ) of 1-0-0 motions of three wheelsets ( i = 1, 2, 3), v ∈ [30, 80]m/s. 

Fig. 5. Phase plane portraits and time series of the leading wheelset: (a) and (a1) 1-1-1 hunting motion, v = 50 m/s; (b) and (b1) 1-2-2 hunting motion, v = 80 m/s; (c) and (c1) 1-3-3 

hunting motion, v = 104.5 m/s. 
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isappears and 2-8-8 hunting motion reappears. With in crease in v , the
eading wheelset exhibits the standard period doubling route to chaos,
tarting from asymmetric 2-8-8 hunting motion. According to Figs. 3 (b)
nd 4 (a), the transition from symmetric 1-1-1 to chaotic hunting mo-
ion is briefly summarized by the following sequence: v ↑ : 1-1-1 S →G
if →1-2-2 S →G Bif →1-3-3 S →G Bif →1-4-4 S →G Bif →1-5-5 S →PF Bif →
-5-5 AS →G Bif → 1-4-5 → G Bif →1-3-5 →G Bif →1-2-5 →G Bif →1-2-
 →G Bif →1-3-4 →G Bif → 1-4-4 AS →PD Bif →2-8-8 →G Bif →2-7-8 →
 Bif →2-7-9 → G Bif →2-8-9 →G Bif →2-8-8 →standard period doubling

oute to chaos. In the sequence, the symbol v ↑ denotes the increase of
orward speed v ; the subscript “S ” and “AS ” denote the symmetry and
symmetry, and G Bif, PF Bif and PD Bif represent grazing, pitchfork
nd period doubling bifurcations, respectively. 

Phase plane portraits and time series of the leading wheelset are
hown for v = 50, 80 and 106.5 m/s in Fig. 5 . Phase plane portraits of
ore types of hunting motions, e.g., symmetric 1-4-4, asymmetric 1-5-5,
-4-5, 1-3-5, 1-2-5, 1-2-4, 1-3-4, asymmetric 2-8-8 motions and etc., are
hown for v ∈ [97, 164.55]m/s in Fig. 6 . As shown in Figs. 3 (b) and 4 (a),
he 1-2-2 hunting motion dominates in a wide range of running speed
nd the impact velocity of the hunting motion of the leading wheelset
radually become large along with increase of the forward speed v , start-
ng from v = 60.82 m/s to its local upper bound v = 80.96 m/s. With
ncrease in v , the impact velocity of 1-2-2 hunting motion reduces grad-
327 
ally until its local lower bound v = 88.83 m/s. Subsequently, the im-
act velocity of the motion increases gradually until the occurrence of
razing bifurcation of 1-2-2 hunting motion. It is found that the graz-
ng bifurcations of 1-2-2 motions of the middle and trailing wheelsets
ave successively changed the variation tendency of impact velocity of
-2-2 motion of the leading wheelset. It is important to note that the
unting motion of the leading wheelset successively goes through four
razing bifurcations which finally lead to the transition from hunting
otion without impact to 1-5-5 hunting motion. The aforementioned
unting motions from 1-1-1 to 1-5-5 are of the symmetry in motion tra-
ectories. Correspondingly, the grazing contacts between the left and
ight wheel flanges and the rail exhibit the symmetry. Pitchfork bifur-
ation of symmetric 1-5-5 hunting motion changes such symmetry due
o the stabilization of asymmetric 1-5-5 motion. Thereafter, the grazing
ontacts between the left and right wheel flanges and the rail become
lso asymmetric. With increase in the forward speed v , a series of asym-
etric grazing bifurcations occur and bring about 1-4-5, 1-3-5, 1-2-5,
-2-4, 1-3-4, asymmetric 1-4-4, starting from asymmetric 1-5-5 motion,
s seen in Figs. 4 (a) and 6 . Period doubling bifurcation of the asymmet-
ic 1-4-4 motion occurs and asymmetric 2-8-8 motion stabilizes, but no
eriod doubling sequence of the motion appears due to a series of graz-
ng bifurcations until 2-8-8 motion is recreated, as mentioned above.
eriod doubling bifurcation of asymmetric 1-4-4 motion only changes
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Fig. 6. Phase plane portraits of the leading wheelset: (a) 1-4-4 hunting motion, v = 97 m/s; (b) 1-5-5 hunting motion, v = 114 m/s; (c) 1-4-5 hunting motion, v = 116.5 m/s; (d) 1-3-5 

hunting motion, v = 117.5 m/s; (e) 1-2-5 hunting motion, v = 118.5 m/s; (f) 1-2-4 hunting motion, v = 119.44 m/s; (g) 1-3-4 hunting motion, v = 120.5 m/s; (h) 2-8-8 hunting motion, 

v = 162.5 m/s; (i) 4-16-16 hunting motion, v = 164.55 m/s. 
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he period characteristic of hunting motion of the locomotive bogie sys-
em. However, grazing bifurcations occurring before the period dou-
ling bifurcation influence the impact effect of three wheelsets on the
ail. It is emphasized that the hunting motions without impact include
he stationary hunting motion (SHM) and 1-0-0 motion. Such hunting
otions without impact are marked with the symbol “SHM and 1-0-0 ″

n the parameter plane. The impacts of the middle and trailing wheelsets
n the rail fall behind that of the leading wheelset, 1-2-2 hunting mo-
ion dominates for the middle wheelset, and 1-2-2 and 1-3-3 hunting
otions dominate for the trailing wheelset due to fewer grazing bifur-

ations than those which the leading wheelset undergoes, as observed
irectly by comparing Fig. 3 (b)–(d) and Fig. 4 (d). The impact lag of the
unting motion of the middle wheelset is the most obvious of the three
heelsets. The phenomena can be observed by the phase plane portraits

hown in Fig. 7 . For example, the leading wheelset has exhibited 1-1-1
ymmetric hunting motion at v = 50 m/s. However, the middle and trail-
ng wheelsets still exhibit 1-0-0 hunting motions at the forward speed,
or concrete details; see Fig. 7 (a)–(c). Thereafter, the leading and trailing
heelsets are exhibiting 1-1-1 symmetric hunting motion at v = 52 m/s,
nd the middle wheelset is still in 1-0-0 motion, as seen in Fig. 7 (d)–
f). Moreover, the top branch of impact velocity bifurcation diagram of
he hunting motion of the trailing wheelset, associated with n = 1, is
lightly lower than those of the leading and middle wheelset, as seen in
328 
ig. 3 (b)–(d). According to the details of bifurcations of hunting-impact
otions of three wheelsets, we can find that the hunting-impact char-

cteristics of the leading wheelset are more diverse and more complex
han those of the middle and trailing wheelsets and non-smooth bifur-
ations induced by the grazing contacts between the wheel flange and
he rail have the most important features in diversity and complexity of
unting motions. Hereinafter, Special attention will be paid to illustrat-
ng the hunting behaviors and bifurcation characteristics of the leading
heelset of the locomotive bogie. Figs. 8 and 9 are bifurcation diagrams
f hunting motion of the locomotive bogie system associated with the
orn wheelsets with the wheel tread’s equivalent conicity 𝜆 = 0.15. 

The schematic diagram shown in Fig. 1 is a lateral dynamic model of
he three-axle bogie of a speed raising locomotive [43] , which usually
uns on straight track and curved tracks with large radius [43] . There-
ore, the lateral stiffness of the leading, middle and trailing wheelsets is
onsidered the same in Refs. [43,44] . If there are some curved tracks
ith small radius in the train running line, it should be considered

o reduce the lateral stiffness of the middle wheelset of the three-axle
ocomotive bogie with respect to the one of the leading and trailing
heelsets for reducing the lateral forces when negotiating sharp curves.
he lateral stiffness of the leading and trailing wheelsets is kept constant
 K py 1 = K py 2 = K py ) and the lateral stiffness K py 2 of the middle wheelset
s reduced to 0.75 K py , 0.5 K py and 0.25 K py . Based on the criterion param-
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Fig. 7. Phase plane portraits of three wheelsets of the locomotive bogie: (a) 1-1-1 motion, leading wheelset, v = 50 m/s; (b) 1-0-0 motion, middle wheelset, v = 50 m/s; (c) 1-0-0 motion, 

trailing wheelset, v = 50 m/s; (d) 1-1-1 motion, leading wheelset, v = 52 m/s; (e) 1-0-0 motion, middle wheelset, v = 52 m/s; (f) 1-1-1 motion, trailing wheelset, v = 52 m/s. 

Fig. 8. Bifurcation diagrams of hunting motion of the locomotive bogie system ( 𝜆 = 0.15): (a) �̇� 𝑡 ( 𝑣 ) corresponding to 𝜎t ; (b) �̇� 𝑤 1− ( 𝑣 ) corresponding to 𝜎w 1 . 

Fig. 9. Bifurcation diagrams of hunting motion of the leading wheelset of locomotive bogie: (a) detail of Fig.8(b), v ∈ [95, 115]m/s; (b) grazing bifurcation diagrams �̇� 𝑤𝑖 ( 𝑣 ) of three 

wheelsets ( i = 1, 2, 3), v ∈ [30, 80]m/s. 

329 
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Fig. 10. Bifurcation diagrams of hunting motion of the locomotive bogie system with K py 1 = K py 3 = K py , K py 2 = 0.5 K py , 𝜆 = 0.056: (a) �̇� 𝑡 ( 𝑣 ) corresponding to 𝜎t ; (b) �̇� 𝑤 1− ( 𝑣 ) corresponding 

the right flange of the leading wheelset; (c) �̇� 𝑤 2− ( 𝑣 ) corresponding to the right flange of the middle wheelset; (d) �̇� 𝑤 3− ( 𝑣 ) corresponding to the right flange of the trailing wheelset. 

Fig. 11. Bifurcation diagrams of hunting motion of the locomotive bogie system with K py 1 = K py 3 = K py and 𝜆 = 0.056: (a) �̇� 𝑤 1− ( 𝑣 ) corresponding the right flange of the leading wheelset, 

K py 2 = 0.25 K py (b) �̇� 𝑤 2− ( 𝑣 ) corresponding to the right flange of the middle wheelset, K py 2 = 0.25 K py ; (c) �̇� 𝑤 1− ( 𝑣 ) corresponding the right flange of the leading wheelset, K py 2 = 0.75 K py (d) 

�̇� 𝑤 2− ( 𝑣 ) corresponding to the right flange of the middle wheelset, K py 2 = 0.75 K py . 
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ters and the lateral stiffness reduction of the middle wheelset, hunting
ehaviors and bifurcations of the locomotive bogie system are numer-
cally analyzed. The effects of lateral stiffness reduction of the middle
heelset on hunting behaviors of the locomotive bogie on straight track
re presented for K py 2 = 0.5 K py, 0.25 K py and 0.75 K py in Figs. 10, 11 (a)
nd (b), 11 (c) and (d), respectively. Compared with Fig. 3 , Fig. 10 and
ig. 11 , we can find that the appropriate reduction of lateral stiffness of
he middle wheelset has little effect on pattern types, conventional bi-
urcations and lateral impact velocity change of hunting behavior of the
ocomotive bogie. The reduction does not even affect the critical speeds
elated to grazing bifurcation of 1-0-0 motions of the leading and trailing
heelsets, but it can induce more grazing bifurcations of 1-2-2 motion
nd improve instability speed of period 1 hunting behavior of the bo-
ie system. The reduction slightly decreases the critical speed related to
razing bifurcation of 1-0-0 motion of the middle wheelset and leads to
 small increase in lateral impact velocity. As the reduction is large, for
xample K py 2 = 0.25 K py , 1-3-3 motion induced by grazing bifurcation
f 1-2-2 motion of the middle wheelset appears in the forward speed
ange v ∈ [58, 101.2] m/s; see Fig. 11 (b). 

. The incidence relation between lateral hunting patterns and 

ystem parameters 

This section summarizes the correlative relationship between dy-
amics and key parameters, by which much information on hunting
ehaviors and bifurcation characteristics of the locomotive bogie sys-
em can be obtained. Hunting behaviors of the locomotive bogie sys-
em are governed by Eqs. (9) and (10) with more than 30 parameters,
he non-smooth bifurcations of which result from the zero-velocity (or
ow-velocity) collision between the wheel flanges and the rail. Some
ey parameters influencing hunting patterns of the bogie system are
onsidered with emphasis on K px , K py , 𝜆, 𝜇 and v . The main concerns
n the incidence relation are the numerical determinations of the oc-
urrence regions, grazing and stability boundaries of various hunting
otions of the three-axle railway locomotive bogie in the relevant pa-

ameter planes. The grazing instability of hunting motion, resulting in
ualitative change of lateral dynamical properties of the bogie system,
lays an important role in the occurrence of the hunting motions in the
330 
resence of the flange forces. Conventional bifurcation boundaries in
he parameter planes, e.g., Period-doubling, saddle-node and Neimark–
acker bifurcations, etc., are collectively referred to as stability bound-
ries, and non-smooth bifurcation boundary caused grazing contacts is
escribed as grazing bifurcation boundary for the convenience of the
ollowing analysis. To simplify the presentation, periodic hunting mo-
ion of the locomotive bogie system, associated with the cycle number
 , is defined as period n hunting motion. Correspondingly, the forward
peed on the stability boundary of period n hunting motion is called
nstability speed of the periodic hunting motion. Real grazing bifurca-
ions generally influence the numbers of impacts of three wheelsets on
he rail, but it does not affect the current cycle specificity of the hunting
otion of the bogie system. However, the stability bifurcation, whether
eriod-doubling, saddle-node or Neimark–Sacker bifurcation, will not
nly change the original cycle characteristic of hunting motion of the
ogie system, but also change the numbers of impacts of the wheelsets
nd the rail. Importantly, it is of practical value for dynamic design of
he locomotive bogie to acquire the diversity and evolution of its hunt-
ng behaviors on the basis of the sampling ranges of these dynamical
arameters extended from the criterion parameters. Taking the afore-
entioned basic parameters as the criterion parameters, we discuss the

nfluence of key dynamical parameters, such as K px , K py , 𝜆, 𝜇, and v ,
n hunting diversity and evolution properties of the bogie system. The
ccurrence regions of various hunting motions of the leading, middle
nd trailing wheelsets, associated with the primary suspension lateral
tiffness and the forward speed, can be numerically obtained by finely
canning the ( v, K px ) parameter plane. The effects of changes in the
ateral stiffness K py are analyzed by comparing with the results associ-
ted with the criterion parameters. At the same parameter conditions,
he basic characteristics of periodic hunting motions of three wheelsets
re that the cycle number n is the same and the impact numbers may
e different. The regions of various hunting motions ascertained by nu-
erical analyses are marked with the symbol n–p–q and corresponding

olors in Fig. 12 . The periodic hunting motions unascertained, quasi-
eriodic and chaotic hunting motions are uniformly referred to the gray
egion in the parameter plane. The periodic hunting motions unascer-
ained mean such motions whose cycle number n or impact number ( p or
 ) in the hunting period is too big to be ascertained effectively. Based on
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Fig. 12. Existence regions of various hunting motions of the leading, middle and trailing wheelsets in the ( v, K py )–parameter plane: (a) leading wheelset with 𝜆 = 0.056; (b) middle 

wheelset with 𝜆 = 0.056; (c) trailing wheelset with 𝜆 = 0.056; (d) leading wheelset with 𝜆 = 0.15; (e) middle wheelset with 𝜆 = 0.15; (f) trailing wheelset with 𝜆 = 0.15. 
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he simulation results of the locomotive bogie system with the criterion
arameters, the incidence relation between impact velocity and param-
ters ( v, K px ) is analyzed. Diversity and qualitative properties of hunt-
ng motions, associated with the leading, middle and trailing wheelsets
ith the wheel tread’s equivalent conicity 𝜆 = 0.056, can be graphically
bserved by Fig. 12 (a)–(c) in sequence. In general, the wheel tread’s
331 
quivalent conicity 𝜆 = 0.056 corresponds to the new wheelset without
ny wear, and 𝜆 = 0.15 is related to the wheelset with relative stable
rofile of wheel tread because of wears and tears. Some phenomena
ound under the criterion parameters are further observed. As seen in
ig. 12 (a)–(c), the hunting-impact motions of the three wheelsets of the
ocomotive bogie system, related to n = 1, dominate in the parameter
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Fig. 13. Bifurcation diagrams of impact velocity of the leading wheelset, ̇𝑦 𝑤 1− ( 𝑣 ) , 𝜆 = 0.056: (a) K py = 4.0 × 10 6 N/m; (b) K py = 5.2 × 10 6 N/m; (c) K py = 7.0 × 10 6 N/m; (d) 

K py = 8.5 × 10 6 N/m; (e) K py = 9.4 × 10 6 N/m; (f) K py = 1.0 × 10 7 N/m. 
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lane and go through grazing, period doubling and saddle-node bifur-
ations; the impacts of the middle and trailing wheelsets on the rail ob-
iously fall behind that of the leading wheelset; the occurrence region
f 1-1-1 hunting motion of the middle wheelset is much smaller than
hat of the leading wheelset, and the occurrence region of 1-0-0 motion
f the middle wheelset is much larger than that of the trailing wheelset.
iversity and complexity of hunting-impact characteristics of the loco-
otive bogie system are mainly distributed in parameter interval K py 

[4 × 10 6 , 8 × 10 6 ]N/m and are more clearly reflected in the leading
heelset. The hunting-impact patterns of the middle wheelset are rela-

ively small and simple in comparison with those which the leading and
railing wheelsets exhibit in the same parameter interval. As shown in
ig. 12 (b), 1-2-2 hunting motion dominates for the middle wheelset in
he ( v, K py )-parameter plane. The occurrence regions of 1-1-1 motion
f the leading and trailing wheelsets are respectively segregated into
wo and three blocks by the existence domain of 1-2-2 motion due to
razing bifurcations of these two hunting motions. As for the trailing
heelset, the first region of 1-1-1 motion is extremely narrow and the
razing bifurcation boundary of the second region of 1-1-1 motion is
ery high. It can be said that the railing wheelset hardly shows the ef-
ect of 1-1-1 motion for K py ∈ [4 × 10 6 , 6 × 10 6 ]N/m, but the hunting
otion is necessary for the formation of 1-2-2 motion; see Fig. 12 (c).
owever, 1-1-1 motion of the middle wheelset can only occur in a nar-

ow banded region sandwiched between two grazing boundaries related
o 1-0-0 and 1-2-2 domains. As we known, there exist generally a cluster
f grazing bifurcation boundaries which are located on the left of a sta-
ility boundary in the parameter plane. The stability bifurcation bound-
ry will influence the periodic-hunting characteristic of the locomotive
ogie system, including the cycle number n and the impact numbers p
nd q . Those grazing bifurcation boundaries represent the changes of
he wheel–rail impact characteristics associated with the same hunting
eriod. The cycle number of hunting motion of the locomotive bogie sys-
em will be changed crossing the stability boundary. The impact num-
ers of the leading, middle and trailing wheelsets on the rail are con-
istently changed after crossing these grazing bifurcation boundaries.
332 
ifurcation diagrams of impact velocity of the leading wheelset versus
he forward speed v , extracted from Fig. 12 (a) for K py = 4.0, 5.2, 7.0, 8.5,
.4, 10.0 MN/m, are shown in Fig. 13 (a)–(f) in the form of �̇� 𝑤 1− ( 𝑣 ) , re-
pectively. The bifurcation diagram is useful when the wheel-rail impact
elocity is of interest over the whole ( v, K py ) – plane. 

Existence regions of various hunting motions, associated with the
eading, middle and trailing wheelsets with worn profile tread, are
hown for the ( v, K py )–parameter plane in Fig. 12 (d)–(f), respectively. As
or the worn wheelset with 𝜆 = 0.15, hunting patterns and distribution
egularities, in the parameter plane, are basically similar to those related
o the new wheelset with 𝜆 = 0.056; see bifurcation diagrams shown in
ig. 14 . As for the bogie system with the worn wheelsets, the difference
s that the stability boundary of period 1 hunting motion is generally
n the left of that corresponding to the new wheelsets. Similar phenom-
na can also be observed in the ( v, K px ), ( v, 𝜇) and ( v, 𝜆)–parameter
lanes, as seen in Figs. 15 , 17 and 19 . As for the trailing wheelset with
orn profile tread, the occurrence region of the 1-1-1 motion becomes

maller due to the extension of the occurrence regions of 1-2-2 and 1-3-3
otions; see Fig. 12 (d). 

The occurrence regions of different types of hunting motions for the
eading, middle and trailing wheelsets with variation of primary sus-
ension longitudinal stiffness K px and forward speed v are shown in
ig. 15 (a) and (b), respectively. The former corresponds to the new
heelset without any wear, and the latter to wheelset with the worn
rofile tread. The effects of changes in the longitudinal stiffness K px are
nalyzed by comparing with the results based on the criterion parame-
ers. As for the periodic hunting motions, the leading, middle and trail-
ng wheelsets have the same cycle number n at the same parameter con-
itions, but the impact numbers may be different in the hunting period,
s shown in Fig. 15 (a) and (b). The bogie system has a large occurrence
egion of hunting motion related to n = 1 in the parameter interval K px 

[2,10] MN/m, i.e., 1- p - p motions dominate in the ( v, K px ) ‒parameter
lane. Different from the primary suspension lateral stiffness K py , the
nfluence of the change of longitudinal stiffness K px on the hunting pat-
erns is not obvious in the parameter interval K px ∈ [2,10] MN/m. As
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Fig. 14. Bifurcation diagrams of impact velocity of the leading wheelset, ̇𝑦 𝑤 1− ( 𝑣 ) , 𝜆 = 0.15: (a) K py = 4.0 × 10 6 N/m; (b) K py = 5.2 × 10 6 N/m; (c) K py = 7.0 × 10 6 N/m; (d) 

K py = 8.2 × 10 6 N/m; (e) K py = 9.4 × 10 6 N/m; (f) K py = 1.0 × 10 7 N/m. 

Fig. 15. Existence regions of various hunting motions of the leading wheelset in the ( v, K px )–parameter plane: (a) 𝜆 = 0.056; (b) 𝜆 = 0.15. 
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hown in Fig. 15 , the hunting patterns and characteristic regularities,
n the ( v, K px ) ‒parameter plane, can be summarized: the increase of the
orward speed v brings about a series of grazing bifurcations which re-
lize the transition from symmetric 1-1-1 to symmetric 1-5-5 hunting
otion; the occurrence region of symmetric 1-2-2 motion is the largest

mong 1- p - p motions ( p ≥ 1); a series of asymmetric grazing contacts be-
ween the wheel flange and the rail lead to 1- p - q motions, starting from
symmetric 1-5-5 motion caused by pitchfork bifurcation; the stability
oundary of period 1 hunting motion of the bogie system, associated
ith the worn wheelsets, is obviously at the left of that corresponding

o the new wheelsets. Bifurcation diagrams of impact velocity of the
eading wheelset versus the forward speed v , extracted from Fig. 15 (a),
re shown for a few representative values of the primary suspension lon-
itudinal stiffness K px in Fig. 16 . Different from the primary suspension
333 
ateral stiffness K py , the variation of the longitudinal stiffness K px has
ittle effect on the branches of impact velocity bifurcation diagram of
eriod 1 hunting motion of the leading wheelset. 

The influence of the wheel–rail friction coefficient 𝜇 on dynamics of
he locomotive bogie system is analyzed to epitomize the diversity and
ifurcation characteristics of hunting motions. In Fig. 17 (a) and (b) are
lotted the occurrence regions of various hunting motions for the lead-
ng wheelsets with variation of the friction coefficient 𝜇 and the forward
peed v . The former corresponds to the new wheelset with 𝜆 = 0.056 and
he latter to worn wheelset with 𝜆 = 0.15. Bifurcation diagrams of im-
act velocity �̇� 𝑤 1− , associated with the new leading wheelset, are shown
or six representative values extracted from the interval 𝜇 ∈ [0.1, 0.3]
n Fig. 18 . These bifurcation diagrams allow us to discover the regular-
ty that the top branch of impact velocity bifurcation diagram of period
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Fig. 16. Bifurcation diagrams of impact velocity of the leading wheelset, �̇� 𝑤 1− ( 𝑣 ) , 𝜆 = 0.056: (a) K px = 2.0 ×10 7 N/m; (b) K px = 4.113 ×10 7 N/m; (c) K px = 5.2 ×10 7 N/m; (d) 

K px = 6.8 ×10 7 N/m; (e) K px = 8.5 ×10 7 N/m; (f) K px = 1.0 ×10 8 N/m. 

Fig. 17. Existence regions of various hunting motions of the leading wheelset in the ( v, 𝜇)–parameter plane: (a) 𝜆 = 0.056; (b) 𝜆 = 0.15. 
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 hunting motion of the leading wheelset rises gradually with the in-
rease of friction coefficient 𝜇. However, this change is obvious only if
he friction coefficient 𝜇 is greater than 0.15. The friction coefficient is
elated to the creep force, so it influences one of two key nonlinear fac-
ors of the locomotive bogie system, i.e., the creep force and the flange
learance. To some extent its change will more easily affect the hunting
atterns. Near 𝜇= 0.1, the occurrence region of 1-2-2 hunting motion of
he leading wheelset is isolated to three by a region including the 1-3-3
nd 1-4-4 hunting motions. As for 𝜇 ∈ [0.1, 0.1626], a series of grazing
ifurcations induce the transition from 1-0-0 to symmetric 1-5-5 motion
ith increase in the forward speed v ; next, pitchfork bifurcation causes
symmetric 1-5-5 motion to stabilize; thereafter, the grazing contacts of
he wheel flange and rail correspondingly exhibit the asymmetry and in-
uce 1-4-5, 1-3-5, 1-2-5, 1-2-4, 1-3-4 motions in sequence; the leading
heelset finally falls into chaotic hunting motion via period doubling
334 
equences of 1-2-5 or 1-3-4 motion; there exist narrow windows 2-8-9,
-9-10, 3-10-10 and 3-11-11 motions mingled with chaotic domains. As
or 𝜇 > 0.1626, the leading wheelset mainly exhibits stationary hunting
otion and 1- p - p motions ( p = 0 ‒5). On the whole, the hunting motions

f the locomotive bogie system, associated with the cycle number n = 1,
ominate in the parameter plane. The occurrence regions of chaotic mo-
ion and hunting motions with the cycle number larger than 1 are far
ess than that of hunting motions with the cycle number n = 1, and focus
n a small tongue-shaped region in the lower right corner of Fig. 17 (a).
s for the worn leading wheelset with 𝜆 = 0.15, hunting patterns and
istribution regularities, in the parameter plane, are basically similar
o those related to the new wheelset with 𝜆 = 0.056. In general, the
nly difference is that the stability boundary of period 1 hunting mo-
ion, associated with the worn wheelsets, is slightly more left than that
orresponding to the new wheelsets. 
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Fig. 18. Bifurcation diagrams of impact velocity of the leading wheelset, �̇� 𝑤 1− ( 𝑣 ) , 𝜆 = 0.056: (a) 𝜇 = 0.1; (b) 𝜇 = 0.13; (c) 𝜇 = 0.15; (d) 𝜇 = 0.16; (e) 𝜇 = 0.2; (f) 𝜇 = 0.3. 

Fig. 19. Existence regions of various hunting motions of the leading wheelset in the ( v, 𝜆)–parameter plane: (b) details of Fig. 19(a). 
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As for the new wheelset without any wear, its wheel tread’s equiva-
ent conicity is 0.056. During the course of vehicle operation, the equiv-
lent conicity of the wheel tread gradually becomes large with the abra-
ion of the wheelset on the rail. The hunting patterns and distributions
ssociated with the ( v, 𝜆)-parameter plane are provided in Fig. 19 , which
llustrates the influences of the profile change of the wheel tread caused
y the abrasion on the hunting patterns and bifurcation characteristics
f the locomotive bogie system. Bifurcation diagrams of impact velocity
̇  𝑤 1− are shown for six representative values extracted from the interval
∈ [0.05, 0.25] in Fig. 20 . As shown in Figs. 19 and 20 , small equiva-

ent conicity 𝜆 brings about larger occurrence regions of period 1 hunt-
ng motions and slightly larger impact velocity of the leading wheelset
n the rail than large 𝜆. This means that the stability boundary of pe-
iodic hunting motion of the bogie system with worn wheelsets, associ-
ted with n = 1, is more left than that with new wheelsets and the top
335 
ranch of impact velocity bifurcation diagram of period 1 hunting mo-
ion of the worn wheelset is slightly reduced on the whole with increase
f 𝜆. It is important to note that the change of the equivalent conicity 𝜆
as little influence on the instability speed of period 1 hunting motion
f the locomotive bogie system and the top branch of impact velocity of
he hunting motion for 𝜆 ∈ [0.15, 0.25]; see Fig. 19 (b) and Fig. 20 (d)–
f). Also, the occurrence region of 1-2-2 motion in the ( v, 𝜆)-parameter
lane is the largest among all hunting motions associated with the cy-
le number n = 1 for 𝜆 ∈ [0.05, 0.25], the occurrence regions of other
ymmetric 1- p - p ( p > 2) and asymmetric 1- p - q motions are very narrow.
ith increase in 𝜆, the stability boundary of hunting motion, associated
ith the cycle number n = 1, reduces gradually until its lower bound
 c = 110.2 m/s at 𝜆 = 0.2063. As for 𝜆 > 0.2063, the stability boundary
f period 1 hunting motion of the locomotive bogie system is gradually
hifted to the right with increase in 𝜆. , and the occurrence region of
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Fig. 20. Bifurcation diagrams of impact velocity of the leading wheelset, �̇� 𝑤 1− ( 𝑣 ) : (a) 𝜆 = 0.05; (b) 𝜆 = 0.095; (c) 𝜆 = 0.14; (d) 𝜆 = 0.185; (e) 𝜆 = 0.2; (f) 𝜆 = 0.25. 

Fig. 21. Existence regions of various hunting motions of the leading wheelset in the ( K px , K py )–parameter plane: (a) v = 90 m/s; (b) v = 110 m/s; (c) v = 125 m/s. 
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-3-3 motion becomes significantly larger so as to shrink the existence
egion of 1-2-2 motion. 

As for a certain forward speed, the occurrence regions and grazing
nd stability boundaries of various hunting motions of the locomotive
ogie system with the worn wheelsets, associated with variation of pri-
ary suspension parameters (e.g., K px and K py ), can be numerically ob-

ained by finely scanning the ( K px , K py ) ‒parameter plane. The incidence
elation between hunting patterns and primary suspension parameters
 K px , K py ) can provide a practical and convenient method for designing
he desired instability speed of period 1 hunting motion of the bogie
ystem and the optimal matching of its primary suspension parameters
 px and K py . First, an estimated instability speed of periodic hunting
ehavior of the locomotive bogie system, associated with n = 1, is con-
rmed; secondly, taking a forward speed near the estimated instability
peed as the reference, the hunting patterns and occurrence regions cov-
ring in the ( K px , K py ) ‒parameter plane can be numerically computed;
ubsequently, the reasonable matching of primary suspension stiffness
 p x and K p y can be preliminarily obtained according to the design re-
uirement and the parameter region in which period 1 hunting motion
ominates; a new estimated instability speed closer to the desired value
336 
s obtained and a repeat of the above process begins again. Based on the
unting patterns and occurrence regions over the ( K px , K py ) ‒parameter
lane associated with a series of estimated instability speeds, we can
nally design a higher and desired instability speed of period 1 hunt-

ng motion of the bogie system with the reasonable matching of pri-
ary suspension parameters. The hunting patterns and occurrence re-

ions of the leading wheelset of the bogie system, associated with the
rimary suspension parameters K px and K py , are illustrated for several
epresentative forward speeds in Fig. 21 (a)–(c), e.g., v = 90, 110 and
25 m/s, respectively. A stiffness matching range of the primary sus-
ension, K px ∈ [18,22] MN/m and K py ∈ [6, 6.5]MN/m are obtained by
he above mentioned method, which brings about a higher instability
peed of period 1 hunting behavior. Partial bifurcation diagrams of im-
act velocity of the leading wheelset versus forward speed v , associated
ith K px ∈ [18,22] MN/m and K py ∈ [6, 6.5]MN/m and the remain-

ng criterion parameters except K px and K py , are shown in Fig. 22 , and
he first two and the last two correspond to the new wheelset and the
orn wheelset, respectively. Comparing with the hunting characteristics

hown in Figs. 3 (b) and 10 (a), we can find that the instability speeds of
eriod 1 hunting motions related to Fig. 22 (a) and (b) and Fig. 22 (c)
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Fig. 22. Bifurcation diagrams of hunting motion of the leading wheelset of the bogie system: (a) K px = 18 MN/m, K py = 6.5 MN/m, 𝜆 = 0.056; (b) K px = 22 MN/m, K py = 6.5 MN/m, 

𝜆 = 0.056; (c) K px = 18 MN/m, K py = 6.5 MN/m, 𝜆 = 0.15; (d) K px = 22 MN/m, K py = 6.5 MN/m, 𝜆 = 0.15. 
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nd (d) are larger and the top branches of impact velocity bifurcation
iagram of the leading wheelset, associated with n = 1, are slightly ele-
ated. 

. Conclusions 

This paper presents pattern diversity and bifurcation characteristics
f hunting behaviors of a three-axle railway locomotive bogie in the
resence of the flange contact nonlinearity. The leading wheelset suc-
essively goes through non-smooth bifurcations induced by symmetric
razing contacts of the wheel flanges and the rail with increase in for-
ard speed, which lead to the transition from non-impact hunting mo-

ion to period-1 hunting motion with bilaterally symmetric and multi-
mpact characteristic. However, the symmetry-breaking of hunting be-
avior of the bogie system through a pitchfork bifurcation leads to asym-
etric hunting motions in the railway bogie system. With further in-

rease in forward speed, a series of grazing contacts between the left
nd right wheel flanges and the rail occur in succession and all hunting
otions exhibit the asymmetry. The impacts of the middle and trailing
heelsets on the rail fall behind that of the leading wheelset, and the

mpact lag of the hunting motion of the middle wheelset is the most ob-
ious of the three wheelsets. The impact number of the middle wheelset
n the rail, in the hunting period, is likely to be less than that of the lead-
ng and trailing wheelsets due to less grazing contacts. The top branch of
mpact velocity bifurcation diagram of the hunting motion of the trail-
ng wheelset, associated with n = 1, is slightly lower than those of the
eading and middle wheelset. The hunting-impact characteristics of the
eading wheelset are more diverse and more complex than those of the
iddle and trailing wheelsets. 

The influences of the profile change of the wheel tread caused by the
brasion on the hunting patterns and bifurcation characteristics of the
ogie system are investigated by finely scanning the parameter plane
ssociated with the forward speed v and the equivalent conicity 𝜆 of
heel tread. The instability speed of period 1 hunting motion of the bo-
ie system with worn wheelsets is lower than that with new wheelsets
nd the top branch of impact velocity bifurcation diagram of period 1
unting motion of the worn wheelset is slightly lower than that of the
ew wheelset on the whole. In the ( v, K py ), ( v, K px ) and ( v, 𝜇) ‒parameter
lanes, the occurrence regions of hunting-impact motions of the bogie
ystem with new wheelsets, associated with the cycle number n = 1,
re slightly larger than those with worn wheelsets. The change of the
rimary suspension longitudinal stiffness has little effect on the hunt-
ng patterns of the locomotive bogie system with the worn wheelsets,
nd the increase of K px brings about the slight increase of instability
elocity caused by period doubling bifurcation of hunting motion asso-
iated with the cycle number n = 1. As for the same forward speed, the
hange of K px has little effect on the impact velocity of period 1 hunting
otion of the leading wheelset. Diversity and complexity of hunting-

mpact characteristics of the locomotive bogie system are mainly dis-
ributed in parameter interval K py ∈ [4 × 10 6 , 8 × 10 6 ]N/m and are
ore clearly reflected in the leading wheelset. Large occurrence region

f hunting motion, associated with the cycle number n = 1, exists in
337 
he ( v, K py ) ‒parameter plane for K py ∈ [8.23, 10] MN/m. The change
f wheel-rail friction coefficient 𝜇 has little effect on the hunting pat-
erns of the bogie system. The top branch of impact velocity bifurcation
iagram of period 1 hunting motion of the leading wheelset rises grad-
ally with the increase of friction coefficient 𝜇. However, this change
s obvious only if the friction coefficient 𝜇 is greater than 0.15. Aimed
t a series of estimated instability speeds of period 1 hunting motion
nd based on the hunting patterns and occurrence regions in the pri-
ary suspension parameter planes, a higher instability speed of period
 hunting motion of the locomotive bogie system, associated with the
atching range of primary suspension parameters, can be obtained. The

tiffness matching of the primary suspension, K px ∈ [18,22] MN/m and
 py ∈ [6, 6.5]MN/m, is presented, which brings about the increase of

he instability speed and the slight increase of lateral impact velocity. 

cknowledgments 

The authors gratefully acknowledge the support by National Natu-
al Science Foundation of China ( 11362008 , 11462012 , 11672121 ) and
nnovation and Entrepreneurship Talent Training Project in Lanzhou,
hina (2014-RC-33). 

eferences 

[1] Cooperrider NK . The hunting behavior of conventional railway trucks. J Eng Ind
1972;94(2):752–62 . 

[2] Nó M , Hedrick JK . High speed stability for rail vehicles considering varying conicity
and creep coefficients. Veh Syst Dyn 1984;13:299–313 . 

[3] Kaas-Petersen C . Chaos in a railway bogie. Acta Mech 1986;61(1–4):89–107 . 
[4] Kaas-Petersen C , True H . Periodic, biperiodic and chaotic dynamical behavior of

railway vehicles. Veh Syst Dyn 1986;15(6):208–21 . 
[5] True H . Railway vehicle chaos and asymmetric hunting. Veh Syst Dyn

1992;20(Sup1):625–37 . 
[6] Jensen CN , Golubitsky M , True H . Symmetry generic bifurcations, and mode inter-

action in nonlinear railway dynamics. Int J Bifurc Chaos 1999;9(7):1321–31 . 
[7] True H , Jensen JC . Parameter study of hunting and chaos in railway vehicle dynam-

ics. Veh Syst Dyn 1994;23:508–21 . 
[8] True H . On the theory of nonlinear dynamics and its applications in vehicle systems

dynamics. Veh Syst Dyn 1999;31(5–6):393–421 . 
[9] Zeng J . Numerical computations of the hunting bifurcation and limit cycles for rail-

way vehicle system. J. China Railw Soc 1996;15(3):13–18 . 
10] Ahmadian M , Yang SP . Effect of system nonlinearities on locomotive bogie hunting

stability. Veh Syst Dyn 1998;29(6):365–84 . 
11] Ahmadian M , Yang SP . Hopf bifurcation and hunting behavior in a rail wheelset

with flange contact. Nonlinear Dyn 1998;15(1):15–30 . 
12] Yang SP , Shen YJ . Bifurcations and singularities in systems with hysteretic nonlin-

earity. Beijing: Science Press; 2003 . 
13] Kim P , Seok J . Bifurcation analysis on the hunting behavior of a dual-bogie railway

vehicle using the method of multiple scales. J Sound Vib 2010;329(19):4017–39 . 
14] Lee SY , Cheng YC . Nonlinear analysis on hunting stability for high-speed railway

vehicle trucks on curved tracks. ASME J Vib Acoust 2005;127:324–37 . 
15] Lee SY , Cheng YC . Influences of the vertical and the roll motions of frames

on the hunting stability of trucks moving on curved tracks. J Sound Vib
2006;294(3):441–53 . 

16] Cheng YC , Lee SY , Chen HH . Modeling and nonlinear hunting stability anal-
ysis of high-speed railway vehicle moving on curved tracks. J Sound Vib
2009;324(1–2):139–60 . 

17] Cheng YC . Hunting stability analysis of a full high-speed railway vehicle on curved
tracks. Int J Heavy Veh Syst 2012;19(2):151–71 . 

http://dx.doi.org/10.13039/501100001809
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0001
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0001
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0002
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0002
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0002
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0003
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0003
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0004
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0004
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0004
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0005
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0005
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0006
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0006
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0006
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0006
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0007
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0007
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0007
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0008
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0008
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0009
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0009
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0010
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0010
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0010
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0011
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0011
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0011
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0012
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0012
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0012
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0013
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0013
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0013
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0014
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0014
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0014
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0015
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0015
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0015
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0016
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0016
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0016
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0016
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0017
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0017


G.W. Luo et al. International Journal of Mechanical Sciences 136 (2018) 321–338 

[  

 

[  

[  

[  

[  

[  

[  

[  

[  

 

[  

[  

 

[  

[  

[  

 

[  

[  

 

[  

[  

[  

 

[  

[  

[  

 

[  

 

[  

 

[  

 

[  

[  

[  

 

[  

[  

[  

 

 

[  

[  

[  

[  

[  

[  

 

[  

[  

[  

[  

[  

[  
18] Zboinski K , Dusza M . Self-exciting vibrations and Hopf’s bifurcation in non-lin-
ear stability analysis of rail vehicles in a curved track. Eur J Mech A/Solids
2010;29(2):190–203 . 

19] Zboinski K , Dusza M . Extended study of railway vehicle lateral stability in a curved
track. Veh. Syst. Dyn. 2011;49(5):789–810 . 

20] Zboinski K , Dusza M . Bifurcation analysis of 4-axle rail vehicle models in a curved
track. Nonlinear Dyn 2017;89(2):863–85 . 

21] Hoffmann M . On the dynamics of European two-axle railway freight wagons. Non-
linear Dyn 2008;52:301–11 . 

22] Di Gialleonardo E , Bruni S , True H . Analysis of the nonlinear dynamics of a 2-axle
freight wagon in curves. Veh Syst Dyn 2014;52(1):125–41 . 

23] Zhai W , Wang K . Lateral hunting stability of railway vehicles running on elastic track
structures. Trans ASME J Comput Nonlinear Dyn 2010;5(041009):1 ‒9 . 

24] Wang KY , Liu PF . Lateral stability analysis of heavy-haul vehicle on curved track
based on wheel/rail coupled dynamics. J Transp Technol 2012;2:150–7 . 

25] Gao XJ , Li YH , Gao Q . Lateral bifurcation behavior of a four-axle railway passenger
car. ASME J Appl Mech 2010;77(6):1–8 . 

26] Gao XJ , Li YH , Yue Y . The “resultant bifurcation diagram ” method and its applica-
tion to bifurcation behaviors of a symmetric railway bogie system. Nonlinear Dyn
2012;70(1):363–80 . 

27] Gao XJ , Li YH , Yue Y , True H . Symmetric/asymmetric bifurcation behaviours of a
bogie system. J Sound Vib 2013;332:936–51 . 

28] True H . Multiple attractors and critical parameters and how to find them numeri-
cally: the right, the wrong and the gambing way. Veh Syst Dyn 2013;51(3):443–59 .

29] Choi Yeon-Sun , Shin Bum-Sik . Critical speed of high-speed trains considering
wheel-rail contact. J Mech Sci Technol 2015;29(11):4593–600 . 

30] Nielsen JCO , Igeland A . Vertical dynamic interaction between train and track-influ-
ence of wheel and track imperfections. J Sound Vib 1995;187(5):825–39 . 

31] Dong RG . Vertical dynamics of railway vehicle-track system [Ph.D. thesis]. Montreal:
Department of Mechanical and Industrial Engineering, Concordia University; 1994 .

32] Sun YQ , Dhanasekar M . A dynamic model for the vertical interaction of the rail track
and wagon system. Int J Solids Struct 2002;39:1337–59 . 

33] Uzzal RUA , Ahmed AKW , Bhat RB . Modelling, validation and analysis of a three-
-dimensional railway vehicle–track system model with linear and nonlinear track
properties in the presence of wheel flats. Veh Syst Dyn 2013;51(11):1695–721 . 

34] Meijaard JP , de Pater AD . Railway vehicle systems dynamics and chaotic vibrations.
Int J Non Linear Mech 1989;24(1):1–17 . 

35] Zeng J , Hu S . Study on frictional impact and derailment for wheel and rail. J Vib
Eng 2001;14(1):1–5 . 

36] Taheri M , Ahmadian M . Investigation of parameters influencing hunting perfor-
mance of a railway vehicle with three-piece trucks. In: Proceedings of the 2015
joint rail conference, San Jose, CA, USA, March 23–26; 2015 . 

37] Gao XJ , True H , Li Ying-hui . Lateral dynamic features of a railway vehicle. Proc Inst
Mech Eng Part F J Rail Rapid Transit 2016;230(3):909–23 . 

38] Park Joon-Hyuk , Koh Hyo-In , Kim Nam-Po . Parametric study of lateral stability for
a railway vehicle. J Mech Sci Technol 2011;25(7):1657–66 . 

39] Tuten JM , Law EH , Cooperrider NK . Lateral stability of freight cars with axles
having different wheel profiles and asymmetric loading. J Eng Ind Trans ASME
1979;101(1):1–16 . 
338 
40] Zeng XH , Wu H , Lai J , Sheng HZ . Influences of aerodynamic loads on hunting
stability of high-speed railway vehicles and parameter studies. Acta Mech Sin
2014;30(6):889–900 . 

41] Bozzone M , Pennestri E , Salvini P . Dynamic analysis of a bogie for hunting detection
through a simplified wheel–rail contact model. Multibody Syst Dyn 2011;25:429–60 .

42] Cheng YC , Wu Po-Hsien . Optimisation for suspension system of a railway vehicle
with a new non-linear creep model developed by uniform design. Int J Heavy Veh
Syst 2015;22(2):157–91 . 

43] Zhai WM . Vehicle-track coupling dynamics. (third ed). Beijing: Science Press; 2007 .
44] Gao Xue-jun , Li Ying-hui , Gao Q . Hunting motion and bifurcation behavior of six-axle

locomotive based on continuation method. J Traffic Transp Eng 2005;5:32–6 . 
45] Petersen DE , Hoffmann M . Curving dynamics of railway vehicles, Technical report,

Informatics and mathematical modeling. Lyngby: The Technical University of Den-
mark; 2002 . 

46] Kalker JJ . A fast algorithm for the simplified theory of rolling contact. Veh Syst Dyn
1982;11(1):1–13 . 

47] Kalker JJ . On the rolling contact of two elastic bodies in the presence of dry friction
Doctoral Thesis. Delft, The Netherlands; 1967 . 

48] Shen ZY , Hedrick JK , Elkins JA . A comparison of alternative creep force models for
rail vehicle dynamic analysis. In: Proceedings of the 8th IAVSD symposium on vehi-
cle system dynamics, dynamics of vehicles on roads and tracks. Swets and Zeitlinger,
MIT; 1984. p. 591–605 . 

49] Garg VK , Dukkipati RV . Dynamics of railway vehicle systems. New York: Academic
Press; 1984 . 

50] ArgeCare . Acradschiene: To create or approximate wheel/rail profiles. ArgeCare;
2007. p. 1–97 . 

51] Peterka F , Tondl A . Phenomena of subharmonic motions of oscillator with soft im-
pacts. Chaos Solitons Fractals 2004;19(5):1283–90 . 

52] Ma Y , Ing J , Banerjee S , Wiercigroch M , Pavlovskaia E . The nature of the normal
form map for soft impacting systems. Int J Non Linear Mech 2008;43(6):504–13 . 

53] Kundu S , Banerjee S , Ing J , Pavlovskaia E , Wiercigroch M . Singularities in soft-im-
pacting systems. Phys D 2012;241:553 ‒565 . 

54] Blazejczyk-Okolewska B , Czolczynski K , Kapitaniak T . Hard versus soft impacts in os-
cillatory systems modeling. Commun Nonlinear Sci Numer Simul 2010;15:1358–67 .

55] Peterka F , Vacik J . Transition to chaotic motion in mechanical systems with impacts.
J Sound Vib 1992;154(1):95–115 . 

56] Nordmark AB . Non-periodic motion caused by grazing incidence in an impact oscil-
lator. J Sound Vib 1991;145(2):279–97 . 

57] Ivanov AP . Stabilization of an impact oscillator near grazing incidence owing to
resonance. J Sound Vib 1993;162(3):562–5 . 

58] Hu HY . Detection of grazing orbits and incident bifurcations of a forced continuous,
piecewise-linear oscillator. J Sound Vib 1994;187(3):485–93 . 

59] Humphries N , Piiroinen PT . A discontinuity-geometry view of the relationship be-
tween saddle–node and grazing bifurcations. Phys D 2012;241(22):1911–18 . 

60] Kryzhevich S , Wiercigroch M . Topology of vibro-impact systems in the neighborhood
of grazing. Phys D 2012;241(22):1919–31 . 

http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0018
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0018
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0018
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0019
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0019
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0019
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0020
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0020
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0020
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0021
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0021
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0022
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0022
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0022
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0022
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0023
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0023
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0023
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0024
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0024
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0024
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0025
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0025
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0025
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0025
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0026
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0026
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0026
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0026
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0027
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0027
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0027
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0027
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0027
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0028
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0028
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0029
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0029
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0029
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0030
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0030
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0030
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0031
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0031
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0032
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0032
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0032
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0033
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0033
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0033
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0033
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0034
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0034
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0034
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0035
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0035
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0035
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0036
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0036
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0036
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0037
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0037
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0037
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0037
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0038
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0038
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0038
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0038
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0039
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0039
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0039
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0039
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0040
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0040
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0040
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0040
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0040
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0041
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0041
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0041
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0041
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0042
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0042
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0042
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0043
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0043
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0044
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0044
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0044
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0044
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0045
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0045
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0045
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0046
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0046
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0047
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0047
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0048
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0048
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0048
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0048
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0049
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0049
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0049
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0050
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0050
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0051
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0051
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0051
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0052
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0052
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0052
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0052
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0052
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0052
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0053
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0053
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0053
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0053
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0053
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0053
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0054
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0054
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0054
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0054
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0055
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0055
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0055
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0056
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0056
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0057
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0057
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0058
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0058
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0059
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0059
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0059
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0060
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0060
http://refhub.elsevier.com/S0020-7403(17)32296-8/sbref0060

	Hunting patterns and bifurcation characteristics of a three-axle locomotive bogie system in the presence of the flange contact nonlinearity
	1 Introduction
	2 Dynamical model of hunting behavior of the railway locomotive bogie
	2.1 Wheel-rail contact geometry relation
	2.2 The normal contact relation
	2.3 Dynamical model
	2.4 Poincaré sections associated with the impacts between the leading, middle and trailing wheelsets and the rail

	3 Lateral hunting motions and bifurcation characteristics of the railway bogie system
	4 The incidence relation between lateral hunting patterns and system parameters
	5 Conclusions
	 Acknowledgments
	 References


