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Abstract: In this paper, an innovative closed hydraulic wind turbine with an energy storage system
is proposed. The hydraulic wind turbine consists of the wind rotor, the variable pump, the hydraulic
bladder accumulator, the variable motor, and the synchronous generator. The wind energy captured
by the wind rotor is converted into hydraulic energy by the variable pump, and then the hydraulic
energy is transformed into electrical energy by the variable motor and generator. In order to overcome
the fluctuation and intermittence shortcomings of wind power, the hydraulic bladder accumulator is
used as an energy storage system in this system to store and release hydraulic energy. A double-loop
speed control scheme is presented to allow the wind rotor to operate at optimal aerodynamic
performance for different wind speeds and hold the motor speed at the synchronous speed to
product constant frequency electrical power regardless of the changes of wind speed and load power.
The parameter design and modeling of 600 kW hydraulic wind turbine are accomplished according
to the Micon 600 kW wind turbine. Ultimately, time-domain simulations are completed to analyze
the dynamic response of the hydraulic wind turbine under the step change conditions of wind speed,
rotor speed input, and load power. The simulation results validate the efficiency of the hydraulic wind
turbine and speed control scheme presented, moreover, they also show that the systems can achieve
the automatic matching among turbine energy, accumulator energy, and generator output energy.

Keywords: hydraulic wind turbine; energy storage system; speed control; energy matching

1. Introduction

The energy crisis and environmental pollution have been a threat to human survival and world
economic growth because of excessive exploitation and use of fossil fuel. Renewable energy as the
best replacement of fossil fuel is widely used in almost all countries in the world to provide energy
during the past decades. Among all kinds of renewable energies, wind energy is experiencing rapid
development for its clean, abundant, free, and environmentally friendly characteristics [1,2]. The global
total wind power industry increased by 12.6% (54.6 GW) in capacity in 2016. The global total growing
capacity and China’s cumulative installations were 486.8 GW and 168,732 MW at the end of 2016.
The Five-Year Plan for Energy (2016–2020) calls for 210 GW of wind by 2020 [3].

The mechanical gearbox is a troublesome component within the traditional wind turbine,
which has high failure rates and causes high maintenance costs [4]. Compared to the wind power
with gearbox, the wind turbine with the direct-drive permanent-magnet generator is more attractive
for the highest energy yield. However, this is more expensive and heavier [5]. In recent years,
the gearless wind turbine with fluid power transmissions has attracted the attention of researchers
around the world because of the unique advantages of variable transmission ratio, high power density,
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and reliability. The use of hydraulic drives not only can remove an AC frequency converter and
a voltage transformer, but also make it possible to significantly reduce the weight of the nacelle
and tower [6,7]. Ayana et al. established the simulation model of a gearless hydraulic wind energy
harvesting and transfer system using the SimHydraulic toolbox in the MATLAB. A prototype of the
hydraulic system was made and the experimental results verified the availability of the proposed
model [8]. In [9], a simplified model of the NREL 5 MW turbine with a hydrostatic drivetrain was
derived and the control scheme and controller were designed to operate over the wind speed range of
the wind turbine. The simulation results showed the controller has a satisfactory performance in its
entire operating range. The authors in [10] presented a complete mathematical model of the hydraulic
transmission used in wind turbines and proposed a valve control system to decrease the pressure and
power fluctuations. Simulations under both below and above the rated wind speed displayed that the
wind turbine with the hydraulic transmission has the same variable characteristics as the conventional
variable speed wind turbines with gear. The paper [11] showed a hydraulic wind power transfer
system which is used as a substitution of the traditional mechanical drive. The mathematical modeling
of this gearless wind power transfer system was established and its accuracy was confirmed by
comparing with test results. The authors in [12] proposed a secondary control hydrostatic transmission
(SC-HST), which was used for the wind energy conversion system. A PID controller was designed for
motor speed control. The simulation results demonstrated that the relative error of the motor speed
was less than 2% and the efficiency of the novel system was 70.4%.

Electric power produced by wind turbines is highly erratic because of the stochastic and
intermittent nature of wind. The output instability of electric power will reduce the power quality
and affect the planning of power systems. Therefore, an energy storage system will be indispensable
for a wind energy conversion system. The investment cost of an energy storage system accounts for
a large proportion of the total price of the wind turbine with an energy storage system. The larger
the capacity of the energy storage system is, the bigger the total cost becomes. An energy storage
system can control wind power plant output and provide additional energy to the power system via
storing the excess energy and releasing the stored energy. There are many different forms for storing
the wind energy: gravitational potential energy, compressed air, electrochemical energy, chemical
energy, and kinetic energy [13]. Martinez-Lucas et al. improved the quality of frequency regulation
in isolated power systems by combining a hybrid wind–pumped storage hydropower plant (PSHP)
with variable speed wind turbines (VSWT) [14,15]. Battery energy storage systems are regarded as one
of the most promising technologies, which can help to overcome the issue mentioned above [16,17].
For a hydraulic wind turbine, compressed air energy storage has a great number of advantages of all of
the energy storage forms, which can make full use of hydraulic energy without an energy conversion
process and are more suitable for very large scales [18]. Mohsen et al. presented a novel offshore wind
turbines with an open compressed air energy storage system. A nonlinear controller was designed
to capture maximal wind energy and satisfy power demand. Case studies showed that the storage
system not only can downsize the electrical component to 1/5 of the turbine’s capacity, but also can
output a constant mean electrical power [19]. Fan et al. investigated the open hybrid wind-tidal
turbine with fluid power transmission and energy storage system. The open hydraulic system of
these turbines are mainly comprised of a hydraulic pump and a pelton turbine. The simulation results
demonstrated that the energy storage system can damp out the power fluctuations and deliver the
desired generator power [20,21]. Ammar et al. designed a compressed air energy storage system for
the wind turbine with hydrostatic powertrain. The design parameters of the energy storage system, as
the compression ratios, the expander ratios, and the air tank size, were chosen based on the simulations
to realize the best stable performance [22]. The authors in [23] added an energy storage system into the
closed-loop hydraulic system of hydraulic wind turbine to eliminate the randomness and fluctuation
of wind power. A proportional valve was adopted to keep the motor speed constant and produce
stable frequency electrical energy.
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The rotor speed has an important influence on the wind energy absorbed by wind turbine. In order
to achieve maximum wind power coefficient, the rotor speed varies with the wind speed, which is
determined by the optimal tip speed ratio. Therefore, a novel closed-loop hydraulic system with
hydraulic accumulator is presented and applied to the wind energy generation system to realize
simultaneously variable speed constant frequency and wind energy storage, as shown in Figure 1.
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Figure 1. Schematic diagram of the closed hydraulic wind turbine with energy storage system.

Given existing research achievement, many researchers have made great contributions to the
development of hydraulic wind turbine. However, the study on the dynamic responses of the rotor
and motor to the step changes of the wind and rotor speed is seldom found for the closed hydraulic
wind turbine with an energy storage system. Meanwhile, the compensation ability of the energy
storage system to load power change also needs to be analyzed and validated.

The rest of this paper is constructed as follows. Section 2 details the system configuration and
energy flow diagram of the hydraulic wind turbine with an energy storage system. Section 3 depicts
the mathematical models of all components in this hydraulic wind turbine. Section 4 presents first
a speed control diagram for the rotor and motor speed controls. The speed control strategy is described
later. Section 5 shows the main parameters of this hydraulic wind turbine aiming at a Micon 600 KW.
Treating the step changes of wind speed, rotor speed input and load power as an input to evaluate the
dynamic response performance of the control system. Section 6 concludes this work.

2. System Overview

As shown in Figure 1, the closed-loop system of the hydraulic wind turbine with hydraulic
accumulator is totally different from that we commonly used. The displacements of the pump and the
motor in this hydraulic wind turbine are both variable. But in the most frequently used closed-loop
system, there is only one variable component between the pump and motor. The variable pump
placed in the nacelle is coupled to the rotor of the wind turbine, through which the hydraulic oil in the
low-pressure lines is sucked and pressured into the high-pressure lines. Passing through the check
valve, the high pressure oil from the pump flows into the hydraulic accumulator and the variable
motor located on the ground. The synchronous generator is connected with the variable motor through
the shaft couplings. The boost pump is added to supplement the lost hydraulic oil of the closed-loop
system and also complete the heat exchange of the system. There are two relief valves in this system and
their function is different. The relief valve connected with the check valve is used to limit the maximum
operating pressure of the entire system and ensure the system security. The other relief valve keeps the
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pressure of the low-pressure lines constant, which will protect the variable pump from damage because
of the cavitation. The rotary joint is indispensable to the hydraulic wind turbine, which can help to
transmit freely the hydraulic oil from the nacelle to the variable displacement motor without damaging
the hydraulic lines when the yaw system is operating. Figure 2 is a diagram that demonstrates the
energy conversion and transfer process of the hydraulic wind turbine with the energy storage system.
Adding the hydraulic accumulator to the high-pressure lines, the outlet pressure of the pump and
the inlet pressure of the motor are determined by that of the hydraulic accumulator. The difference
between wind energy captured by wind turbine and the electrical energy generated by the generator
decides that the high pressure oil flows into or discharges from the hydraulic accumulator.
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Figure 2. Energy conversion and transfer chart of the hydraulic wind turbine. (a) Hydraulic oil flowing
into hydraulic accumulator; (b) hydraulic oil discharging from hydraulic accumulator.

3. Mathematical Model

The mathematical submodel of the different components in this hydraulic wind turbine are
described separately in the following subsections. This submodel is obtained by deriving the ordinary
differential equations that govern the main dynamic behavior of the component. All the submodels
should carefully be coupled to establish the model of the whole system.

3.1. Wind Turbine

Wind power is absorbed and converted into mechanical energy by the rotor blades of the wind
turbine. The available wind power Pwind and actual output power Pw of the wind turbine are expressed
as follows [24]:

Pwind =
1
2

ρAvw
3 (1)

Pw = CpPwind (2)

where ρ is the air density. A is the swept area of the rotor blades. vw is the wind speed. Pw is related to
Pwind via a power coefficient Cp of the wind turbine, which is a function of the tip speed ratio λ and the
pitch angle β (see the Equations (3) and (4)) [24]. According to Betz, the maximum value of Cp is 0.593.
The relationship between the power coefficient Cp and the tip speed ratio λ is shown in Figure 3.

Cp = 0.5176(
116
λi

− 0.4β − 5)e−
21
λi + 0.0068λ (3)

1
λi

=
1

λ + 0.08β
− 0.035

β3 + 1
(4)
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λ =
Rωw
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(5)

The tip speed ratio λ is the quotient of the peripheral velocity to the wind velocity, which is
obtained from the formula (5). R is the radius of the rotor blade. ωw is the rotor angular speed.
The rotor output torque Tw can be calculated as:

Tw =
Pw

ωw
(6)

3.2. Variable Pump

In this hydraulic wind turbine, a variable pump is adopted as the hydraulic power component of the
closed-loop hydraulic system, which transforms wind power captured by wind turbine into hydraulic
energy. The pump speed ωp is equal to the rotor speed ωw because the pump and the rotor are directly
connected through the rotor shaft. The pump flow Qp and torque Tp are described as follows:

Qp = Vpωp − Cip(Ppo − Ppi)− CepPpo (7)

Tp = Vp
(

Ppi − Ppo
)

(8)

where ωp and Vp represent the rotational speed and the volumetric displacement of the pump
respectively. Ppi and Ppo are the inlet and outlet pressure of the pump.

The dynamic characteristics of the pump variable mechanism can be described by a first-order
system. Its transfer function is expressed as:

Vp(s)
Up(s)

=
Kp

Tps + 1
(9)

where Up, Kp, and Tp are the control signal, the pump displacement gain, and the time constant of the
pump variable mechanism, respectively. The moment balance equation of the rotor and the pump is
established as follows using Newton’s second law:

Tw − Tp = Jp
dωp

dt
+ Bpωp (10)

where Jp is the total inertia of the rotor in wind turbine and the pump. Bp is the total coefficient of
viscous friction corresponding.

3.3. Check Valve

The check valve is generally mounted on the oil outlet of the pump in a hydraulic system,
which aims at preventing the oil in high-pressure lines from flowing backwards into the pump.
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The high pressure oil will drive the pump and the rotor blades in the opposite direction without the
check valve, which is very unsafe and causes extensive damage to the pump. When the difference
between Pcvi and Pcvou is greater than Pcr, the oil can free flow through the check valve. Conversely,
the check valve turns off and the oil will not flow in reverse. The flow Qcv of the check valve is
computed by the following equation:

Qcv =

{
(Pcvi − Pcvo)Kcv Pcvi − Pcvou ≥ Pcr

0 Pcvi − Pcvo < Pcr
(11)

where Qcv represents the flow passing through the check valve. Pcvi and Pcvo are the inlet and outlet
pressure of the check valve. Pcr and Kcr represent the opening pressure and the pressure-flow coefficient
of the check valve, respectively.

3.4. Hydraulic Accumulator

The bladder accumulator is widely used in all kinds of hydraulic systems to store the hydraulic
energy, which mainly consists of a steel shell and a rubber bladder. The sketch map of the bladder
accumulator is shown in Figure 4. The bladder is impregnated with nitrogen gas. When the pressure
of the oil in the line is higher than that of nitrogen gas in the bladder, the bladder is compressed and
the pressure of nitrogen rises. The accumulator is charged now and the oil in the line flows into the
accumulator. Contrarily, the oil is discharged into the line from the accumulator. The compression of
nitrogen gas is assumed to obey the ideal gas law, the relationship between gas pressure P and gas
volume V is expressed by the ideal gas equation [25]:

PV = nRT (12)

Pa =
P0V0

n

Van =
P0V0

n

(V0 +
∫

Qadt)n (13)

Qa = − V0P0
5
7

1.4Pa
12
7

dPa

dt
(14)

where P0 and V0 represent the pre-charge pressure and the initial volume of the nitrogen gas. Pa and
Va are the pressure and volume of the nitrogen gas in the process of compression. Qa represents the
accumulator flow. n is the polytropic index. In an isothermal compression, n equals one. In an adiabatic
compression, n equals one point four that is used in this paper.Appl. Sci. 2018, 8, x FOR PEER REVIEW  7 of 18 
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3.5. Relief Valve

The relief valve is the key component of the hydraulic system, which is used to keep the hydraulic
system pressure stable or limit the maximum working pressure. When the difference between the inlet
pressure Prvi and the outlet pressure Prvo is greater than the cracking pressure Pop, the oil overflows into
the tank through the opening formed by the valve core and valve seat of the relief valve. The overflow
flow Qrv is computed by the following equation:

Qrv =

{
(Prvi − Prvo − Pop)Krv Prvi − Prvo ≥ Pop

0 Prvi − Prvo < Pop
(15)

where Krv is the pressure-flow coefficient of the relief valve.

3.6. Variable Motor

A variable motor is the actuating component of this hydraulic wind turbine, which converts
the hydraulic energy exported by the pump or stored in the accumulator into the mechanical energy
required by the synchronous generator. The flow continuity equation of the high-pressure pipeline
and the motor can be written as Equations (16) and (17). The output moment equation of the motor
can be established as Equation (18) [26]:

Qp − Qa − Qrv − Qm =
V

βho

dP1

dt
(16)

Qm = Dmωm + Cim(P1 − P2) + CemP1 (17)

Dm(P1 − P2) = Jm
dωm

dt
+ Bmωm + Tg (18)

where Qm is the flow of the variable motor. V is the total compression volume, which consists of the
volume of the oil in the high-pressure pipeline, high pressure chamber of the pump, and the motor.
βho represents the effective bulk modulus of hydraulic oil. Dm and ωm represent the displacement and
speed of the variable motor. P1 and P2 represent the inlet pressure and outlet pressure of the motor,
respectively. Cim and Cem are the internal and the external leakage coefficients of the motor. Jt and
Bv represent the total inertia and the coefficient of viscous friction of the rotor in the motor and the
generator. Tg is the torque produced by the generator for electric power.

The dynamic characteristics of the variable mechanism of the motor can be seen as [27]:

Dm(s)
Um(s)

=
Km

Tms + 1
(19)

where Um is the displacement control signal to the variable mechanism. Km represents the motor
displacement gain and Tm is the time constant of the variable mechanism.

3.7. Synchronous Generator

A three-phase AC synchronous generator is used in this hydraulic wind turbine to output electrical
energy. According to Park transformation and Ohm’s law, voltage balance equations of the rotor and
stator in dq0 coordinates are computed as follow [28]:

Usd =
dψsd

dt
− ωeψsq − Raisd (20)

Usq =
dψsq

dt
+ ωeψsd − Raisq (21)

0 =
dψdd

dt
+ Rddidd (22)
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0 =
dψdq

dt
+ Rdqidq (23)

where Usd and isd represent the stator voltage and current on the Park’s d axis. Usq and isq represent the
stator voltage and current on the Park’s q axis. Ra, Rdd, and Rdq represent the stator winding resistance
and the damper winding’s resistance. ψsd and ψsq are the stator windings flux linkage. ψdd and ψdq are
the damper windings flux linkage. idd and idq are the stator currents of the damper windings.

The flux linkage equation of all winding is constituted as follows. The electromagnetic torque Γ is
computed by Equation (29):

ψsd = Lsdisd +

√
3
2

Ms f i f l +

√
3
2

Msdidd (24)

ψsq = Lsqisq +

√
3
2

Msqidq (25)

ψ f l = L f i f l +

√
3
2

Ms f isd + M f didd (26)

ψdd = Lddidd +

√
3
2

Msdisd + M f di f l (27)

ψdq = Ldqidq +

√
3
2

Msqisq (28)

Γ = p(ψsdisq − ψsqisd) (29)

where Msf, Msd, Msq, and Mfd represent the mutual inductance coefficient between the two windings.
Lsd, Lsq, Lf, Ldd, and Ldq are the inductance coefficient of all windings. p represents the pole pairs.

4. Control Scheme

The working pressure of the high-pressure lines is equal to that of the energy storage system after
the hydraulic accumulator joining in the hydraulic wind turbine. To rotate the turbine rotor at the
optimal speed determined by the wind speed and the rotor blade diameter and keep the motor at the
synchronous speed of the synchronous generator, two closed-loop speed controls are proposed in this
study. As illustrated in Figure 5, one is the closed-loop control of the rotor speed and the other is that
of the motor speed. The two speed control systems have the same structure, but they have different
purposes. The rotor speed control system is a follow-up control, which makes the actual speed of the
rotor keep pace with the rotor speed input as quickly as possible. The rotor speed input signal varies
with wind speed blowing the rotor blades. The motor speed control is a constant value control system,
which maintains the motor speed at the synchronous speed despite of the great change of the pressure
in the accumulator or the output power of the generator.

The speed control strategy of the hydraulic wind turbine is shown in Figure 6. Taking the case of
the rotor speed control, the displacement control process of the variable pump is discussed in detail.
It is easy to see that there are two comparisons in the rotor speed control system. One is the torque
comparison between the wind torque and hydraulic torque that is the product of accumulator pressure
and pump displacement. The other is the speed difference between the rotor speed input and the
actual rotor speed.
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When wind becomes stronger or accumulator pressure is lower, the torque difference will become
positive because the wind torque is more than the hydraulic torque. The pump and rotor acted by the
positive torque will accelerate. The actual rotor speed will be greater than the rotor speed input. At the
same time, the speed difference becomes negative. The pump displacement raises under the PID control,
which causes hydraulic torque increase and decelerates the rotor. The speed difference is close zero
owing to the decrease of the rotor speed. The speed deviation of the rotor is zero when the rotor speed
decreases to the rotor speed input, meanwhile, the displacement of the pump is maintained. In this way,
the rotor speed is kept at the optimal speed desired. The rotor speed will decrease on the condition of
an accumulator pressure increase or a wind decrease. The changing direction of the displacement is just
opposite. The motor speed control has the same control strategy as the rotor speed control.
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5. Simulation and Discussion

5.1. The Design of the Experimental Prototype

5.1.1. Wind Turbine and Variable Pump

A Micon 600 kW wind turbine is chosen and will be turned into the experimental platform of
hydraulic wind turbine, as shown in Figure 7. The rotor blades of the wind turbine remain unchanged
for absorbing wind energy. The variable pump will be installed in the nacelle by replacing the
original gearbox and generator, which transmits the wind energy captured by turbine blades into
hydraulic energy. To provide the hydraulic system with high reliability and long life at the same time,
the maximum working pressure of this hydraulic system is limited at 210 bars. The parameters of
wind turbine and variable pump are listed in Table 1.

Table 1. Main parameters of wind turbine and hydraulic pump.

Parameter Symbol Value Unit

Rotor diameter D 43 m
Swept area A 1453 m2

Hub height H 46 m
Cut-in wind speed Vin 3.5 m/s

Cut-out wind speed Vout 25 m/s
Rated wind speed Vrated 15.5 m/s

Rated power Prated 600 kW
Maximum rotor speed Rp 27 r/min

Pump maximum displacement Vp 67,000 cm3/rev
Moment of inertia Jp 20,000 kg·m2

Coefficient of viscosity Bp 50 Nm/(r/min)
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5.1.2. Energy Storage System

The bladder accumulator is adopted in the hydraulic wind turbine experimental prototype to store
the extra hydraulic energy for its lower costs and fast response. The advantage of the energy storage
system is that: when the wind does not provide enough energy for electrical energy, the generator can
continue to produce electric energy for a long time with the hydraulic energy stored in the energy
storage system. Its main parameters are described in Table 2.

Table 2. Main parameters of energy storage system.

Parameter Symbol Value Unit

Accumulator volume V0 6000 L
Gas precharge pressure P0 120 bar
Accumulator pressure Pa 210 bar

5.1.3. Variable Motor and Synchronous Generator

There are three hydraulic motor-generator units in this system for converting hydraulic energy
into electrical energy. According to wind speed, some of the three electricity generation units are
thrown into their work. The parameters of the generation unit are demonstrated in Table 3.

Table 3. Main parameters of hydraulic motor and synchronous generator.

Parameter Symbol Value Unit

Motor maximum displacement Vm 500 cm3/rev
Number of pole pairs P 2

Stator winding resistance Ra 0.006 Ω
Synchronous speed Rg 1500 r/min
Moment of inertia Jm 60 kg·m2

Coefficient of viscosity Bm 0.05 Nm/(r/min)

5.2. Simulation Results

The mathematical models of the hydraulic wind turbine studied in this paper are established in
MATLAB software. In order to maximize the power coefficient Cp of wind turbine, the rotor speed is
supposed to remain a constant that would change with wind speed change; besides, the output power of
the synchronous generator matches the load power. Therefore, the simulations under the step changes of
wind speed, rotor speed input, and generator output power are conducted to validate the effectiveness of
the proposed control scheme and indicate the flow of wind power absorbed by the rotor blades.

5.2.1. Step Changes of Wind Speed and Rotor Speed Input

The change curves of the wind and rotor speed input are shown in Figure 8. The wind speed
changes suddenly from 8 m/s to 9 m/s and the rotor speed input increases from 24 r/min to 26 r/min,
which both occur at 50 s. The displacement factors of the variable pump in two cases are shown in Figure 9.
As shown, the pump displacement factor rises from 0.35 to 0.43 when the wind speed suddenly increases.
The variation trend of the pump displacement factor is the opposite when the rotor speed input has
a sudden increase, which decreases rapidly from 0.35 to 0.17 and gets back to the begin value 0.35. It can
be seen that the displacement factor gradually decreases in both cases as time goes on.

Figure 10 shows that the pump speed will increase faster to 24.6 r/min owing to the wind speed
step. The hydraulic counter-torque acting on the variable pump becomes big for the increase of the
pump displacement. The variable pump begins to decelerate when the hydraulic counter-torque is
greater than the wind torque. Finally, the pump speed returns to 24 r/min. When the rotor speed input
step occurs, the pump accelerates on account of the decrease of the pump displacement. It reaches
finally at 26 r/min after a small overshoot.
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From Figures 11–13, it can be shown that the flow curves of the pump and the accumulator
show the same trends as that of the pump displacement. The pump flow with the wind speed step is
greater than that with the rotor speed step at 75 L/min. The discharge flow of the accumulator has
the maximal value 130 L/min when the rotor speed arises. The accumulator pressure in both cases
rises gradually because the accumulator is in the state of charge in most of the time. The accumulator
pressure in the wind speed step increases much more rapidly as a result of more charge flow.
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Figure 14 shows that the power coefficient and tip speed ratio in both cases. As shown, the tip
speed ratio increases from 6.8 to 7.5 when the rotor speed changes from 24 r/min to 26 r/min.
Corresponding, the power coefficient increases from 0.37 to 0.42. It can be seen that the tip speed ratio
reduces from 6.8 to 6.1 as the wind speed arises. The power coefficient decreases to 0.33 accordingly.

As shown in Figure 15, the wind power changes from 470 kW to 675 kW as the wind speed varies
from 8 m/s to 9 m/s. The turbine power captured by the rotor blades is 185 kW when the wind speed
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and the rotor speed are 8 m/s and 24 r/min. As the wind speed increases to 9 m/s, the turbine power is
equal to 223 kW. As the wind turbine speed accelerates to 26 r/min, the turbine power reaches 199 kW.Appl. Sci. 2018, 8, x FOR PEER REVIEW  14 of 18 
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5.2.2. Step Change of Load Power

As shown in Figure 16, the load power increases from 100 kW to 300 kW at 50 s. Figure 17 shows
the displacement factors of the pump and the motor. It can be seen that the motor displacement
gets immediately bigger from 0.26 to 0.76 for the change of the load power. Simultaneously,
the pump displacement rises first to 0.365 in a short time and then decreases to 0.358. Later, it has
a creeping increase.
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Figure 18 shows the pump flowrate, the accumulator flowrate and the motor flowrate. As shown,
the motor flowrate changes from 400 L/min to 1150 L/min. The pump flowrate remains approximately
constant during the change process of the load power. About one third of the pump flowrate 566 L/min
flows into the hydraulic accumulator when the load power is 100 kW. After the load power increases to
300 kW, the hydraulic accumulator discharges the high-pressure oil to complement the shortage of the
pump flowrate. From Figure 19, it can be shown that the power changes of the pump, the accumulator
and the generator is essentially in agreement with the flowrate changes.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  15 of 18 

 

changes of the pump, the accumulator and the generator is essentially in agreement with the 
flowrate changes. 

 
Figure 17. Pump displacement factor and motor displacement factor. 

 
Figure 18. Pump, accumulator, and motor flow rate. 

 
Figure 19. Turbine, accumulator, and generator output power. 

Figure 20 shows the pressure of the pump outlet, the accumulator outlet, and the motor inlet. 
The difference between the pump outlet pressure and the motor inlet pressure is always a fixed 
value, which is the pressure loss of the check valve. The accumulator pressure gradually decreases 
owing to the oil discharge after 50 s. Besides, the accumulator pressure starts to be greater than the 
pump outlet pressure. The pressure loss between the accumulator and the motor becomes greater on 
account of the increases of the accumulate flowrate and the pressure loss. 

Figure 17. Pump displacement factor and motor displacement factor.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  15 of 18 

 

changes of the pump, the accumulator and the generator is essentially in agreement with the 
flowrate changes. 

 
Figure 17. Pump displacement factor and motor displacement factor. 

 
Figure 18. Pump, accumulator, and motor flow rate. 

 
Figure 19. Turbine, accumulator, and generator output power. 

Figure 20 shows the pressure of the pump outlet, the accumulator outlet, and the motor inlet. 
The difference between the pump outlet pressure and the motor inlet pressure is always a fixed 
value, which is the pressure loss of the check valve. The accumulator pressure gradually decreases 
owing to the oil discharge after 50 s. Besides, the accumulator pressure starts to be greater than the 
pump outlet pressure. The pressure loss between the accumulator and the motor becomes greater on 
account of the increases of the accumulate flowrate and the pressure loss. 

Figure 18. Pump, accumulator, and motor flow rate.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  15 of 18 

 

changes of the pump, the accumulator and the generator is essentially in agreement with the 
flowrate changes. 

 
Figure 17. Pump displacement factor and motor displacement factor. 

 
Figure 18. Pump, accumulator, and motor flow rate. 

 
Figure 19. Turbine, accumulator, and generator output power. 

Figure 20 shows the pressure of the pump outlet, the accumulator outlet, and the motor inlet. 
The difference between the pump outlet pressure and the motor inlet pressure is always a fixed 
value, which is the pressure loss of the check valve. The accumulator pressure gradually decreases 
owing to the oil discharge after 50 s. Besides, the accumulator pressure starts to be greater than the 
pump outlet pressure. The pressure loss between the accumulator and the motor becomes greater on 
account of the increases of the accumulate flowrate and the pressure loss. 

Figure 19. Turbine, accumulator, and generator output power.



Appl. Sci. 2018, 8, 1314 16 of 18

Figure 20 shows the pressure of the pump outlet, the accumulator outlet, and the motor inlet.
The difference between the pump outlet pressure and the motor inlet pressure is always a fixed value,
which is the pressure loss of the check valve. The accumulator pressure gradually decreases owing to
the oil discharge after 50 s. Besides, the accumulator pressure starts to be greater than the pump outlet
pressure. The pressure loss between the accumulator and the motor becomes greater on account of the
increases of the accumulate flowrate and the pressure loss.

From Figure 21, it can be shown that the pump speed rises first for the decrease of the pump
outlet pressure and then falls to the old value for the increase of the pump displacement. The motor
speed undergoes a short-term drop to 1499 r/min and returns to 1500 r/min after about 2 s.
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6. Conclusions

The Micon 600 kW wind turbine is selected for transforming wind energy into mechanical energy.
A hydraulic bladder accumulator is used as the energy storage device in this hydraulic wind turbine
to store the surplus of the wind energy extracted by the rotor blades and solve the problem of the
wind power output fluctuation and intermittence. The design of hydraulic principle diagram and the
main components are completed. The mathematical equations of all the components are obtained
and the simulation model of the entire system based on MATLAB is constructed. Two PID controllers
are adopted in the rotor and motor speed control system to make the rotor speed reach quickly the
expectation and keep the motor speed constant all the time.

The response simulations and analyses of the hydraulic wind turbine under wind speed step,
rotor speed input step and load power step are carried out. When wind speed increases from 8 m/s
to 9 m/s, the pump speed is maintained at 24 r/min by means of the pump displacement increase.
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The turbine energy becomes large under the combined effect of the power coefficient decrease and
the wind power raise. When the rotor speed rises from 24 r/min to 26 r/min, the pump raises the
operating speed by diminishing its displacement. The power coefficient increases as the tip speed ratio
become large. When the load power varies suddenly from 100 kW to 300 kW, the motor raises it’s
displacement to meet the need of more torque for power generation.

Simulation results show the innovative closed hydraulic wind turbine not only can make the rotor
work in an optimal speed for the sake of maximum wind energy capture, but also can keep the motor
speed at the constant value for constant frequency of electric energy generated by this hydraulic wind
turbine. Furthermore, the energy storage system can automatically store or release hydraulic energy
for eliminating the energy mismatch between turbine energy and load power in any case. Besides,
the further experimental studies basing on the hydraulic wind turbine experimental platform are
necessary to confirm the accuracy and reliability of simulating results.
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