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A B S T R A C T

The example-based super-resolution (SR) methods can be mainly categorized into two classes: the internal SR
methods and the external SR methods. The internal SR methods only use samples obtained from a single low
resolution (LR) input, while the external SR methods only utilize an external database. The complementary
information included in internal and external samples is rarely taken into account. This paper presents a novel
extraction and learning method about the complementary information between external samples and internal
samples, and then the learned complementary information is used to improve the single image SR performance.
Firstly, we construct an initial high resolution (HR) image via sparse coding over the learned dictionary pair
with external samples. Secondly, we propose an adaptive sample selection scheme (ASSS) to acquire the mixed
samples. Thirdly, we present a novel adaptive mixed samples ridge regression (AMSRR) model to effectively learn
the complementary information included in the mixed samples. Finally, we optimize the SR image. Extensive
experimental results validate the effectiveness of the proposed algorithm comparing with the state-of-the-art
methods.

1. Introduction

Image super-resolution is a technique that increases the spatial
resolution from a LR image or a series of LR images. The earliest
SR method can be dated back to 1980s [1] by signal processing
techniques. Since image SR problem has profound influence on various
fields, such as satellite imaging and medical imaging, researchers have
proposed a wide range of methods in the last three decades. The
existing SR methods can be roughly categorized into multi-frame super-
resolution [2–4] and single image super-resolution. Approaches of single
image super-resolution can be further classified into interpolation-
based methods [5,6], reconstruction-based methods [7] and example-
based methods [8–15]. In this paper, we focus on example-based single
image super-resolution. The classical example-based SR methods aim at
learning the mapping relationship between LR and HR image patches
from a preselected database. According to the different resources of the
database, the example-based image SR methods can also be classified
into external SR methods and internal SR methods. The external SR
methods usually utilize a gigantic database collected from multifarious
images. The internal SR methods focus on database generated from the
input image exploiting self-similar examples. However, both external
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samples and internal samples have inherent defects. With respect to
external samples, the mapping learned from an image of cityscape may
not be suitable to reconstruct an image of nature scenery. While the
internal samples tend to be insufficient, only fewer information can
be transmitted to reconstruction. Moreover, the generation process of
internal samples may introduce unsuitable patches. The following is the
detailed discussion about external and internal SR methods.

In order to learn the mapping between the LR and HR samples,
a representative method proposed by Yang et al. [8] exploited an
external database to train a LR and HR dictionary pair via sparse coding.
With the assumption that the LR input and its HR output shares the
same sparse coefficients, a HR image can be recovered by the sparse
coefficients of the LR input and the trained HR dictionary. A new
mapping learning method proposed by Wang et al. [11] simultaneously
learned a dictionary pair and a mapping function. The dictionary
pair reveals the structural domain, while the mapping function re-
veals the intrinsic relationship between the LR and HR images. Zeyde
et al. [9] provided a dictionary pair learning method via K-singular
value decomposition (SVD), and then they reconstructed the HR image
using the orthogonal matching pursuit (OMP) algorithm. To allow the
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same sparsity corresponding to the same dictionary atoms but different
values in the coupled feature spaces, He et al. [14] employed a beta
process model. Methods in [8,9,11] and [14] essentially concentrate
on changes in dictionary learning. Moreover, the utilization of various
prior knowledge is an active research area. Dong et al. [10] introduced
the adaptive sparse domain selection (ASDS) scheme into the SR and
exploited two adaptive regularization terms (i.e. the autoregressive
(AR) models and the nonlocal (NL) self-similarity regularization term).
Zhang et al. [12] took a high-order Markov random field (MRF)
model as the prior of nature images. They proposed the Markov chain
Monte Carlo-based sampling algorithm to estimate the HR image. Fang
et al. [16] utilized the sparse representation dictionaries constructed
from previously collected datasets to complete the task of simultaneous
denoising and super-resolution. With respect to regularization methods
in sparse domain, Liu et al. [17] proposed a novel morphologic regular-
ization method for different morphologic features. A soft information
and soft decision-based method [18] maps an LR patch to a pixel-
wise distribution of all its possible HR counterparts to get the soft
information. The final HR pixel value is made upon the maximum
posteriori estimation relying on the soft information. In terms of depth
image SR, a coupled dictionary learning method with locality coordinate
constraints was proposed in [19]. Timofte et al. [20] proposed an
anchored neighborhood regression (ANR) method to complete fast super
resolution reconstruction. The ANR anchored the neighborhoods of a
low resolution patch and embedded the nearest atom in the dictionary.
Subsequently, Timofte et al. [21] proposed the improved ANR named
A+, which unified the ANR and the simple functions. Their algorithms
accelerate the reconstruction speed by a big margin. Schulter et al. [22]
directly mapped the relationship between LR patches and HR patches
using the random forests. Zhang et al. [23] introduced a clustering and
collaborative representation to speed up the reconstruction. In essence,
there is a problem in the mapping learning from the external samples. If
the mapping learned from the external samples has high similarities to
the LR input, the SR output tends to be more reliable. On the contrary,
the SR output tends to be poor.

Instead of external SR methods, internal SR methods search for exam-
ple patches from the input image itself, based on the fact that patches
often tend to recur within the image or across different image scales.
For example, Glasner et al. [24] exploited above fact to combine the
multi-image SR and the example-based SR. Yang et al. [25] generated
the LR and HR image patches from an image pyramid using the self-
similarities. Furthermore, they exploited the group sparsity constraints
to regularize the ill-posed characteristic in SR reconstruction. Zhu
et al. [26] proposed an effective self-example learning method using the
improved K-SVD algorithm and the straightforward orthogonal match-
ing pursuit algorithm for single image super-resolution. The exploitation
of self-similarities has blazed a new path for image super-resolution,
however, these internal SR methods suffer from immanent problems.
For example, the patches generated from internal SR methods contain
limited information, so that the learned mapping cannot sufficiently
represent various image structures.

According to the discussion about external SR and internal SR,
external SR methods are usually sensitive to the correlation between
the LR input and the training set, while internal SR methods suffer
from the limited information and mismatch problems. It takes mutual
efforts to deal with the intrinsic defects of external and internal SR
methods. Recently, some researchers have made attempts to combine
the internal SR methods and the external SR methods. Based on in-place
self-similarity, Yang et al. [27] learned a first-order approximation of
a nonlinear mapping function between the external low patches and
the high resolution patches. In order to associate external samples with
internal samples, Wang et al. [28,29] proposed a joint model, which
defined two loss functions according to the external SR methods and the
internal SR methods. They also exploited a weight function to adaptively
balance the contributions of the two types of methods.

To effectively take the advantage of complementary information
between internal and external samples, we present a novel joint SR

method based on sparse representation and the adaptive mixed samples
regression. The overview of the proposed method is presented in Fig. 1.
Firstly, we generate the low frequency (LF) of an initial HR image via
sparse representation and low-pass filter. Secondly, we combine the self-
similarities image pyramid in [25] and the fast library for approximate
nearest neighbors (FLANN) [30] to quickly construct internal samples
using self-similarity across different scales, then we propose an ASSS
to adaptively select internal and external samples by minimizing the
Euclidean distances. Thirdly, we propose an AMSRR to model the
mapping between low frequency (LF) components and high frequency
(HF) components of the same mixed samples, and then reconstruct the
HF component by the learned AMSRR model. Finally, we combine the
LF component with the reconstructed HF component to generate the HR
image, and optimize the final HR image via the global means (GLM) and
the global reconstruction constraint (GRC) in [8].

The main contributions of the proposed method are presented as
follows:

∙ An ASSS is presented to adaptively select both internal and
external samples. The proposed ASSS can effectively organize the
internal and external samples to form the mixed samples.

∙ An AMSRR is proposed to model the relationship between the
low and the high frequency components. The AMSRR model can
take the advantage of the complementary information included
in the mixed samples.

The remainder of this paper is organized as follows. In Section 2, we
review the related work. In Section 3, details of the proposed algorithm
including dictionary learning, sparse reconstruction and optimization
are presented. Experiment results and discussions of parameters can be
found in Section 4. Finally, we conclude this paper in Section 5.

2. Background

The goal of single image SR is to recover a high resolution version
𝑿 from a blurred and down-sampled low resolution image 𝒀 in the
noisy environment. The relationship between LR image 𝒀 and its
corresponding HR image 𝑿 can be mathematically written as:

𝒀 = 𝑺𝑩𝑿 + 𝜐 (1)

where 𝑺 is a down-sampling operator, 𝑩 is a blurring operator, and 𝜐 is
a noise term. Given a LR input 𝒀 , there may exist many corresponding
HR images 𝑿 which satisfy the degradation model in Eq. (1). The SR
reconstruction problem is dramatically ill-posed. Thus, prior knowledge
should be incorporated into the reconstruction. A notable external SR
method proposed by Yang et al. [8] utilized a sparsity prior to deal
with single image SR. According to their method, the patches 𝒙 of a
HR image 𝑿 can be represented as a sparse linear combination over a
learned HR dictionary 𝑫ℎ: 𝒙 ≈ 𝑫ℎ𝜶 s.t. ‖𝜶‖0 ≪ 𝑐, where 𝜶 ∈ R𝑐 is a
sparse coefficients matrix and the 𝓁0-pseudo-norm counts the number
of non-zero coefficients in 𝜶. If the patch 𝒚 of the LR image 𝒀 is able to
share the same sparse coefficients, the HR patch 𝒙of 𝑿 corresponding
to the LR patch 𝒚 can be well recovered

𝒙 = 𝑫ℎ�̂�, s.t. �̂� = arg min
𝜶

‖

‖

𝒚 −𝑫𝑙𝜶‖‖
2
2 + 𝜆 ‖𝜶‖1 (2)

where 𝑫𝑙 is the LR dictionary, �̂� is the optimal sparse coefficients, and
𝜆 is a regularization coefficient to balance sparsity and the error term.
The 𝓁1-norm rather than the 𝓁0-norm is employed in Eq. (2), because
𝓁0-norm leads to a nonconvex problem.

Internal SR methods usually acquire the self-similarities in an image
pyramid. The patches with high self-similarity may exist in the same
scale or across different scales. Glasner et al. [24] successfully exploited
the patch self-similarity and reconstructed the HR image using a single
LR input. Moreover, Yang et al. [25] emphasized the self-similarity
across scales. Let 𝑰𝒏𝑖−1 denote the LR image and 𝑰𝒏𝑖 denote its adjacent
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Fig. 1. Overview of the proposed method. The blue lines represent the training part and the yellow lines represent the reconstruction part.

HR version in an image pyramid. According to the image degradation
model in Eq. (1), the relationship between 𝑰𝒏𝑖−1 and 𝑰𝒏𝑖 is given by

𝑰𝒏𝑖−1 = (𝑰𝒏𝑖 ∗ 𝑩𝑖)𝑺𝜎 (3)

where ∗ is a convolution operator, 𝑩𝑖 is a blur kernel and 𝑺𝜎 is a down-
sampling operator with scaling factor 𝜎. The subscript 𝑖 stands for the
layer number in the image pyramid.

Given an input image 𝑰𝒏0, a series of LR images 𝑰𝒏𝑖 (𝑖 = −1,−2,… ,
−𝑎) can be generated by Eq. (3) at first, where 𝑎 is determined by
upscaling factor 𝑠. The construction of HR image 𝑰𝒏𝑖 (𝑖 = 1, 2,… , 𝑎) is
illustrated in Fig. 2. As shown in Fig. 2, let 𝑰𝒏1, 𝑰𝒏2 denote the HR layers
and 𝑰𝒏−1, 𝑰𝒏−2 denote the LR layers. The patches of 𝑰𝒏1 and 𝑰𝒏2 are the
copied and enlarged versions from the patches of 𝑰𝒏0. Since there are
several similar patches (𝑃1 and 𝑃2) to every source patch 𝑃𝑠 in 𝑰𝒏0, 𝑃1
and 𝑃2 can be acquired via patch matching. Their corresponding regions
𝑅1 and 𝑅2 in 𝑰𝒏0 are also determined. In the same way, the patches 𝐷1
and 𝐷2 in the HR layers are determined by two factors: (1) the region of
source patch 𝑃𝑠, (2) the layer index of found patches (−1 or −2). Finally,
the pixel values of 𝑅1 and 𝑅2 are copied to 𝐷1 and 𝐷2 respectively with
the enlarged areas.

3. The proposed method

The proposed method named AMSRR-SCSR (sparse coding super-
resolution) can be divided into three parts: dictionary learning via K-
SVD, reconstruction and optimization. We divide the reconstruction
into two sections: reconstruction via sparse representation and adaptive
mixed samples regression model. In the following sections, we will
present the proposed method in detail.

3.1. Dictionary learning via K-SVD

The dictionary plays a key role in the sparse representation-based
SR. Various dictionary leaning methods have been proposed recently.

Fig. 2. The illustration of the image pyramid construction. 𝑃𝑠 is a source patch
in 𝑰𝒏0; 𝑃1 and 𝑃2 are the acquired similar patches in LR layers; 𝑅1 and 𝑅2 are
the corresponding regions in 𝑰𝒏0; 𝐷1 and 𝐷2 are the regions to be construct in
HR layers corresponding to 𝑃𝑠.
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Yang et al. [31] provided a coupled dictionary training method for single
image SR. In [10], Dong et al. utilized a series of PCA sub-dictionaries
and adaptively selected the optimal sub-dictionaries to recover a HR
image from a LR observation. Zhang et al. [32] employed SVD to learn
an adaptive dictionary for each group. In this section, we follow the
algorithm proposed by Aharon et al. [33] and design a pair of LR–HR
dictionary.

Given an external database
{

𝑬𝒙𝑗
}𝑏
𝑗=1, where 𝑏 is the total number

of external images. Every external image 𝑬𝒙𝑗 is down-sampled and
then interpolated to recover a middle image 𝑴𝒊𝒅𝑗 with bicubic kernel,
where 𝑴𝒊𝒅𝑗 has the same size as 𝑬𝒙𝑗 . After the database {𝑴𝒊𝒅}𝑏𝑗=1
is obtained, we get the corresponding error database

{

𝑬𝒓𝒓𝑗
}𝑏
𝑗=1 via

𝑬𝒓𝒓𝑗 = 𝑬𝒙𝑗 − 𝑴𝒊𝒅𝑗 . The filters 𝒇1 = [1, 0,−1], 𝒇2 = [1, 0,−1]T,
𝒇3 = [−1, 0, 2, 0,−1], and 𝒇4 = [−1, 0, 2, 0,−1]T in [8,9,25,34] are
used for feature extraction. Therefore, the gradient and Laplacian
features can be extracted from {𝑴𝒊𝒅}𝑏𝑗=1 along horizontal and vertical
directions respectively. We extract patches from feature images and
concatenate four features into one to get the LR feature matrix 𝑭𝐿.
The corresponding HR feature matrix 𝑭𝐻 can be acquired by extraction
patches from

{

𝑬𝒓𝒓𝑗
}𝑏
𝑗=1 directly. However, the concatenation of features

results in a very high dimensionality of 𝑭𝐿. It is necessary to introduce
the principal component analysis (PCA) [35] to seek a subspace. The
features should be projected on the subspace and preserved 99.9% of
average energy [9]. Let 𝜳 denote the projection matrix that transforms
𝑭𝐿 to its reduced eigenvectors, thus 𝜳T𝑭𝐿 is the final training subspace.
According to the definition above, the LR dictionary 𝑫𝐿 and the sparse
coefficient matrix 𝜦 can be calculated via

𝑫𝐿,𝜦 = arg min
𝑫𝐿 ,𝜦

‖

‖

‖

𝜳T𝑭𝐿 −𝑫𝐿𝜦‖

‖

‖

2

𝐹
s.t. ‖

‖

‖

𝜦𝜉
‖

‖

‖0
≤ 𝜏 ∀𝜉 (4)

where 𝜦𝜉 is the 𝜉th column of 𝜦, 𝜏 controls the sparsity and ‖⋅‖𝐹 is the
Frobenius norm. Considering 𝑭𝐻 is acquired, we train the HR dictionary
𝑫𝐻 with the assumption that HR and LR dictionaries share the same
sparse coefficients 𝜦

𝑫𝐻 = arg min
𝑫𝐻

‖

‖

‖

𝑭𝐻 −𝑫𝐻𝜦‖

‖

‖

2

𝐹
. (5)

The solution of Eq. (5) is given by a Pseudo-Inverse expression

𝑫𝐻 = 𝑭𝐻𝜦T(𝜦𝜦T)−1. (6)

3.2. Reconstruction

The reconstruction part can be divided into three phases. In the first
phase, an initial HR image is reconstructed via sparse representation. In
the second phase, an ASSS is proposed to select internal and external
samples adaptively. Finally, an AMSRR model is proposed to refine the
high frequency components of the initial HR image.

3.2.1. Reconstruction via sparse representation
Given an LR image 𝒀 , it is scaled up by the bicubic interpolation with

upscaling factor 𝑠. We extract the gradient and the Laplacian features
along horizontal and vertical directions from the interpolated middle
image. As shown in Section 3.1, we extract patches from feature images
and concatenate four features to form the feature matrix 𝑭𝐿𝑅. In order to
reduce the dimensionality of 𝑭𝐿𝑅, we apply PCA projection matrix 𝜳 to
𝑭𝐿𝑅. And then the orthogonal matching pursuit algorithm (OMP) [36]
is employed to calculate the sparse coefficients. With the LR dictionary
𝑫𝐿, we solve the sparse coefficients 𝑨 by Eq. (7).

𝑨 = arg min
𝑨

‖

‖

‖

𝜳T𝑭𝐿𝑅 −𝑫𝐿𝑨‖

‖

‖

2

𝐹
s.t. ‖‖

‖

𝑨𝜌
‖

‖

‖0
≤ 𝜏 ∀𝜌 (7)

where 𝑨𝜌 is the 𝜌th vector of 𝑨. Let 𝑹𝑜 denote the patch extraction
operator, so that 𝑹𝑜𝑿 denote the 𝑜th patch of 𝑿. Thus, we can
reconstruct an initial HR image �̂� using the HR dictionary 𝑫𝐻

�̂� = 𝜟𝒀 + 𝜑

( 𝑟
∑

𝑜=1
𝑹T

𝑜𝑹𝑜

)−1 𝑟
∑

𝑜=1
𝑹T

𝑜𝑫
𝐻𝑨 (8)

where 𝜟 is a bicubic interpolation operator, 𝜑 is a weight parameter,
and 𝑟 is the total number of the extracted patches.

3.2.2. Adaptive samples selection scheme
According to the description in Section 2, we build an image pyramid

to generate the internal database via [25]. Since the construction speed
in [25] is very slow, we introduce the FLANN in [30] to accelerate the
search of the similar patches. Comparison experiments on the improved
fast image pyramid and the method [25] in Section 4.3 demonstrate that
the improved fast image pyramid significantly speed up the construction
of the image pyramid. As a result, we can easily get the internal database
{

𝑰𝒏𝑖
}𝑎
𝑖=−𝑎 by the improved fast image pyramid and the external database

{

𝑬𝒙𝑗
}𝑏
𝑗=1. Furthermore, we present an ASSS to seek mixed samples

similar to the initial HR image �̂� from external and internal samples.
It is necessary to acquire the low and high frequency components of

each image in
{

𝑰𝒏𝑖
}𝑎
𝑖=−𝑎 and

{

𝑬𝒙𝑗
}𝑏
𝑗=1, as well as the low frequency

components of the initial HR image �̂�. We use a 7 × 7 Gaussian
filter 𝑯𝑙 with a standard deviation 1.6 to convolute each image. For
example, 𝑰𝒏𝑙𝑖=𝑯𝑙 ∗ 𝑰𝒏𝑖 is the low frequency components and 𝑰𝒏ℎ𝑖 =
𝑰𝒏𝑖 − 𝑯𝑙 ∗ 𝑰𝒏𝑖 is the corresponding high frequency components of
𝑰𝒏𝑖. Correspondingly, 𝑬𝒙𝑙𝑗 and 𝑬𝒙ℎ𝑗 are the low and high frequency
components of 𝑬𝒙𝑗 . We extract internal sample pairs

{

𝒑𝑙𝑖 ,𝒑
ℎ
𝑖
}𝑚
𝑖=1 from

𝑰𝒏𝑙𝑖, 𝑰𝒏
ℎ
𝑖 and external sample pairs

{

𝒒𝑙𝑗 , 𝒒
ℎ
𝑗

}𝑛

𝑗=1
from 𝑬𝒙𝑙𝑗 , 𝑬𝒙ℎ𝑗 , where

𝑚 and 𝑛 are the number of internal samples and external samples
respectively.

Let �̂�𝑙𝑜 denote the patch extracted from the low frequency compo-
nents of �̂�. Since searching in the low frequency components 𝑷 𝑙 =
{

𝒑𝑙𝑖
}

𝑖=1,2,…,𝑚 and 𝑸𝑙 =
{

𝒒𝑙𝑗
}

𝑖=1,2,…,𝑛
is more robust than searching in the

high frequency components 𝑷 ℎ =
{

𝒑ℎ𝑖
}

𝑖=1,2,…,𝑚 and 𝑸ℎ =
{

𝒒ℎ𝑗
}

𝑖=1,2,…,𝑛
,

we perform the 𝐾-nearest neighbor(KNN) algorithm to acquire the first
𝑘 most similar samples that similar to �̂�𝑙𝑜 in set 𝑷 𝑙 and set 𝑸𝑙

𝑼 𝑙 = KNN
(

�̂�𝑙𝑜,𝑷
𝑙 , 𝑘

)

,𝑽 𝑙 = KNN
(

�̂�𝑙𝑜,𝑸
𝑙 , 𝑘

)

(9)

where 𝑼 𝑙 and 𝑽 𝑙 are the internal and external nearest neighbors
satisfying the following conditions:
|

|

|

𝑼 𝑙|
|

|

= 𝑘,𝑼 𝑙 ∈ 𝑷 𝑙 ∀𝒖 ∈ 𝑼 𝑙 ,𝒑 ∈ 𝑷 𝑙 − 𝑼 𝑙 ,D
(

�̂�𝑙𝑜, 𝒖
)

≤ D
(

�̂�𝑙𝑜,𝒑
)

|

|

|

𝑽 𝑙|
|

|

= 𝑘,𝑽 𝑙 ∈ 𝑸𝑙 ∀𝒗 ∈ 𝑽 𝑙 , 𝒒 ∈ 𝑸𝑙 − 𝑽 𝑙 ,D
(

�̂�𝑙𝑜, 𝒗
)

≤ D
(

�̂�𝑙𝑜, 𝒒
) (10)

where 𝐷 is the Euclidean distance metric. We still use the FLANN
lib [30] to effectively solve Eq. (9). The ASSS can be completed quite fast
with FLANN [30], even the values of 𝑚 and 𝑛 are very large. Thus, we
can combine internal samples and external samples to form the mixed
samples

𝜱𝑙
𝑜=

[

𝑼 𝑙

𝑽 𝑙

]

, 𝜱ℎ
𝑜=

[

𝑼ℎ

𝑽 ℎ

]

(11)

where𝜱𝑙
𝑜,𝜱

ℎ
𝑜 are the low and high frequency components of the selected

mixed samples corresponding to �̂�𝑙𝑜. 𝑼ℎ, 𝑽 ℎ are the high frequency
components corresponding to 𝑼 𝑙 and 𝑽 𝑙 respectively.

3.2.3. Adaptive mixed samples ridge regression model
It is well known that the high frequency components are the key

of the SR reconstruction. To refine the high frequency components
of the initial HR image �̂�, we introduce an adaptive mixed samples
ridge regression model. Inspired by the recent work [20], given a low
frequency patch �̂�𝑙𝑜, we formulate the reconstruction question as a least
squares regression problem and use the 𝑙2 regularization to deal with the
extremely ill-posed characteristic. The ridge regression as a well-known
method for solving ill-posed problems is used in the reconstruction.
Because the proposed model is based on mixed samples and ridge
regression, we name it as AMSRR. In order to take the advantage of
the complementary information, we formulate the question as solving
the coefficients of AMSRR

𝜷𝑜 = arg min
𝜷𝑜

‖

‖

‖

�̂�𝑙𝑜 −𝜱𝑙
𝑜𝜷𝑜

‖

‖

‖

2

2
+ 𝜂‖

‖

𝜷𝑜
‖

‖

2
2 (12)
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where 𝜂 is a regularization parameter. The solution of Eq. (12) is given
by

𝜷𝑜 =
(

𝜱𝑙T
𝑜 𝜱𝑙

𝑜 + 𝜂𝑰
)−1

𝜱𝑙T
𝑜 �̂�𝑙𝑜 (13)

where 𝑰 is an identify matrix. And then, we use the coefficients 𝜷𝑜 to
reconstruct the high frequency components via Eq. (13)

𝑿ℎ =

( 𝑟
∑

𝑜=1
𝑹T

𝑜𝑹𝑜

)−1 𝑟
∑

𝑜=1
𝜱ℎ

𝑜𝜷𝑜 (14)

where 𝜱ℎ
𝑜 is the high frequency components of the selected mixed

samples. Ultimately, we reconstruct the HR image 𝑿 via

𝑿 = 𝑯𝑙�̂� + 𝜌

( 𝑟
∑

𝑜=1
𝑹T

𝑜𝑹𝑜

)−1 𝑟
∑

𝑜=1
𝜱ℎ

𝑜𝜷𝑜 (15)

where 𝜌 is a weight parameter.

3.3. Optimization

Recent research [24] has shown that the nature images tend to
contain repetitive patterns. The nonlocal redundancies are usually
collected and employed to improve the quality of the reconstructed HR
image. The nonlocal means (NLM) algorithm [37] searches the similar
patches centered on a target patch with a limited radius, while we extend
the search area to the global region named the GLM algorithm. Suppose
that 𝒙𝑜 is a local patch of the current estimation, we employ the FLANN
method [30] to search several similar patches {𝒙𝑒𝑜}

𝜇
𝑒=1 corresponding to

𝒙𝑜 in the global region. The similar patches are used to predict 𝒙𝑜 by

𝒙𝑜 =
𝜇
∑

𝑒=1
𝒙𝑒𝑜𝑔

𝑒
𝑜 (16)

where the weight 𝑔𝑒𝑜 is calculated by

𝑔𝑒𝑜 =
1
𝛾
exp(−‖

‖

𝒙𝑜 − 𝒙𝑒𝑜‖‖
2
2∕𝑤) (17)

where 𝑤 is a control factor of weight and 𝛾 =
∑𝜇

𝑜=1 exp(−
‖

‖

𝒙𝑜 − 𝒙𝑒𝑜‖‖
2
2∕𝑤).

Let 𝒈𝑜 be the column vector containing all the weights 𝑔𝑒𝑜 and 𝝌𝑜 be the
column vector containing all the similar patches 𝒙𝑒𝑜. We expect that the
prediction error ‖

‖

𝒙𝑜 − 𝒈T𝑜𝝌𝑜
‖

‖

2
2 should be minimized. Let 𝑰 be the identity

matrix and 𝜣 is defined as

𝜣(𝑜, 𝑒) =
{

𝑔𝑒𝑜 , if 𝒙𝑒𝑜 is an element of 𝝌𝑜, 𝑔
𝑒
𝑜 ∈ 𝒈𝑜

0, otherwise. (18)

The prediction error ‖
‖

𝒙𝑜 − 𝒈T𝑜𝝌𝑜
‖

‖

2
2 can be rewritten as ‖(𝑰 −𝜣)𝑿‖

2
2.

We adopt the gradient descent rule to enforce the GRC as in [8].
We project 𝑿 onto the solution 𝑺𝑩𝑿 = 𝒀 and incorporate the global
similarity regularization term to the optimization question

𝑿∗ = arg min
𝑿

{

‖𝑺𝑩𝑿 − 𝒀 ‖

2
2 + 𝜃‖‖

‖

𝑿 −𝑿‖

‖

‖

2

2
+ 𝜀‖(𝑰 −𝜣)𝑿‖

2
2

}

. (19)

The solution of Eq. (19) can be effectively calculated using the gradient
descent rule and the update equation can be formulated as

𝑿𝑡+1

= 𝑿𝑡 + 𝑣
[

𝑩T𝑺T (𝒀 − 𝑺𝑩𝑿𝑡
)

+ 𝜃
(

𝑿 −𝑿
)

− 𝜀(𝑰 −𝜣)T(𝑰 −𝜣)𝑿𝑡

]

(20)

where 𝑿𝑡 is the estimate of the high-resolution image after the 𝑡th
iteration, 𝑣 is the step size of the gradient descent, 𝜃 and 𝜀 are the weight
parameters. In the end, the optimal 𝑿∗ is generated as the final HR
output image.

We summarize the proposed method in Algorithm 1.

4. Experimental results

In this section, we conduct a batch of experiments to demonstrate
the effectiveness of the proposed method. Parameters analysis and com-
parison experiments are presented as follows. We have completed the
proposed algorithm in MATLAB R2014b and conducted the experiments
on a PC with Intel Core i5 at 3.3 GHz and 12.0GB memory. Since
human vision is more sensitive to luminance changes, the luminance
channel of each color image is upscaled by all test methods and
the chrominance channel of each color image is upscaled by bicubic
interpolation method. Moreover, the peak signal to noise ratio (PSNR)
and the structural similarity (SSIM) [38] are adopted to evaluate the
quality of reconstructed images.

The training datasets are generated from the 91 training images
in [34]. The ‘‘Set 5’’ and ‘‘Set 14’’ [20] containing 5 and 14 images
respectively are used for SR performance testing. Note that the selected
training set is only used for dictionary training offline, however, both
training set and testing set are treated as the sources of external samples
and internal samples respectively. The original HR images in ‘‘Set 5’’ and
‘‘Set 14’’ are blurred with the bicubic kernel and decimated by a factor
of 𝑠 to generate the input LR images.

4.1. Experimental settings

In the training and reconstruction phases, a window of size 3 × 3
multiplying up-scaling factor 𝑠 is employed to extract patches. More
specifically, the patch size is set as 6 × 6 when 𝑠 = 2 and 9 × 9 when
𝑠 = 3. The sparsity 𝜏 is set as 3. In the dictionary training phase, we
set the overlap as half the patch size, i.e., the overlap is set as 3 for
up-scaling factor 2 and 5 for up-scaling factor 3. In the end, we collect
573,353, 315,093 and 137,718 LR and HR feature pairs, respectively.
In the reconstruction phase, the configurations of parameter 𝜂 and 𝜑
vary according to different up-scaling factor 𝑠. For example, we set the
regularization parameter 𝜂 as 0.0001 for up-scaling factor 2 and 0.05
for up-scaling factor 3. The weight parameter 𝜌 is set as 1 under up-
scaling factor 2 and 3. The other parameters, such as the global similar
patch number 𝜇, the iteration number 𝑡, the step size 𝑣, and the weight
parameters 𝜑, 𝜃, 𝜀 are set as 10, 200, 1.8, 1, 1, and 0.05 respectively.
The overlap is set as 4, 6, 10 respectively for the LR image to be coded
over the learned dictionaries. In the sample selection scheme, we collect
576,284 low and high frequency image patch pairs as the external
sample set for up-scaling factor 2, 317,719 for up-scaling factor 3, and
138,812 for up-scaling factor 4. Since the sizes of the input LR images
vary from each other, the number of internal samples is quite different.
Here, we report our overlap configuration. The overlap is set as 5, 8,
10 respectively. The parameter 𝑘 stands for the number of external and
internal samples that will be selected. We will discuss the selection of 𝑘
in the next section.

4.2. Parameters analysis

In this section, we discuss the influence of the parameter 𝑘. In our
experiments, the number of the selected internal samples and external
samples is equal. To acquire the first 𝑘 most similar samples from
internal sample set 𝑷 𝑙 and external sample set 𝑸𝑙 for each low frequency
�̂�𝑙𝑜 respectively, we use the FLANN lib [30]. In essence, FLANN [30]
can perform the searching task quite fast. Fig. 3 presents the average
PSNR and SSIM values of images in Set 14 according to different values
of sample number 𝑘. It is clear that both the average PSNR and SSIM
values ascend at first and then descend as 𝑘 increases. Because there is
limited information in the selected mixed samples 𝜱𝑙

𝑜 and 𝜱ℎ
𝑜 when 𝑘

is small. As 𝑘 increases, more available information included in these
similar samples is collected. The accumulation of 𝑘 contributes to a
better SR result. However, when 𝑘 exceeds a certain number (such as 15
shown in Fig. 3), the accumulated dissimilar patches with much wrong
information will degrade the quality of the reconstruction results.
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Table 1
The construction time comparison between method [25] and the fast image pyramid.
Set14 Input size Yang et al. [25] Ours Set14 Input size Yang et al. [25] Ours
Image name Time (s) Time (s) Image name Time (s) Time (s)

baboon 160 × 166 1567.19 120.58 foreman 96 × 117 373.97 52.14
barbara 192 × 240 3370.95 271.92 lenna 170 × 170 1593.67 178.5
bridge 170 × 170 1613.00 144.86 man 170 × 170 1795.02 174.97
coastguard 96 × 117 374.83 53.41 monarch 170 × 256 2799.25 236.38
comic 120 × 83 385.81 50.35 pepper 170 × 170 1631.08 167.40
face 92 × 92 269.08 40.39 ppt3 218 × 176 2233.35 229.00
flower 120 × 166 944.57 115.04 zebra 130 × 195 1605.13 131.72

4.3. Experiments about fast image pyramid

Since we have improved the construction of image pyramid in [25],
we compare the elapsed time of building the same image pyramid
between our fast image pyramid and the method in [25]. When the

upscaling factor 𝑠 is 3, we create an image pyramid with 11 layers. In
our experiments, we set the variance of Gaussian blur kernel as ∇ = 1.0
and the subscript ∇ = 1.0 as 𝜎 = 1.25 in Eq. (3). This setting is in
accordance with [25]. Table 1 shows the sizes of the input images and
the construction time of the corresponding pyramids. It is clear that our

84



C. Zhang et al. Signal Processing: Image Communication 67 (2018) 79–89

Fig. 3. The average PSNR (dB) and SSIM values for up-scaling ×3 in Set14 with different values of 𝑘. (a) The average PSNR values. (b) The average SSIM values.

method significantly accelerate the construction of the image pyramid.
The fast image pyramid saves about 85%–95% time of the construction
compared with the method in [25]. Indeed, our fast image pyramid
boosts the construction speed without any performance degradation.

4.4. Comparisons with the state-of-the-art methods

In this section, we compare the proposed AMSRR-SCSR method
with some state-of-the-art methods to validate the effectiveness of
the proposed algorithm. The competing methods include the classical
sparse representation-based method proposed by Zeyde et al. in [9],
the regression-based method proposed by Timofte et al. in [21], the
self-exemplars-based method proposed by Huang et al. in [39] and
the deep learning-based method [40–42]. The sparse representation-
based method [9] stands for the baseline and the four methods [21,39–
42] stand for the state-of-the-art methods. According to their released
source codes, all experimental results are compared subjectively and
objectively. The quantified SR results (PSNR and SSIM scores) for
different up-scaling factors (2 and 3) are listed in Tables 2, 3, 4, and
5, respectively. The visual comparisons are presented in Figs. 4, 5, 6,
and 7.

Tables 2–5 show the proposed AMSRR-SCSR method outperforms SR
methods [9,21,39,40] and is slightly better than the deep learning-based
method [41], but cannot beat VDSR [42]. The gains are 1.24 dB higher
than the baseline [9] on Set5 in terms of average PSNR value and 0.0078
higher in terms of average SSIM value for up-scaling ×2. When it comes
to up-scaling ×3, the gains on Set5 are 1.19 dB and 0.0185 respectively.
The gains on Set14 are 0.90 dB in terms of average PSNR value, 0.0109
in terms of average SSIM value for up-scaling ×2, and 0.79 dB in terms
of average PSNR value, 0.0175 in terms of average SSIM value for up-
scaling ×3. Compared with A+ [21], the gains for up-scaling ×2 are 0.47
dB on Set5 and 0.43 dB on Set14 in terms of average PSNR value, 0.0027
on Set5 and 0.0040 on Set14 in terms of average SSIM value. For up-
scaling ×3, the gains are 0.50 dB on Set5 and 0.33 dB on Set14 in terms
of average PSNR value, 0.0068 on Set5 and 0.0060 on Set14 in terms of
average SSIM value.

We also conduct experiments with and without the proposed ASSS
and AMSRR model to demonstrate the effectiveness of the proposed
method. We name the proposed algorithm without ASSS and AMSRR as
SCSR. Tables 2–5 show that the proposed ASSS and AMSRR significantly
promote the SR performances. Compared with our SCSR, the gains of the
proposed AMSRR-SCSR method are 1.20 dB in terms of average PSNR
value and 0.0069 in terms of average SSIM value on Set5 for up-scaling
×2; the gains are 1.09 dB in terms of average PSNR value and 0.0169

in terms of average SSIM value on Set5 for up-scaling ×3; the gains are
0.90 dB in terms of average PSNR value and 0.0078 in terms of average
SSIM value on Set14 for up-scaling ×2; the gains are 0.77 dB in terms
of average PSNR value and ,0.0129 in terms of average SSIM value on
Set14 for up-scaling ×3.

From Figs. 4, 5, 6, and 7, we can see that the proposed AMSRR-
SCSR method is competitive and usually produces shaper boundaries
and more details than the competing methods. For example, the eyebrow
of Fig. 4, i.e. the ‘woman’, reconstructed by our proposed AMSRR-SCSR
method is shaper than others and is the closest to the ground truth; With
respective to the ‘ppt3’ in Fig. 5, our proposed AMSRR-SCSR method
provides the clearest words in the yellow rectangle; in the ‘baby’ image,
i.e. Fig. 6, our proposed AMSRR-SCSR method produces more details
of the eyelashes than other methods, while VDSR [42] provides the
sharpest visual quality; In Fig. 7, both VDSR [42] and our proposed
AMSRR-SCSR methods reconstruct more reliable texture of the legs than
others.

4.5. Computational complexity

We analyze the computational complexity of the proposed AMSRR-
SCSR method. The computational complexity mainly consists of four
parts: (1) reconstruction via sparse coding with Eq. (4), (2) the proposed
ASSS by solving Eq. (9), (3) computing the ridge regression coefficients
for each patch by solving Eq. (13), (4) the optimization process.

(1) The complexity of reconstruction via sparse coding can be
divided into two parts: the sparse coding over the LR dictionary 𝑫𝐿

using Eq. (4) and the reconstruction over the learned HR dictionary 𝑫𝐻

by solving Eq. (6). We use the Batch-OMP algorithm proposed in [36]
with an explicit dictionary to solve Eq. (4). According to the complexity
analysis of [36], the complexity is 𝑶

(

𝑟
(

2𝑑1𝑑2 + 𝜏2𝑑2 + 3𝜏𝑑2 + 𝜏3
))

,
where 𝑑1 and 𝑑2 are the dimensions of the LR dictionary 𝑫𝐿. In addition,
the complexity of the reconstruction over the HR dictionary 𝑫𝐻 is
𝑶
(

𝑟𝑑3𝑑2
)

, where 𝑑3 is the dimension of the patch. Thus, the complexity
of the reconstruction via sparse coding is 𝑶(𝑟(2𝑑1𝑑2 + 𝜏2𝑑2 + 3𝜏𝑑2 + 𝜏3

+ 𝑑3𝑑2)). (2) Following the analysis described in [43], the complexity
of searching includes the tree construction time complexity and the
searching time complexity, because we use the priority search k-means
tree. The complexity is 𝑶

(

𝑚𝑑3𝜅ℎ (log𝑚∕ log 𝜅)
)

+ 𝑶
(

𝑟𝑑3 (log𝑚∕ log 𝜅)
)

and 𝑶
(

𝑛𝑑3𝜅ℎ (log 𝑛∕ log 𝜅)
)

+ 𝑶
(

𝑟𝑑3 (log 𝑛∕ log 𝜅)
)

for the internal sam-
ples and the external samples in the ASSS phase, respectively, where
𝜅 is the branching factor and ℎ is the maximum number of it-
eration. (3) In the high frequency components refinement phase,
the complexity is 𝑶

(

𝑟(8𝑘3 + 2𝑑3𝑘)
)

, which includes solving Eq. (13)

85



C. Zhang et al. Signal Processing: Image Communication 67 (2018) 79–89

Table 2
The average PSNR (dB) and SSIM values of images in Set5 for up-scaling × 2 by using different SR approaches.

Image Method

Zeyde et al. [9] A+ [21] SelfExSR [39] SRCNN [40] FSCNN [41] VDSR [42] Our SCSR AMSRR-SCSR

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

baby 38.25 0.9628 38.52 0.9647 38.46 0.9643 38.54 0.9651 38.56 0.9654 38.75 0.9667 38.46 0.9651 38.78 0.9675
bird 39.93 0.9836 41.12 0.9865 41.07 0.9864 40.91 0.9859 41.65 0.9869 42.42 0.9890 40.02 0.9845 41.47 0.9876
butterfly 30.65 0.9541 32.01 0.9652 31.94 0.9635 32.75 0.9652 33.34 0.9694 34.49 0.9750 30.36 0.9500 32.88 0.9684
head 35.59 0.8819 35.77 0.8867 35.68 0.8852 35.72 0.8862 35.76 0.8871 35.93 0.8900 35.69 0.8857 35.88 0.8896
woman 34.49 0.9646 35.31 0.9694 35.36 0.9690 35.37 0.9686 35.69 0.9702 36.05 0.9730 34.59 0.9661 36.07 0.9731
Average 35.78 0.9494 36.55 0.9545 36.50 0.9538 36.66 0.9542 37.00 0.9558 37.53 0.9587 35.82 0.9503 37.02 0.9572

Table 3
The average PSNR (dB) and SSIM values of images in Set5 for up-scaling × 3 by using different SR approaches.

Image Method

Zeyde et al. [9] A+ [21] SelfExSR [39] SRCNN [40] FSCNN [41] VDSR [42] Our SCSR AMSRR-SCSR

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

baby 35.08 0.9202 35.21 0.9225 35.20 0.9236 35.25 0.9233 35.29 0.9238 35.38 0.9261 35.25 0.9242 35.52 0.9283
bird 34.57 0.9478 35.54 0.9560 35.76 0.9583 35.48 0.9550 36.01 0.9588 36.66 0.9643 34.63 0.9498 35.90 0.9601
butterfly 25.94 0.8803 27.24 0.9124 26.92 0.9060 27.95 0.9121 28.68 0.9266 29.96 0.9423 25.98 0.8749 28.39 0.9253
head 33.56 0.8197 33.77 0.8268 33.74 0.8272 33.71 0.8267 33.81 0.8286 33.96 0.8337 33.66 0.8252 33.86 0.8304
woman 30.37 0.9185 31.20 0.9296 31.45 0.9319 31.37 0.9297 32.01 0.9348 32.36 0.9404 30.48 0.9203 31.77 0.9347
Average 31.90 0.8973 32.59 0.9090 32.62 0.9094 32.75 0.9094 33.16 0.9145 33.66 0.9213 32.00 0.8989 33.09 0.9158

Table 4
The average PSNR (dB) and SSIM values of images in Set14 for up-scaling × 2 by using different SR approaches.

Image Method

Zeyde et al. [9] A+ [21] SelfExSR [39] SRCNN [40] FSCNN [41] VDSR [42] Our SCSR AMSRR-SCSR

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

baboon 25.47 0.7522 25.65 0.7662 25.52 0.7625 25.74 0.7706 25.82 0.7757 25.94 0.7787 25.55 0.7629 25.61 0.7666
barbara 28.70 0.8707 28.70 0.8749 28.49 0.8742 28.64 0.8733 28.31 0.8719 28.41 0.8777 28.70 0.8746 28.61 0.8738
bridge 27.55 0.8398 27.78 0.8498 25.89 0.8258 27.84 0.8520 27.88 0.8548 28.05 0.8585 27.58 0.8459 27.90 0.8548
coastguard 30.41 0.8373 30.57 0.8428 30.70 0.8473 30.83 0.8497 30.81 0.8490 30.99 0.8549 30.46 0.8457 31.18 0.8602
comic 27.65 0.8959 28.29 0.9110 28.35 0.9149 28.52 0.9123 28.89 0.9197 29.40 0.9319 27.74 0.9002 28.61 0.9167
face 35.57 0.8820 35.74 0.8868 35.63 0.8851 35.70 0.8863 35.74 0.8872 35.91 0.8900 35.66 0.8859 35.86 0.8897
flowers 32.28 0.9271 33.02 0.9356 33.02 0.9354 33.32 0.9363 33.67 0.9400 34.33 0.9459 32.27 0.9292 33.45 0.9396
foreman 36.18 0.9687 36.94 0.9727 36.79 0.9689 36.42 0.9711 36.87 0.9723 37.40 0.9737 36.56 0.9694 37.68 0.9741
lenna 36.21 0.9262 36.60 0.9296 36.52 0.9289 36.64 0.9296 36.83 0.9312 37.06 0.9326 36.33 0.9289 36.86 0.9321
man 30.44 0.877 30.87 0.8859 30.83 0.8851 31.04 0.8877 31.16 0.8905 31.43 0.8963 30.44 0.8797 30.99 0.8878
monarch 35.75 0.9726 37.01 0.9767 37.22 0.9762 37.74 0.9770 38.31 0.9784 39.40 0.9809 35.64 0.9730 37.83 0.9785
pepper 36.59 0.9188 37.02 0.9216 37.00 0.9211 36.87 0.9211 37.03 0.9222 37.37 0.9240 36.39 0.9199 37.07 0.9224
ppt3 29.30 0.9694 30.09 0.9768 31.43 0.9821 31.52 0.9785 31.65 0.9806 32.81 0.9871 28.91 0.9631 32.03 0.9831
zebra 33.21 0.9388 33.59 0.9426 33.79 0.9431 33.49 0.9436 33.89 0.9446 34.23 0.9456 33.17 0.9418 34.18 0.9492
Average 31.81 0.8983 32.28 0.9052 32.23 0.9036 32.45 0.9064 32.63 0.9084 33.03 0.9124 31.81 0.9014 32.71 0.9092

Table 5
The average PSNR (dB) and SSIM values of images in Set14 for up-scaling × 3 by using different SR approaches.

Image Method

Zeyde et al. [9] A+ [21] SelfExSR [39] SRCNN [40] FSCNN [41] VDSR [42] Our SCSR AMSRR-SCSR

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

baboon 23.52 0.5903 23.62 0.6070 23.53 0.6042 23.67 0.6118 23.71 0.6167 23.78 0.6205 23.58 0.6047 23.60 0.6076
barbara 26.76 0.7785 26.47 0.7759 26.96 0.7911 26.55 0.7778 26.42 0.7759 26.21 0.7805 26.84 0.7844 26.98 0.7895
bridge 25.02 0.6985 25.17 0.7113 24.08 0.6865 25.24 0.7168 25.28 0.7192 25.38 0.7238 25.06 0.7087 25.29 0.7196
coastguard 27.15 0.6499 27.27 0.6584 27.23 0.6608 27.36 0.6618 27.24 0.6621 27.35 0.6722 27.16 0.6618 27.31 0.6625
comic 23.96 0.7524 24.38 0.7771 24.41 0.7838 24.55 0.7826 24.72 0.7911 25.11 0.8121 24.05 0.7611 24.50 0.7838
face 33.53 0.8190 33.76 0.8268 33.71 0.8265 33.72 0.8264 33.83 0.8283 33.95 0.8330 33.61 0.8243 33.89 0.8302
flowers 28.43 0.8364 29.05 0.8516 29.10 0.8550 29.26 0.8540 29.45 0.8593 30.01 0.8720 28.50 0.8411 29.33 0.8575
foreman 33.19 0.9323 34.3 0.9428 34.22 0.9386 33.89 0.9405 34.12 0.9438 35.00 0.9484 33.18 0.9332 34.74 0.9463
lenna 33.00 0.8771 33.52 0.8842 33.51 0.8860 33.67 0.8858 33.85 0.8878 33.97 0.8911 33.11 0.8811 33.72 0.8870
man 27.90 0.7852 28.28 0.7987 28.34 0.8023 28.42 0.8020 28.53 0.8058 28.78 0.8151 27.93 0.7899 28.42 0.8027
monarch 31.10 0.9371 32.14 0.9463 32.10 0.9476 32.81 0.9480 33.44 0.9524 34.69 0.9601 31.16 0.9377 33.12 0.9517
pepper 34.07 0.8859 34.74 0.8914 34.82 0.8929 34.71 0.8912 34.89 0.8928 35.30 0.8969 33.91 0.8865 34.88 0.8935
ppt3 25.23 0.9087 26.09 0.9319 27.08 0.9481 27.04 0.9372 27.11 0.9398 27.86 0.9616 24.97 0.8962 27.03 0.9432
zebra 28.49 0.8421 28.98 0.8513 29.18 0.8527 29.29 0.8561 29.42 0.8569 29.50 0.8585 28.52 0.8481 29.67 0.8638
Average 28.67 0.8067 29.13 0.8182 29.16 0.8197 29.30 0.8209 29.43 0.8237 29.77 0.8314 28.69 0.8113 29.46 0.8242

and refining the high frequency components with the ridge regres-
sion coefficients. 4) The main complexity in optimization process
is to update the weight matrix 𝜣. The complexity of updating is
𝑶
(

𝑧𝑑4𝜅ℎ (log 𝑧∕ log 𝜅)
)

+𝑶
(

𝑧𝑑4 (log 𝑧∕ log 𝜅)
)

for one iteration. The total

complexity is 𝑶
(

𝑡1𝑧𝑑4𝜅ℎ (log 𝑧∕ log 𝜅)
)

+𝑶
(

𝑡1𝑧𝑑4 (log 𝑧∕ log 𝜅)
)

, where 𝑧

is the number of patches extracted from 𝑿𝑡, 𝑡1 is the updating weight of

the GLM 𝑔𝑒𝑜 , and 𝑑4 is the corresponding patch size.
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Fig. 4. SR results of the image ‘bird’ from Set5 for upscaling ×2. Images from top to bottom and left to right: LR input image, reconstructed HR image by Zeyde
et al. [9], A+ [21], SelfExSR [39], SRCNN [40], FSCNN [41], VDSR [42], our SCSR, and our proposed AMSRR-SCSR, as well as the ground truth HR image.

Fig. 5. SR results of the image ‘ppt3’ from Set14 for upscaling ×2. Images from top to bottom and left to right: LR input image, reconstructed HR image by Zeyde
et al. [9], A+ [21], SelfExSR [39], SRCNN [40], FSCNN [41], VDSR [42], our SCSR, and our proposed AMSRR-SCSR, as well as the ground truth HR image.

5. Conclusion

In this paper, we present a novel joint SR algorithm to deal with
the inherent defects of the internal SR and the external SR methods.
The proposed ASSS adaptively generates the mixed samples based on
input LR image and the proposed AMSRR model effectively learns the
complementary information included in the mixed samples. Moreover,

the final HR output image is optimized by the GLM and GRC. The
qualitative and quantitative experimental results demonstrate that our
algorithm reconstructs fine details and preserves sharp edges. Due to
the fact that deep neural networks have powerful feature learning
ability, the deep learning techniques have successfully been applied to
image classification, acquisition and representation. We will research
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Fig. 6. SR results of the image ‘baby’ from Set5 for upscaling ×3. Images from top to bottom and left to right: LR input image, reconstructed HR image by Zeyde
et al. [9], A+ [21], SelfExSR [39], SRCNN [40], FSCNN [41], VDSR [42], our SCSR, and our proposed AMSRR-SCSR, as well as the ground truth HR image.

Fig. 7. SR results of the image ‘zebra’ from Set14 for upscaling ×3. Images from top to bottom and left to right: LR input image, reconstructed HR image by Zeyde
et al. [9], A+ [21], SelfExSR [39], SRCNN [40], FSCNN [41], VDSR [42], our SCSR, and our proposed AMSRR-SCSR, as well as the ground truth HR image.

the internal and external sample priors within a deep neural network
framework in the future work.
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