
Neurocomputing 312 (2018) 324–335 

Contents lists available at ScienceDirect 

Neurocomputing 

journal homepage: www.elsevier.com/locate/neucom 

Supervised latent Dirichlet allocation with a mixture of sparse softmax 

Xiaoxu Li a , b , ∗, Zhanyu Ma 

a , Pai Peng 

c , Xiaowei Guo 

c , Feiyue Huang 

c , Xiaojie Wang 

d , 
Jun Guo 

a 

a School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China 
b School of Computer and Communication, Lanzhou University of Technology, Lanzhou 730050, China 
c YoutuLab, Tecent Technology (Shanghai) Co., Ltd, Shanghai 200233 China 
d School of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876, China 

a r t i c l e i n f o 

Article history: 

Received 29 November 2016 

Revised 6 May 2018 

Accepted 18 May 2018 

Available online 26 May 2018 

Communicated by zhi yong Liu 

Keywords: 

Supervised topic model 

Ensemble classification 

Mixture of softmax model 

Latent Dirichlet allocation 

a b s t r a c t 

Real data often show that from appearance within-class similarity is relatively low and between-class 

similarity is relatively high, which could increase the difficulty of classification. To classify this kind of 

data effectively, we learn multiple classification criteria simultaneously, and make different classification 

criterion be applied to classify different data for the purpose of relieving difficulty of fitting this kind of 

data and class label only by using a single classifier. Considering that topic model can learn high-level se- 

mantic features of the original data, and that mixture of softmax model is an efficient and effective prob- 

abilistic ensemble classification method, we embed a mixture of softmax model into latent Dirichlet al- 

location model, and propose a supervised topic model, supervised latent Dirichlet allocation with a mixture 

of softmax , and its improved version, supervised latent Dirichlet allocation with a mixture of sparse softmax . 

Next, we give their parameter estimation algorithms based on variational Expectation Maximization (EM) 

method. Moreover, we give an approximation method to classify unseen data, and analyze the conver- 

gence of the parameter estimation algorithm. Finally, we demonstrate the effectiveness of the proposed 

models by comparing them with some recently proposed approaches on two real image datasets and one 

text dataset. The experimental results demonstrate the good performance of the proposed models. 

© 2018 Published by Elsevier B.V. 
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1. Introduction 

Classification on real data has been a very important and chal-

lenging task in both computer vision and data mining. An impor-

tant challenge is that some real data often show from appearance

within-class similarity is relatively low, while between-class sim-

ilarity is relatively high. One example of image data is shown in

Fig. 1 . From appearance images in “croquet” and “bocce” class are

very similar, while images fr om the same “polo” class are very

different. From appearance images in “inside city” and “tall build-

ing” class are very similar, while images from the same “high way”

class are very different. For another example from text data, a doc-

ument introducing a film about artificial intelligence belongs to

“entertainment” class, and is quite similar to another document in-

troducing the theory of artificial intelligence but belonging to “sci-

ence and technology” class. While two documents belonging to the

“science and technology” class, which are about biology and as-

tronomy respectively, have quite different text words. This paper
∗ Corresponding author at: School of Computer and Communication, Lanzhou 

University of Technology, Lanzhou 730050, China. 
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ocuses on classifying this kind of data or data whose subset be-

ongs to this kind of data. 

To classify this kind of data accurately, we try to learn multiple

lassification criteria simultaneously, and make different classifica-

ion criterion be applied to classify different data so as to relieve

ifficulty of fitting this kind of data and class label only by using a

ingle classifier. Generally, one single classification criterion is dif-

cult to fit the relationship between a complex image and its class

abel, while ensemble methods constructing a combined classifica-

ion criterion could obtain better predictive performance in theory.

here are some successful ensemble methods [1] trying to learn

ombined classification criterion from low-level features, such as

oosting and some conditional mixture models [2] . 

In addition, topic model originated from text processing

3,4] can learn high-level semantic features of the original data by

imensionality reduction. Until now, much works based on topic

odel for classification has been done [5–7] . And these works can

e fitted into one of two main categories: the double-phase and

he single-phase. The double-phase methods tries to first learn

igh-level features based on unsupervised topic model, and the

earned semantic features are then fed into classifiers. The single-

hase methods attempt to jointly learn high-level features and

https://doi.org/10.1016/j.neucom.2018.05.077
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2018.05.077&domain=pdf
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a b

Fig. 1. Example images with the class label from (a). UIUC-Sport dataset [7] (b). LabelMe dataset [11] . 

c  

t  

l  

U  

m

 

m  

c  

t  

f  

m  

m  

w  

e  

a  

a  

i  

n  

t

1

 

d  

s  

b  

N  

r  

i  

j  

t  

u  

n  

w  

i  

b  

d  

v  

(  

h  

c  

s  

u

 

w  

d  

a  

a  

l  

t

 

a  

t  

a  

i  

l  

n  

b

 

s  

T  

s  

m  

o  

s  

b  

e  

c

m  

a  

t  

S  

e  

f  

c  

s  

o  

i  

a

m  

m  

n  

m  

m  

a  

m

 

t  

m  

s  

m  

fi  

d  

g

lassifier, and construct a supervised topic model. A common fea-

ure of the two kinds of methods is that all of them construct or

earn a single classification criterion (classifier) for all training data.

nlike these works, this paper tries to construct a supervised topic

odel which has the merits of the ensemble classification. 

The paper is built on topic models [8,9] and mixture of soft-

ax model (SMM) [2] , in which SMM is a probabilistic ensemble

lassification method, also constructs a combined classification cri-

erion. We embed a mixture of softmax into LDA model under the

ramework of supervised LDA, and then propose a supervised topic

odel, supervised latent Dirichlet allocation with a mixture of soft-

ax , and its improved version, supervised latent Dirichlet allocation

ith a mixture of sparse softmax . Moreover, we give a parameter

stimation algorithm based on variational EM method [10] and an-

lyze the convergence of the parameter estimation algorithm. In

ddition, embedding a mixture of softmax into LDA model signif-

cantly increases the difficulty in solving the parameters, which is

ot simply “plug and play”, so that we use some approximation

ricks in parameter optimization, as shown in Section 3 . 

.1. Related work 

Latent aspect models have recently gained much popularity for

iscovering the semantic aspects (topics) from low-level features of

ingle modal data [3,12] and multi-modal data [6,13,14] . They can

e divided into latent aspect models based on directed Bayesian

etwork and the ones based on undirected Markov network. Undi-

ected Markov network methods, including the exponential fam-

ly of Harmoniums and its special cases of restricted RBM, en-

oys the property of fast inference. In this branch, Chen proposed

he infinite exponential family Harmonium (iEFH) [15] , a bipartite

ndirected latent variable model that automatically determines the

umber of latent units. Zhang et al. [16] developed a new triple

ing harmonium Model projecting these multiple textual features

nto low-dimensional latent topics with different probability distri-

ution assumptions. Compared with undirected Markov network,

irected Bayesian Network model the conditional dependencies of

ariables more directly. In the branch, latent Dirichlet allocation

LDA) model is a classic work. Much extensions and its variants

ave been developed, including not only general models, such as

lassification [17,18] and regression [8] , but also some variants for

ome specific applications, such as rating prediction [19] and scene

nderstanding [7,20] . 

A seminal work for classification based on LDA is the work

hich was proposed by Fei-Fei and Perona [5] . And it assumed the

ocuments in each category had its own LDA generative process,

nd each category had its own Dirichlet prior which is optimized

nd used for distinguishing different classes. Moreover, the Dirich-
et priors for categories could be seen as a single classification cri-

erion to a certain extent. 

Another similar work, the discriminative LDA (DiscLDA) [21] ,

lso built on LDA model, and was trained by maximizing the condi-

ional likelihood of the responses given the documents. The model

ssumed that the documents in the same category should be near

n the obtained topic simplex, and that every category had its own

inear transformation, which could transform a point simplex to a

ew mixture proportion of topics, as well as its own topic distri-

ution. 

Supervised latent Dirichlet allocation (sLDA) [8] , another clas-

ical topic model, is a supervised extension to LDA model [9] .

he model was originally developed for predicting continuous re-

ponse values via a linear regression, and was trained by maxi-

izing the joint likelihood of data and response variables. Based

n framework of sLDA, the literature [17] expanded sLDA to clas-

ification problems, and obtained Multi-class sLDA model by em-

edding softmax regression model into the LDA model. How-

ver, Multi-class sLDA model still constructed a single classification

riterion. 

Maximum entropy discrimination latent Dirichlet allocation 

odel (MedLDA) [22] , introduced max-margin idea to LDA model,

nd proposed a max-margin discriminative variant of supervised

opic models for both regression and classification by combining

VM and LDA. The model integrated max-margin learning with hi-

rarchical Bayesian topic models by optimizing a single objective

unction with a set of expected margin constraints. In addition,

onsidering that some useful image features are not easily repre-

ented by “bags of words”, the literature [23] proposed a variant

f MedLDA, a max-margin latent Dirichlet allocation (MMLDA) for

mage classification. The two models based on max-margin idea all

ssumed a single classification criterion. 

Supervised Document Neural Autoregressive Distribution Esti- 

ator, SupDocNADE model [24] , was different from the models

entioned above, and was a neural topic model based on neural

etwork. The model did not use convolution [25,26] , and did not

odel or define a specific form of topic, but modeled or learnt the

ap from the low feature to topic feature. The model also assumed

 single classification criterion and achieved a competitive perfor-

ance. 

All these existing supervised topic models were trained ei-

her by optimizing a likelihood-based objective or by optimizing

argin-based objectives. Anyway, they all assumed and learned a

ingle classification criterion. In this paper, we proposed two topic

odels for classification, which assume there are multiple classi-

cation criteria over semantic features. We will introduce them in

etail in the following sections, and the remaining sections are or-

anized as follows. 
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Fig. 2. The graphic model representation of latent Dirichlet allocation model [9] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The graphic model representation of supervised latent Dirichlet allocation 

model [8] . 
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We introduce the preliminaries of our work in Section 2 firstly.

And then, we propose a supervised ensemble topic model and its

improved version, and explain how to perform parameter estima-

tion as well as predicting procedure in Section 3 . Moreover, we dis-

cuss the classification performance of the two proposed models on

three datasets in Section 4 , and give convergence analysis of pa-

rameter estimation procedure in Section 5 . Finally, we present our

conclusions and future work in Section 6 . 

Here, it needs to point out that part of the materials of this pa-

per build on our early work [27] which is presented in conference

proceedings. 

2. Preliminaries 

The paper is built on topic models, i.e., LDA, sLDA and mix-

ture of softmax model (SMM) [2] . And these work will be reviewed

briefly in this section. 

2.1. Latent Dirichlet allocation 

Latent Dirichlet allocation (LDA) [9] is a hierarchical Bayesian

model that tries to map a text document into a latent low di-

mensional space spanned by a set of automatically learned topical

bases. The model assumes that a document consists K topics, and

the generative probability distribution for all the documents is: 

p(v , z, θ | α, π) = p(θ | α) 
M ∏ 

m =1 

p(z m 

| θ ) p(v m 

| z m 

, π) (1)

where θ ∼ Dirichlet( α), which is the topic proportion of a K -

dimensional vector and 

∑ K 
k =1 θk = 1 . z m 

is a K-dimensional indica-

tor vector (only one element is 1, and all others are 0) referring to

topic label of the m th word; π is a matrix consisting of K rows for

those K topics, with each row representing a multinomial distribu-

tion over words in a given vocabulary. The graphical model repre-

sentation of LDA model is depicted in Fig. 2 . The model is often

used to find latent high-level features, i.e., topics of a document. 

2.2. Supervised latent Dirichlet allocation 

As stated above, LDA is an unsupervised topic model, which

does not use side information for learning topics and inferring

topic vectors θ . For this reason, supervised latent Dirichlet alloca-

tion (sLDA) is proposed for modeling data when side information is

available. For a document or data, sLDA assumes the same genera-

tive process with LDA. The graphical model representation of sLDA

model is depicted in Fig. 3 . The probability distribution of data un-

der sLDA is shown as follows: 

p(v , y, z, θ | α, π, σ 2 , η) = p(θ | α) 
M ∏ 

m =1 

p(z m 

| θ ) p(v m 

| z m 

, π) 

· p(y | ̄z , σ 2 , η) (2)

where p(θ | α) 
∏ M 

m =1 p(z m 

| θ ) p(x m 

| z m 

, π) represents the same gen-

erative process as that of LDA. The supervised information y is sub-

ject to normal distribution N(η� z̄ , σ 2 ) . 
.3. Mixture of softmax model 

Softmax regression, also known as multinomial logistic regres-

ion, is another basis of the paper. The model is a kind of regres-

ion model, which generalizes logistic regression by allowing more

han two discrete outcomes. Mixture of softmax model [2] is a

eighted sum of multiple softmax regression. And it can be seen

s a probabilistic ensemble classification model. In particular, the

istribution of this model is shown as follows: 

p(c| x, η) = 

H ∑ 

h =1 

b h 

( exp (η� 
hc 

x ) ∑ C 
l=1 exp (η� 

hl 
x ) 

)
. (3)

here x and c represent data and its predicting class label, re-

pectively. H and C are the number of classifiers and classes, re-

pectively. ηhl , h ∈ { 1 , 2 , . . . , H} and l ∈ { 1 , 2 , . . . , C} represents the

arameter of the l th class in the h th softmax classifier, and b h rep-

esents the weight of h th softmax classifier. Two well-known im-

rovements to SMM are mixture of experts [2] and hierarchical

ixture of experts [2] . In mixture of experts model, the weights

f different experts vary over the observed variable space, while

ierarchical mixture of experts approach is a mixture of mixtures

f experts. 

. Supervised latent Dirichlet allocation with a mixture of 

parse softmax 

In this section, we will introduce our models which are based

n the “bag-of-words” representation as in LDA and sLDA. By

his representation, a data is simply reduced to a vector of word

ounts without considering word order. Given the datasets D =
 ( v d , c d ) | d ∈ { 1 , 2 , . . . , D }} , our models is to model the relationship

etween a data point v and its label c . 

.1. Supervised latent Dirichlet allocation with a mixture of softmax 

Embedding SMM with L2 regularization into LDA model results

n our model, supervised latent Dirichlet allocation with a mixture

f softmax , or MS-sLDA for short. The model is conditional on two

yper-parameters, H for the number of softmax and K for the num-

er of latent topic for data. For a pair of data-label ( v , c ), in which

he label c of a data point v is a unit-basis vector of size C , the

enerative process of the model is shown as follows: 

1. For each data point v = { v m 

| m ∈ { 1 , 2 , . . . , M} : 
(a) Draw a topic proportion θ ∼ Dirichlet( α). 

(b) For each word v m 

, m ∈ { 1 , 2 , . . . , M} : 
i. Draw a topic assignment z m 

= k | θ ∼ Multi (θ ) . 

ii. Draw a word v m 

= k | z m 

∼ Multi (πz m ) 

2. For the class label c : 

(a) Draw a “softmax” assignment s | θ c ∼ Multi( θ c ), where s is a

H -dimensional one-hot variable, and its dimension equal the

dimension of θ c and the number of classifiers. 
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Fig. 4. The graphic model representation of supervised latent Dirichlet allocation 

with a mixture of softmax. 
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(b) Draw the class label c | z , s ∼ softmax ( ̄z , s, η) where z̄ =
1 
M 

∑ M 

m =1 z m 

is the empirical topic frequencies. The distribu-

tion of the class labels can be formulated as: 

p(c| ̄z , s, η) = 

H ∏ 

h =1 

( exp (η� 
hc ̄

z ) ∑ C 
l=1 exp (η� 

hl ̄
z ) 

)s h 

. 

The graphical model representation of MS-sLDA model is de-

icted in Fig. 4 . MS-sLDA model specifies a joint distribution over

atent variables and observed variables. Denoting model parame-

ers as � = { α, π, θ c , η} , latent variables as H = { θ, z , s } and ob-

erved variables as E = { v , c} , then the joint distribution is 

p(E, H| �) = p(θ | α) 
M ∏ 

m =1 

p(z m 

| θ ) p(v m 

| z m 

, π) 

· p(s | θ c ) p(c| ̄z , s, η) (4) 

Note that Step 1, the generative process of a data point v =
 v 1 , v 2 , . . . , v M 

} , is the same as that of LDA model. Its goal is to

btain the empirical topic frequencies of a data point, which are

hen used as the input to generate class label in the following step.

his step reduces data dimension, so as to reduce the dimension of

arameters in softmax classifiers in step 2. 

Step 2 modeling the class labels adopts the setup similar to

hose of sLDA [8] and Multi-class sLDA [17] . Multi-class sLDA con-

iders the class label response variables instead of the continu-

us response variables in sLDA. And the class label is drawn from

 single softmax regression model. That is, the multi-class sLDA

odel tries to find a single classification criterion (softmax) to

dentify all training data. While, MS-sLDA model introduces a mix-

ure of softmax model, which can give a higher likelihood compar-

ng to a single softmax, to replace the supervised parts of sLDA. In

articular, given the latent topic frequencies z̄ , the generation of

lass label needs to draw a latent “criterion” (softmax) assignment

 = h first, and then select a label according to the h th “criterion”

h = (ηh 1 , ηh 2 , . . . , ηhC ) . 

MS-sLDA model provides an important improvement to sLDA.

t can be seen as an ensemble version of Multi-class sLDA model,

amely a generalization of the model. When the number of soft-

ax classifiers is set to 1, MS-sLDA model will collapse to the

ulti-class sLDA model. 

.2. Parameter estimation 

We carry out approximate maximum-likelihood estimation for

S-sLDA model using a variational expectation-maximization (EM)

rocedure [28,29] , which is a normal optimization method taken

y many latent topic models, e.g. LDA [9] and sLDA [8] . 

ariational E-step 

Since p ( θ , z , s , | v , c ), the posterior distribution of the latent vari-

bles conditioned on a pair ( v , c ), is computationally intractable,
e adopt variational approximate [10,30,31] to obtain approximate

osterior. Given a set of model parameters � = { α, π, θ c , η} , we

nd the lower bound of the log likelihood for each data pair ( v , c )

n the training datatset D : 

og p( v , c| �) ≥ L (�;�) = E q [ log p( v , c, θ, z, s | �) ] 

− E q [ log q (θ, z, s | �) ] , (5) 

here � = { γ , φ, λ} , γ is a K -dimensional Dirichlet parameter, φm 

s a K -dimensional multinomial parameter, λ is a H -dimensional

ultinomial parameter and q is variational distribution over the

atent variables for the data ( v , c ). The variational distribution is

efined as a full factorized distribution: 

 (H| �) = q (θ | γ ) 
M ∏ 

m =1 

q (z m 

| φm 

) q (s | λ) , (6)

In variational E-step, we maximize the lower bound w.r.t. the

ariational parameters � = { γ , φ, λ} , which is equivalent to mini-

izing the KL-divergence between this factorized distribution and

he true posterior. 

Opitimization with respect to γ . The procedure is the same as

n [9] 

i = αi + 

M ∑ 

m =1 

φmi . (7) 

Opitimization with respect to φm 

. The terms including φm 

in L

re: 

 [ φm ] = 

K ∑ 

i =1 

φmi 

( 

�(γi ) − �

( 

k ∑ 

j=1 

(γ j ) 

) 

+ 

V s ∑ 

j=1 

v j m 

log πi j 

) 

+ 

H ∑ 

h =1 

λh 

[ 

η� 
hc φ̄ − log 

( 

C ∑ 

l=1 

E q 
[
exp (η� 

hl ̄z ) 
]) ] 

−
k ∑ 

i =1 

φmi log φmi , 

here φ̄ = 

∑ M 

m =1 φm 

/M. Maximizing the above formulation under

he constraint 
∑ K 

i =1 φmi = 1 leads to 

mi ∝ πi v m exp 

[ 
�(γi ) + 

H ∑ 

h =1 

λh 

(
1 

N 

ηhci − ( b T h φ
old 
n ) −1 b hi 

)] 
, (8)

here b hi = 

∑ C 
l=1 exp ( 

ηhli 
M 

) 
∏ M 

f � = m 

(∑ K 
j=1 φ f i exp ( 

ηhli 
M 

) 
)

and φold 
n is

he previous value. The detail on computing φm 

are similar to [17] .

Opitimization with respect to λ. The terms including λh in L with

pproximate Lagrange multipliers are: 

 [ λh ] 
= 

H ∑ 

h =1 

λh 

[
η� 

hc φ̄ + log (θ c 
h ) − log λh 

− log 

(
C ∑ 

l=1 

M ∏ 

m =1 

k ∑ 

j=1 

φmi exp 

(
1 

M 

ηhl j 

))]
. 

aximizing the above formulation under the constraint 
∑ H 

h =1 λh =
 leads to 

h ∝ exp 

[
η� 

hc φ̄ − log 

(
C ∑ 

l=1 

M ∏ 

m =1 

k ∑ 

j=1 

φmi exp 

(
1 

M 

ηhl j 

))

+ log θ c 
h 

]
. (9) 

oted, λh is the probability, with which the current data is as-

igned to the h th component of combined classification criterion.

or the current data, the bigger value of λ corresponds to the more

uitable component. 
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E-step iterates Eqs. (7) –(9) till converging to the log probabil-

ity of the data pair ( v , c ). By repeating the E-step D times, we can

obtain approximate posteriors of all data pair ( v , c ). And the poste-

riors that will be used in M-step could facilitate the optimization

of M-step. 

M-step 

In M-step, we maximize the lower bound on the log likelihood

of the whole datasets L ( D ) = 

∑ D 
d=1 L (�d ;�) ( D = { ( v d , c d ) | d ∈

{ 1 , 2 , . . . , D }} ) w.r.t model parameters � = { α, π, θ c , η} . (We do not

optimize α.) 

Estimating the “topic”. By isolating the terms including π ij and

adding the appropriate Lagrange multipliers, then the terms in-

cluding π ij in L are 

L [ πi j ] 
= 

D ∑ 

d=1 

M d ∑ 

m =1 

φdm i 
log πi v m + ηi 

( 

V s ∑ 

j=1 

πi j − 1 

) 

. 

Set ∂ L [ πi j ] 
/∂ πi j = 0 , then 

πi j ∝ 

D ∑ 

d=1 

M d ∑ 

m =1 

φdmi v 
j 

dm 

. (10)

Estimating the “components” in combined classification criterion .

The terms including η in L are: 

L [ η] = 

D ∑ 

d=1 

H ∑ 

h =1 

λdh 

[ 
η� 

hc φ̄d − log 

( C ∑ 

l=1 

E q 
[
exp 

(
η� 

hl ̄z d 
)])] 

. 

To compute the expectation under the variational distribution

E q [ exp (η� 
hl ̄

z d )] , we adopt the approximation which applies the

multivariate delta method in [32] . The approximation is 

E f (V ) 	 f ( E V ) + 

1 

2 

tr 
[
∂ 2 f ( E V ) /∂ v ∂ v � cov (V ) 

]
, (11)

where f ( V ) is a mapping from R K to R . Let f ( ̄z ) = exp (η� 
hl ̄

z ) , then

E q f ( ̄z ) 	 exp (η� 
hl 
φ̄)(1 + 

1 
2 η

� 
hl 

cov ( ̄z ) ηhl ) . And L [ η] is approximated

as follows: 

L [ η] 	 

D ∑ 

d=1 

H ∑ 

h =1 

λdh 

[
η� 

hc 
φ̄d 

− log 

(
C ∑ 

l=1 

exp 

(
η� 

hl 
φ̄d 

)
(1 + 

1 
2 
η� 

hl 
cov ( ̄z ) ηhl ) 

)]
. 

(12)

Furthermore, the derivative of L [ η] with respect to ηhc is approx-

imated as: 

∂ L [ η] 

∂ ηhc 

	 

D ∑ 

d=1 

H ∑ 

h =1 

λdh 

[
φ̄d c 

c 
d 

−
exp (η� 

hc 
φ̄d ) 

(
φ̄(1 + 

1 
2 
η� 

hc 
cov ( ̄z d ) ηhc ) + η� 

hc 
cov ( ̄z d ) 

)
∑ C 

l=1 exp (η� 
hl 
φ̄d )(1 + 

1 
2 
η� 

hl 
cov ( ̄z d ) ηhl )) 

]
. 

(13)

where φ̄di = 

∑ M d 
m =1 

φdmi /M d and cov ( ̄z d ) f i = 

∑ M d 
m =1 

(φdmi 1( f = i ) −
φdm f φdmi ) /M 

2 
d 

. It is evident that the solution has no closed form.

Therefore, we adopt the conjugate gradient to tackle this problem

[33] . In practice, one can add a regularization (or “weight-decay”)

penalty −ξ‖ η‖ 2 to the objective function, as it is common for lo-

gistic regression and other classifiers. 

Estimating the weights of “components”. By isolating the terms

including θ c and adding the appropriate Lagrange multipliers, then

we obtain the optimization objective as 

L [ θ c ] = 

D ∑ 

d=1 

H ∑ 

h =1 

λdh log θ c 
h + η

( 

H ∑ 

h =1 

θ c 
h − 1 

) 

. 
aximizing the above formulation with respect to θ c 
h 

leads to 

c 
h ∝ 

D ∑ 

d=1 

λdh . (14)

In summary, the variational EM algorithm alternates between

-step and M-step until the bound on the expected log likelihood

onverges. The procedure in detail is listed in Algorithm 1 . 

lgorithm 1 Variational EM for supervised latent Dirichlet alloca-

ion with a mixture of softmax. 

nput: 

D = { ( v d , c d ) | d ∈ { 1 , 2 , . . . , D }} , the number of softmax classi-

fiers, H and thenumber of topics, K 

utput: 

model parameters � = { α, π, θ c , η} 
repeat 

/**** E-Step ****/ 

for d = 1 to D do 

initialize γd , λd 

repeat 

update φd 

update γd , λd 

until L (�d ;�) converge 

end for 

/**** M-Step ****/ 

update � = { α, π, θ c , η} 
until the log likelihood of the wholedatasets L ( D ) =∑ D 

d=1 L (�d ;�) converge 

.3. Supervised latent Dirichlet allocation with a mixture of sparse 

oftmax 

In MS-sLDA model, we use the L2 regularization onto the pa-

ameter η for avoiding the weight decay. Actually, a main reason

e choose L2 regularization is that the derivative of L2 regulariza-

ion is easily obtained. Inspired by the literature [34] , in which a

parse softmax classifier with bayesian L1 regularization achieves

etter performance, we try to introduce the idea into a mixture

f softmax, and then embed a mixture of sparse softmax into LDA

odel, and propose supervised latent Dirichlet allocation with a mix-

ure of sparse softmax , or MSS-sLDA for short. 

The MS-sLDA model and MSS-sLDA model have the same

raphic model representation, generative process. So, we do not re-

eat them here. They also have similar parameter estimation pro-

edures, yet the only difference is optimization of the parameter η
n M-step. 

In the M-step of MSS-sLDA model, the optimization of η is

hown as follows. As in MS-sLDA, we isolate the terms including

in lower bound L , adopt the approximation applying the multi-

ariate delta method in [32] and add L1 regularization of η. And

hen, we could obtain the optimization objective L ∗
[ η] 

of η in MSS-

LDA model. 

L ∗[ η] 	 

D ∑ 

d=1 

H ∑ 

h =1 

λdh [ 

η� 
hc φ̄d − log 

( 

C ∑ 

l=1 

exp (η� 
hl φ̄d ) 

(
1 + 

1 

2 

η� 
hl cov ( ̄z ) ηhl 

)) ] 

+ μ
H ∑ 

h =1 

C ∑ 

l=1 

| ηhl | (15)

here, μ> 0 is a regularization parameter controlling the bias-

ariance trade-off. Based on the formulation above, we adopt the
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Table 1 

UIUC-Sport dataset. 

Classes Sample size 

Badminton 313 

Bocce 137 

Croquet 329 

Polo 183 

Rockclimbing 194 

Rowing 255 

Sailing 190 

Snowboarding 190 

Table 2 

20 Newsgroups dataset. 

Classes Sample size 

Alt.atheism 798 

Comp.graphics 970 

Comp.os.ms-windows.misc 963 

Comp.sys.ibm.pc.hardware 979 

Comp.sys.mac.hardware 958 

Comp.windows.x 982 

Misc.forsale 964 

Rec.autos 987 

Rec.motorcycles 993 

Rec.sport.baseball 991 

Rec.sport.hockey 997 

Sci.crypt 989 

Sci.electronics 984 

Sci.med 987 

Sci.space 985 

Soc.religion.christian 997 

Talk.politics.guns 909 

Talk.politics.mideast 940 

Talk.politics.misc 774 

Talk.religion.misc 627 
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olution about derivative of L1 regularization in the literature [34] ,

nd could obtain the derivative of L [ η] with respect to ηhc as: 

∂ L ∗
[ η] 

∂ ηhc 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∂ L [ η] 

∂ ηhc 

+ μ, ηhc > 0 

∂ L [ η] 

∂ ηhc 

− μ, ηhc < 0 

∂ L [ η] 

∂ ηhc 

+ μ, ηhc = 0 and 
∂ L [ η] 

∂ ηhc 

+ μ < 0 

∂ L [ η] 

∂ ηhc 

− μ, ηhc = 0 and 
∂ L [ η] 

∂ ηhc 

+ μ > 0 

0 , otherwise 

(16) 

here 
∂ L [ η] 

∂ ηhc 

is the same as in the MS-sLDA model, and we could

onsult Eq. (14) for the details of 
∂ L [ η] 

∂ ηhc 

. 

.4. Predicting category 

In the previous sections, we have introduced the proposed

odels and the procedure of estimating model parameters. In this

ection, we describe how to use the models to predict class label

f unseen data. In particular, we use latent topic frequencies z̄ of a

ata instead of original low-level features. The posterior probability

ver latent topics, however, is computationally intractable. So, we

se E q [ ̄z ] = φ̄, which can be computed using the variational E-step

f LDA [9] , to approximate z̄ , and φ̄ could be obtained by removing

he terms including λ from Eq. (6) and the terms including η and

from Eq. (8) . 

After obtaining approximate latent topic frequencies as well

s all softmax classifiers, a direct idea is to adopt the classical

MM method to predict the class label of a data. In the predicting

ethod of SMM, however, the final output is the weighted average

f the outputs obtained by all softmax classifiers, so that the poor

utput of some a softmax classifier with bigger weights will re-

ult in inaccurate decision. Therefore, in order to reduce this kind

f predicting errors, the weighted average is abandoned. Instead,

he biggest value is selected directly from the outputs of all soft-

ax, and the class label corresponding to the biggest value will be

ssigned to the data. In particular, the formulation is 

 ∗ = arg max 
h ∈{ 1 , 2 , ... ,H} ,c∈{ 1 , 2 , ... ,C} 

exp (η� 
hc ̄

z ) 

C ∑ 

l=1 

exp (η� 
hl ̄

z ) 

	 arg max 
h ∈{ 1 , 2 , ... ,H} ,c∈{ 1 , 2 , ... ,C} 

exp (η� 
hc 
φ̄) 

C ∑ 

l=1 

exp (η� 
hl 
φ̄) 

. (17) 

From the formulation, our ensemble method is the “disjunc-

ion” of all softmax classifiers. Therefore, it could take the advan-

age of every softmax classifier and obtain a better combined clas-

ifier. 

. Experiments 

We choose the following three datasets: 

• Scene classification dataset: a subset of LabelMe dataset from

[11] . The LabelMe data contains natural scene images with 8

classes. We randomly selected 200 images for each class with

the total number of images 1600. 

• Event classification datasets: UIUC-Sport data from [7] . The

UIUC-Sport data contains sports scene images with 8 classes.

The number of images in each class varies from 137 (bocce) to
329 (croquet), and the total number of images is 1791. See the

Table 1 for the details. 

• Text classification dataset: 20 Newsgroups dataset. The dataset

contains about 18774 postings in 20 related categories, and the

number of each class is listed in Table 2 . 

Since the two proposed models are built on “bag-of-words”

epresentation, the preprocessing of data is transforming an origi-

al data into a vector of word counts. For LabelMe data, the pre-

rocessing steps are: 1. Extract 16 × 16-size patch applying grid

ampling (5 × 5 grid size) technique for all images, then use 128-

imensional SIFT [35] region descriptor to represent each patch.

. Run the k-means algorithm [36] for the descriptors collections,

nd construct the codebook using all centers obtained by k-means.

The codebook size is set as 240.) 3. Label the patches in each im-

ge using the code words. Finally, each image is represented as a

ector of codeword counts. 

For UIUC-Sport data, we adopt similar steps as those for La-

elMe dataset, and the only difference is that we extract 2500

atches uniformly for every image in this dataset with the size of

ach patch 32 × 32. 

For 20 Newsgroups data, we use the training/testing split in

ebpage http://people- .csail.mit.edu/jrennie/20Newsgroups/ . And 

he training data contains 11 , 269 documents and the test data

ontains 7505 documents. 

.1. Classification accuracy 

In order to evaluate the classification performance of the two

roposed models, we compare them with the following meth-

ds: (1) Multi-class sLDA (MC-sLDA) [17] , (2) Supervised Document

eural Autoregressive Distribution Estimator model (Sup-NADE) [24] ,

3) maximum entropy discrimination latent Dirichlet allocation model

http://www.ne.su.se/file/BurnsCornoLaFerraraBREAD.pdf
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Table 3 

Comparisons of average accuracy over all classes on the UIUC-Sport dataset based on 5 random train/test subsets: MC: 

MC-sLDA . MS- ∗: the number of softmax in MS-sLDA model is set as ∗ . MSS- ∗: the number of softmax in MSS-sLDA model 

is set as ∗ . 

Topics MC MS-2 MS-3 MS-4 MS-5 MS-6 MSS-2 MSS-3 MSS-4 MSS-5 MSS-6 

20 0.546 0.653 0.631 0.631 0.620 0.601 0.650 0.671 0.680 0.690 0.650 

40 0.615 0.681 0.680 0.684 0.654 0.620 0.670 0.690 0.697 0.701 0.680 

60 0.632 0.661 0.668 0.691 0. 678 0.640 0.684 0.692 0.720 0.719 0.716 

80 0.634 0.665 0.703 0.695 0.701 0.689 0.680 0.687 0.732 0.729 0.725 

100 0.635 0.710 0.728 0.733 0.732 0.710 0.721 0.718 0.744 0.740 0.738 

120 0.640 0.699 0.731 0.697 0.710 0.727 0.721 0.740 0.720 0.719 0.719 

Table 4 

Comparisons of average accuracy over all classes on the LabelMe dataset based on 5 random train/test subsets: MC: 

MC-sLDA . MS- ∗: the number of softmax in MS-sLDA model is set as ∗ . MSS- ∗: the number of softmax in MSS-sLDA 

model is set as ∗ . 

Topics MC MS-2 MS-3 MS-4 MS-5 MS-6 MSS-2 MSS-3 MSS-4 MSS-5 MSS-6 

20 0.724 0.795 0.783 0.777 0.767 0.746 0.791 0.820 0.791 0.781 0.780 

40 0.748 0.819 0.795 0.799 0.787 0.770 0.811 0.831 0.829 0.810 0.797 

60 0.761 0.817 0.816 0.824 0.810 0.786 0.791 0.832 0.840 0.830 0.810 

80 0.766 0.825 0.831 0.841 0.836 0.799 0.831 0.860 0.843 0.844 0.801 

100 0.755 0.836 0.827 0.838 0.827 0.800 0.826 0.832 0.841 0.832 0.821 

120 0.758 0.831 0.820 0.825 0.810 0.802 0.834 0.835 0.838 0.832 0.809 

Table 5 

Comparisons of average accuracy over all classes on the 20 Newsgroups dataset based on 5 random train/test subsets: 

MC: MC-sLDA . MS- ∗: the number of softmax in MS-sLDA model is set as ∗ . MSS- ∗: the number of softmax in MSS-sLDA 

model is set as ∗ . 

Topics MC MS-2 MS-3 MS-4 MS-5 MS-6 MSS-2 MSS-3 MSS-4 MSS-5 MSS-6 

20 0.720 0.781 0.783 0.777 0.767 0.760 0.791 0.786 0.760 0.762 0.765 

40 0.750 0.794 0.795 0.799 0.780 0.770 0.799 0.812 0.814 0.810 0.803 

60 0.762 0.798 0.801 0.804 0.798 0.787 0.800 0.806 0.810 0.809 0.802 

80 0.690 0.786 0.810 0.801 0.800 0.792 0.810 0.814 0.806 0.802 0.799 

100 0.764 0.800 0.806 0.798 0.787 0.772 0.817 0.810 0.811 0.814 0.808 

120 0.732 0.803 0.809 0.799 0.784 0.769 0.799 0.801 0.810 0.802 0.798 
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(Med-LDA) [18] . (4) Sparse Bayesian Multinomial Logistic Regression

(SBMLR) [34] ), (5) SVM with polynomial kernel (SVM-POL). 

In these methods, MC-sLDA and Sup-NADE and Med-sLDA

are supervised topic model for classification. SBMLR, a softmax

function with Laplace prior, shows good performance on many

datasets. SVM-POL are widely used and proved to be effective clas-

sification methods. (We use libsvm package [37] in our experi-

ment.) 

Tables 3–5 show the performance of the two proposed models

and MC-sLDA on the three datasets. The first column of each table

labels dataset and number of topics, the second column reports ac-

curacies of MC-sLDA, and the remaining columns show accuracies

of the two proposed models when H = ∗ is set as different num-

bers. 

From Table 3 , on UIUC-Sport data, MS-sLDA (H = 4, K = 100) has

the best performance 73.3%, which is 9% higher than MC-sLDA

( K = 120), and MSS-sLDA ( H = 4, K = 100) has the best per-

formance 74.4% which is 10% higher than MC-sLDA ( K = 120).

And from Table 4 , it can be seen that: on LabelMe data, MS-sLDA

( H = 4, K = 80) has the best performance 84.1%, and is about 7%

higher than MC-sLDA ( K = 80). While MSS-sLDA ( H = 3, K = 80)

has the best performance 86.0%, and is about 9% higher than MC-

sLDA ( K = 80). Moreover, from Table 5 , MS-sLDA ( H = 3, K = 80)

has the best performance 81.0% on 20 Newsgroups dataset, and is

about 4.6% higher than MC-sLDA ( K = 100). It also can be seen that

MSS-sLDA ( H = 2, K = 100) has the best performance 81.0%, and is

about 5.4% higher than MC-sLDA ( K = 100). 

We also test Sup-NADE, Med-sLDA, SBMLR and SVM-POL on

the three datasets, see Table 6 . In Table 6 , the first two columns

show the performance of SVM-POL and SBMLR, the following
 e
hree columns list the best performance of MC-sLDA, Sup-NADE

nd Med-sLDA model. The last two columns report the best

erformance of the proposed MS-sLDA and MSS-sLDA model. And

he obtained average accuracy of SBMLR is 64.3% for UIUC-Sport

ata, 74.3% for LabelMe data, and 79.8% for 20 Newsgroups data,

espectively. The average accuracy of SVM-POL is 52% for UIUC-

port data, 69.5% for LabelMe data, and 80.3% for 20 Newsgroups

ata, respectively. On the three datasets, three topic models, Sup-

ADE, MC-sLDA and Med-sLDA, perform better than SVM-POL and

BMLR, and the proposed models perform better than these three

opic models. 

In sum, the results show the two proposed models achieve a

uperior performance comparing with other benchmark methods. 

.2. Confusion matrix 

To further evaluate classification performance the two proposed

odels, we show confusion matrices in Fig. 5 . Because of the

pace, we only show confusion matrix of the best performance of

c-sLDA, sup-NADE, MS-sLDA and MSS-sLDA on LabelMe Dataset.

n particular, MC-sLDA is with 80 topics, sup-NADE is with 120

opics, MS-sLDA is with 80 topics and 4 softmax classifiers, and

SS-sLDA is with 80 topics and 4 softmax classifiers. 

From Fig. 5 , we can see that classifying LabelMe data by using

C-sLDA and sup-NADE, “coast” and “opening country” class have

ig confusion. It is easily to classify a “coast” image into “opening

ountry” class, and also easily to classify a “opening country” im-

ge into “coast” class. That means MC-sLDA and sup-NADE model

re difficult to classify these two classes, while the proposed mod-

ls, MS-sLDA and MSS-sLDA, could improve the situation. 
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Table 6 

Comparisons of average accuracy over all classes based on 5 random train/test subsets. UIUC: UIUC-sport 

data . LabelMe: the subset of LabelMe datasets . 20-News: 20 Newsgroups datasets . Sup-NADE: Supervised 

Document Neural Autoregressive Distribution Estimator model. Med-LDA: maximum entropy discrimina- 

tion latent Dirichlet allocation model. MS-sLDA and MSS-sLDA are the two proposed models. 

DataSets SVM-POL SBMLR MC-sLDA Sup-NADE Med-sLDA MS-sLDA MSS-sLDA 

UIUC 0.520 0.643 0.640 0.69 0.67 0.733 0.744 

LabelMe 0.695 0.748 0.766 0.820 0.780 0.841 0.860 

20-News 0.803 0.798 0.764 0.772 0.800 0.810 0.817 

(a) MC-sLDA (b) Sup-NADE

(c) MS-sLDA (d) MSS-sLDA

Fig. 5. Comparisons using confusion matrices on LabelMe dataset, the confusion matrices from the best performance of MC-sLDA (80 topics), Sup-NADE (120 topics), MS- 

sLDA(80 topics), and MSS-sLDA (80 topics). 

 

w  

c

4

 

s  

U  

(  

o  

m  

s  

l  

o  

a  
So, our models are effective for classifying the kind of data in

hich within-class similarity is relatively low, while the between-

lass similarity is relatively high. 

.3. “Components” in combined classification criterion 

This part will visualize classification criterion of MS-

LDA model with a mixture of 2 softmax classifiers on
IUC-Sport dataset. From Table 3 , the average accuracy of MS-sLDA

 H = 2, k = 20) on UIUC-Sport data is 65.3%. It reduces the error

f MC-sLDA ( K = 20) 9.7%, and also outperforms the best perfor-

ance of MC-sLDA. In Fig. 6 , the two gray-scale images on the left

ide represent two classification “components” (softmax classifier)

earned by our model ( H = 2, k = 20). The “components” can be

btained by transforming the parameters (a 8 × 20 matrix, and 8

nd 20 represents the number of classes and topics, respectively)
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Fig. 6. The different com ponents in combined classification criterion (2 grayscale images on the left side) learned by Mixture of softmax sLDA model ( H = 2, K = 20) on 

UIUC-sport dataset, as well as example images (16 images on the right side) assigned to the corresponding component (softmax classifier). 

a b

Fig. 7. The vertical axis records the relative change of log-likelihood function of MS-sLDA model on the LabelMe dataset, and the horizontal axis records the number of 

iterations EM algorithm. K represents topic numbers. (a). The number of classifiers is set as 2. (b). The number of classifiers is set as 3. 
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of each softmax classifier to a gray-scale image, in which the more

brighter pixel means the larger value. And the real-scene images

on the right side are some examples, which are assigned to the

corresponding “component”. In E-step, the variational parameter

λh records the component assignment of the current image. For

the h th classification component in the combined classifier, we

select some example images with bigger value of λh . From Fig. 6 ,

it is easy to find the two components are different. One is with the

darker, its example images contain fewer objects. And the other

is brighter, its example images contain more objects. It further

shows MS-sLDA ( H = 2, k = 20) can learn multiple classification

components, and each component can be used to fit a special type

of image subsets. 

MS-sLDA and MSS-sLDA model with different topic numbers

and classifier numbers also show the similar situation, so we do

not repeat showing the details here. 
.4. Discussion 

According to the experimental results, the two proposed mod-

ls show better performance than MC-sLDA and other baseline

ethods. The reason is that the two proposed models introducing

nsemble classification idea to sLDA model, learn latent seman-

ic feature and multiple criteria for classification simultaneously,

nd combine the advantages of multiple criteria. In addition, in

he two proposed models, MSS-sLDA model achieves better perfor-

ance than MS-sLDA model. The season is mainly that MSS-sLDA

odel adopts a kind of effective L1 regularization method, which

earns from the literature [34] , for ensemble classification part in

he model, while MS-sLDA model adopts L2 regularization in the

orresponding part. 

Although two proposed models have better performance, two

roposed models have more difficulties on model selection. From
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ables 3–5 , we find that on these three datasets, if we fix topic

umber (such as 60) and increase the number of softmax clas-

ifiers, such as from 2 to 6, the performance goes up first, and

hen goes down. 3 or 4 are the best number of softmax classifiers

n these datasets, 5 and 6 could make our models overfit. If we

x the number of softmax classifiers and increase topic number,

uch as from 20 to 120, the situation is also similar. The hyper-

arameters, the number of softmax classifiers and the number

f topics, are key factor of effecting the performance of the two

roposed models. 

In general, models of LDA series optimized by EM algorithm are

t for short text data. Compared to other methods reducing di-

ension [38] , this type of models has no advantage on training

ime. The two proposed models have more parameters than clas-

ical LDA model, that means they need more training time. Espe-

ially, for lengthy and books dataset in which the dimension of a

ata point would be extremely high since a book usually covers

he whole vocabulary, such as the one used in [39] , our proposed

odels will have very prohibitive time cost and hardware cost. So,

ur models will be more suitable for small sample data in which

he dimensions of data points are not extremely high. 

. Analysis of convergence 

Till now, we have introduced the proposed model, MS-sLDA and

SS-sLDA , and their the parameter estimation procedure. In this

ection, we only take MS-sLDA model for example and discuss the

onvergence of our parameter estimation procedure. For conver-

ence analysis of MSS-sLDA, it is similar to MS-sLDA. 

The procedure is derived from the variational EM framework,

n which the lower bound of log-likelihood ascends coordinately

n E-step and M-step. Because log-likelihood has upper bound, if

oth E-step and M-step can hold the lower bound, then the proce-

ure can converge. In E-step, we maximize the lower bound L ( �d ;

) w.r.t. variational parameters �d for arbitrary d ∈ 1 , . . . , D , and

o not make approximation. So the step holds the bound. In M-

tep, however, we maximize the lower bound L ( �d ; �) w.r.t. model

arameters � = { α, π, θ c , η} , and optimization of η in M-step can

ot hold the lower bound at any condition. 

heorem 1. For arbitrary d ∈ 1 , . . . , D , if the maximum of L ( �d ; �)

.r.t. variational parameters �d can be found after E-step for arbi-

rary d ∈ 1 , . . . , D , and M d is large enough, then optimization of η
an hold the lower bound. 

roof. In optimization of η, we make two approximations. The

rst approximation adopting Jensen’s inequality holds the lower

ound. However, the second approximation adopting Eq. (11) can

ot hold the lower bound. 

For arbitrary d ∈ 1 , . . . , D , if the maximum of L ( �d ; �)

.s.t.variational parameters �d can be found after E-step, then we

an know KL ( p ( z | E, θ ) ‖ q ( z | φ)) → 0 after E-step. Namely, E q [ ̄z d ] = φ̄d 

ends to posterior mean E p ( z | E, θ ) z d . And according to law of large

umbers, if M d is enough large, then empirical mean z̄ d = 

∑ 

M d 
m =1 

z dm 
M d 

ends to posterior mean E p ( z | E, θ ) z . So, z̄ d approaches E q [ ̄z d ] = φ̄d . 

And because when μ→ E μ, the left hand of Eq. (11) tends to

he right hand, 

 f (μ) → f ( E μ) + 

1 

2 

tr 
[
∂ 2 f ( E μ) /∂ μ∂ μ� cov (μ) 

]
amely, 

 q [ exp (η� 
l z̄ d )] → exp (η� 

l φ̄d ) 
(

1 + 

1 

2 

η� 
l cov ( ̄z d ) ηl 

)
This means for arbitrary d ∈ 1 , . . . , D , if the maximum of L ( �d ;

) w.s.t. variational parameters � can be found after E-step, and
d 
 d is enough large, the approximation Eq. (11) can hold the lower

ound. That is, optimization of η can hold the lower bound. �

To sum up, when the conditions in Theorem 1 can be satisfied,

-step can hold the lower bound. And because the lower bound

scends coordinately in E-step and M-step, and log-likelihood has

pper bound, so MS-sLDA model can converge when the condi-

ions in Theorem 1 can be satisfied. 

Actually, the conditions are so rigorous that they cannot be met

n many cases. In the experiments above, the lengths of data M d 

n three datasets are from several dozens to several hundreds. Ob-

iously, the condition is not met in our experiments. Therefore, as

hown in the next section, we use the change of likelihood to ex-

mine the convergence of MS-sLDA model. 

.1. The change of likelihood 

The relative change of log-likelihood P is defined as follows 

 t+1 = 

loglikelihood t+1 − loglikelihood t 

loglikelihood t 

, (18) 

n which t represents the iteration number of EM algorithm. The

ermination condition of the parameter estimate procedure in MS-

LDA model is P t+1 < ε, where ε is a constant which is set in ad-

ance. (In our experiment, ε = 1 e − 4 ). 

Fig. 7 shows the change of P t on LabelMe dataset when MS-

LDA model parameter is set to different values. The vertical axis

ecords Pt and horizontal axis records the number of iterations EM

lgorithm in our parameter estimation procedure. K represents the

opic numbers. In Fig. 7 , when topic is set as different numbers,

 t+1 always become smaller than P t as the number of iterations

ncreases in two datasets. And these two values P t and P t+1 get

lose to zero as time goes. It shows MS-sLDA model can converge

n LabelMe dataset. We also compute the change of likelihood on

nother two datasets, and get similar results. 

In other words, even though the convergence conditions in

heorem 1 have not been met, our parameter estimation proce-

ure could still converge. 

. Conclusion and future work 

.1. Conclusion 

In the paper, we proposed two supervised topic models with

nsemble classification merits, namely MS-sLDA and MSS-sLDA . We

iven the procedure of parameter estimation, presented an effi-

ient approximation method for predicting the class label of an

nseen data, and demonstrated the effectiveness of the two pro-

osed models on the real datasets. Experimental results show the

wo proposed models can achieve better performance. From ex-

erimental results and classification criteria visualization, we can

onclude that a single criterion is difficult to fit the relationship

etween data and label, and a combined criterion is more reason-

ble. Finally, we conducted a theoretical and experimental analysis

or the convergence of the proposed models. 

The proposed models have the characters of learning latent se-

antic in topic model and ensemble classification. In the learning

hase, it constructs multiple classification criteria to fit the train-

ng data. In the test phase, it combines the advantage of all clas-

ifiers to construct a strong combined classifier. These proposed

odels belong to supervised topic model fusing ensemble concept,

nd are different from conventional ensemble classification meth-

ds, such as [40] . In [40] , two independent classifiers for visual fea-

ures and text features based on SVM-POL are constructed firstly,

nd then a third logistic regression classifier is trained to combine

he confidence values of the two initial classifiers into a final pre-

iction. The significant difference is that the two SVM classifiers in
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[40] fit visual feature and text feature respectively. In MS-sLDA and

MSS-sLDA models, however, multiple components (classifiers) are

correlated during training process, each component is merely used

to fit a subset of training dataset. 

6.2. Future work 

Although the proposed models show better classification per-

formance, there are many points worth further improvement and

in-depth study in the future. Firstly, the proposed models have

two hyper-parameters, the number of topics and the number of

softmax classifiers. To reduce the burden of model selection, we

will investigate how to learn the parameters adaptively, which also

could increase the difficulties of solving parameters. Secondly, in

our model, the relationship between data and classifiers is that

given a data point, it could choose a classifier which has higher

prediction probability on the data point under the condition of

maximizing the likelyhood of training data. We use this kind of

relationship to achieve that different data points could choose dif-

ferent classifiers. We will try that let the selection of classifiers be

dependent on empirical topic frequencies, and do further improve-

ment in the future work. Finally, the proposed models provided a

method of combing ensemble ideas and supervised topic models.

Naturally, how to design a general framework of it is also valuable

to be investigated. 

Acknowledgments 

This work was partly supported by the National Natural Sci-

ence Foundation of China (NSFC) grant nos. 61563030 , 61773071 ,

the Natural Science Foundation of Gansu Province , China, grant no.

2017GS10830 , Beijing Natural Science Foundation (BNSF) grant no.

4162044 , Beijing Nova Program grant no. Z17110 0 0 01117049 , CCF-

encent Open Research Fund. 

References 

[1] Z. Ma , A. Leijon , Bayesian estimation of beta mixture models with variational
inference, IEEE Trans. Pattern Anal. Mach. Intell. 33 (11) (2011) 2160–2173 . 

[2] C. Bishop , Pattern Recognition and Machine Learning, 4, Springer, New York,

2006 . 
[3] G. Xun , Y. Li , W.X. Zhao , J. Gao , A. Zhang , A correlated topic model using word

embeddings, in: Proceedings of the Twenty-Sixth International Joint Confer-
ence on Artificial Intelligence, 2017, pp. 4207–4213 . 

[4] M. Rabinovich , D. Blei , The inverse regression topic model, in: Proceedings of
the International Conference on Machine Learning, 2014, pp. 199–207 . 

[5] L. Fei-Fei , P. Perona , A Bayesian hierarchical model for learning natural scene

categories, in: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2, IEEE, 2005, pp. 524–531 . 

[6] F. Xue , J. Wang , S. Qian , T. Zhang , X. Liu , C. Xu , Multi-modal max-margin su-
pervised topic model for social event analysis, Multimed. Tools Appl. 77 (2018)

1–20 . 
[7] L. Li , L. Fei-Fei , What, where and who? classifying events by scene and object

recognition, in: Proceedings of the IEEE Eleventh International Conference on

Computer Vision, IEEE, 2007, pp. 1–8 . 
[8] D. Blei, J. McAuliffe, Supervised topic models. Proceedings of the Advances in

Neural Information Processing Systems, 2008, 121–128. 
[9] D. Blei , A. Ng , M. Jordan , Latent Dirichlet allocation, J. Mach. Learn. Res. 3

(2003) 993–1022 . 
[10] M. Jordan , Z. Ghahramani , T. Jaakkola , L. Saul , An introduction to variational

methods for graphical models, Mach. Learn. 37 (2) (1999) 183–233 . 

[11] B. Russell , A. Torralba , K. Murphy , W. Freeman , Labelme: a database and we-
b-based tool for image annotation, Int. J. Comput. Vis. 77 (1) (2008) 157–173 . 

[12] R. Das , M. Zaheer , C. Dyer , Gaussian LDA for topic models with word embed-
dings, in: Proceedings of the Fifty-Third Annual Meeting of the Association for

Computational Linguistics and the Seventh International Joint Conference on
Natural Language Processing, 1, 2015, pp. 795–804 . 

[13] K.W. Lim, C. Chen, W. Buntine, Twitter-network topic model: a full Bayesian
treatment for social network and text modeling, (2016). arXiv: 1609.06791 . 

[14] S. Qian , T. Zhang , C. Xu , J. Shao , Multi-modal event topic model for social event

analysis, IEEE Trans. Multimed. 18 (2) (2016) 233–246 . 
[15] N. Chen , J. Zhu , F. Sun , B. Zhang , Learning harmonium models with infinite

latent features, IEEE Trans. Neural Netw. Learn. Syst. 25 (3) (2014) 520–532 . 
[16] H. Zhang , Y. Ji , J. Li , Y. Ye , A triple wing harmonium model for movie recom-

mendation, IEEE Trans. Ind. Inf. 12 (1) (2016) 231–239 . 
[17] C. Wang , D. Blei , F. Li , Simultaneous image classification and annotation, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion, IEEE, 2009, pp. 1903–1910 . 
[18] J. Zhu , L.-J. Li , L. Fei-Fei , E.P. Xing , Large margin learning of upstream scene

understanding models, in: Proceedings of the Advances in Neural Information
Processing Systems, 2010, pp. 2586–2594 . 

[19] I. Titov , R. McDonald , A joint model of text and aspect ratings for sentiment
summarization, Urbana 51 (2008) 61801 . 

[20] L.-J. Li , R. Socher , L. Fei-Fei , Towards total scene understanding: classification,

annotation and segmentation in an automatic framework, in: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2009,

pp. 2036–2043 . 
[21] S. Lacoste-Julien , F. Sha , M.I. Jordan , DiscLDA: discriminative learning for di-

mensionality reduction and classification, in: Proceedings of the Advances in
Neural Information Processing Systems, 2008, pp. 897–904 . 

22] J. Zhu , A. Ahmed , E.P. Xing , MedLDA: maximum margin supervised topic mod-

els, J. Mach. Learn. Res. 13 (1) (2012) 2237–2278 . 
23] Y. Wang , G. Mori , Max-margin latent Dirichlet allocation for image classifica-

tion and annotation., in: Proceedings of the Twenty-Second British Machine
Vision Conference, 2011, pp. 1–11 . 

[24] Y. Zheng , Y.-J. Zhang , H. Larochelle , Topic modeling of multimodal data: an
autoregressive approach, in: Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, IEEE, 2014, pp. 1370–1377 . 

25] Z. Si , R. Thobaben , M. Skoglund , Rate-compatible LDPC convolutional codes
achieving the capacity of the BEC, IEEE Trans. Inf. Theory 58 (6) (2012)

4021–4029 . 
26] Z. Si , R. Thobaben , M. Skoglund , Bilayer LDPC convolutional codes for de-

code-and-forward relaying, IEEE Trans. Commun. 61 (8) (2013) 3086–3099 . 
[27] X. Li , J. Zeng , X. Wang , Y. Zhong , Mixture of softmax slLDA, in: Proceedings of

the Eleventh IEEE International Conference on Data Mining (ICDM), IEEE, 2011,

pp. 1164–1169 . 
[28] Z. Ma , J.-H. Xue , A. Leijon , Z.-H. Tan , Z. Yang , J. Guo , Decorrelation of neutral

vector variables: theory and applications, IEEE Trans. Neural Netw. Learn. Syst.
29 (1) (2018) 129–143 . 

29] W. Chen , Simultaneous sparse Bayesian learning with partially shared sup-
ports, IEEE Signal Process. Lett. 24 (11) (2017) 1641–1645 . 

[30] Z. Ma , A.E. Teschendorff, A. Leijon , Y. Qiao , H. Zhang , J. Guo , Variational

Bayesian matrix factorization for bounded support data, IEEE Trans. Pattern
Anal. Mach. Intell. 37 (4) (2015) 876–889 . 

[31] W. Chen , D. Wipf , Y. Wang , Y. Liu , I.J. Wassell , Simultaneous Bayesian sparse
approximation with structured sparse models, IEEE Trans. Signal Process. 64

(23) (2016) 6145–6159 . 
32] M. Braun , J. McAuliffe , Variational inference for large-scale models of discrete

choice, J. Am. Stat. Assoc. 105 (489) (2010) 324–335 . 

[33] J. Nocedal , S. Wright , Numerical Optimization, Springer verlag, 1999 . 
[34] G. Cawley , N. Talbot , M. Girolami , Sparse multinomial logistic regression via

Bayesian L1 regularisation, Adv. Neural Inf. Process. Syst. 19 (2007) 209 . 
[35] D. Lowe , Object recognition from local scale-invariant features, in: Proceed-

ings of the Seventh IEEE International Conference on Computer Vision, 2, IEEE,
1999, pp. 1150–1157 . 

36] T. Kadir , M. Brady , Saliency, scale and image description, Int. J. Comput. Vis. 45
(2) (2001) 83–105 . 

[37] C. Chang , C. Lin , LIBSVM: a library for support vector machines, ACM Trans.

Intell. Syst. Technol. (TIST) 2 (3) (2011) 27 . 
38] Z. Ma , J. Xie , H. Li , Q. Sun , Z. Si , J. Zhang , J. Guo , The role of data analysis in the

development of intelligent energy networks, IEEE Netw. 31 (5) (2017) 88–95 . 
39] H. Zhang , T.W. Chow , Q.J. Wu , Organizing books and authors by multilayer

SOM, IEEE Trans. Neural Netw. Learn. Syst. 27 (12) (2016) 2537–2550 . 
[40] G. Wang , D. Hoiem , D. Forsyth , Building text features for object image classifi-

cation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, IEEE, 2009, pp. 1367–1374 . 

Xiaoxu Li received his Ph.D. degree from Beijing Univer-

sity of Posts and Telecommunications (BUPT), China, in
2012. She is an associate professor at Lanzhou University

of Technology in the School of computer and communi-
cation. Her research interests include machine learning

and computer vision. She is a member of China Computer

Federation. 

Zhanyu Ma has been an associate Professor at Beijing

University of Posts and Telecommunications (BUPT), Bei-
jing, China, since 2014. He received his Ph.D. degree in

Electrical Engineering from KTH (Royal Institute of Tech-

nology), Sweden, in 2011. From 2012–2013, he has been
a Postdoctoral research fellow in the School of Electrical

Engineering, KTH, Sweden. His research interests include
statistical modeling and machine learning related topics

with a focus on applications in speech processing, image
processing. 

https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100004775
https://doi.org/10.13039/501100005089
https://doi.org/10.13039/501100005090
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0001
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0001
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0001
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0002
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0002
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0003
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0003
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0003
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0003
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0003
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0003
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0004
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0004
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0004
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0005
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0005
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0005
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0006
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0006
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0006
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0006
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0006
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0006
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0006
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0007
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0007
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0007
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0008
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0008
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0008
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0008
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0009
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0009
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0009
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0009
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0009
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0010
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0010
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0010
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0010
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0010
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0011
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0011
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0011
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0011
http://arxiv.org/abs/1609.06791
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0012
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0012
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0012
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0012
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0012
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0013
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0013
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0013
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0013
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0013
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0014
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0014
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0014
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0014
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0014
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0015
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0015
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0015
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0015
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0016
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0016
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0016
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0016
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0016
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0017
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0017
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0017
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0018
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0018
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0018
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0018
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0019
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0019
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0019
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0019
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0020
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0020
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0020
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0020
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0021
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0021
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0021
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0022
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0022
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0022
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0022
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0023
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0023
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0023
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0023
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0024
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0024
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0024
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0024
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0025
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0025
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0025
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0025
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0025
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0026
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0026
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0026
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0026
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0026
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0026
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0026
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0027
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0027
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0028
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0028
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0028
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0028
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0028
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0028
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0028
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0029
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0029
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0029
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0029
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0029
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0029
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0030
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0030
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0030
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0031
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0031
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0031
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0032
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0032
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0032
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0032
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0033
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0033
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0034
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0034
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0034
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0035
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0035
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0035
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0036
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0036
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0036
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0036
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0036
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0036
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0036
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0036
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0037
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0037
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0037
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0037
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0038
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0038
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0038
http://refhub.elsevier.com/S0925-2312(18)30662-3/sbref0038


X. Li et al. / Neurocomputing 312 (2018) 324–335 335 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pai Peng received the Ph.D. degree in computer sci-

ence from Zhejiang University in 2016. He is currently
a research scientist in Youtu Lab of Tencent Technology

(Shanghai) Co., Ltd. His research interests include image

recognition and deep learning and has published several
top-tier conference and journal papers related with image

recognition, e.g. SIGIR, CIKM, TKDE, ICMR, etc. 

XiaoWei Guo received his M.S. degree in Information and
Computing Science from Sun Yat-sen University in 2007

and now works as a senior engineer in YouTu lab of Ten-

cent Technology (Shanghai) Co., Ltd. He is responsible for
the R & D and management of the Image Understanding

team. His research interests include Image Recognition,
OCR, Deep Learning, Transfer Learning, Augmented Real-

ity / Virtual Reality. 

Feiyue Huang received his B.Sc. and Ph.D. degrees in

Computer Science in 2001 and 2008, both from Tsinghua
University, China. He is the director of Tencent Youtu Lab.

His research interests include machine learning and com-
puter vision. 
Xiaojie Wang received his Ph.D. degree from Beihang

University in 1996. He is a professor and director of the
Centre for Intelligence Science and Technology at Beijing

University of Posts and Telecommunications. His research

interests include natural language processing and multi-
modal cognitive computing. He is an executive member

of the Council of Chinese Association of Artificial Intelli-
gence, director of Natural Language Processing Commit-

tee. He is a member of Council of Chinese Information
Processing Society and Chinese Processing Committee of

China Computer Federation. 

Jun Guo received B.E. and M.E. degrees from Beijing Uni-

versity of Posts and Telecommunications (BUPT), China
in 1982 and 1985, respectively, Ph.D. degree from the

Tohuku-Gakuin University, Japan in 1993. At present he is
a professor and a vice president of BUPT. His research in-

terests include pattern recognition theory and application,

information retrieval, content based information security, 
and network management. 


	Supervised latent Dirichlet allocation with a mixture of sparse softmax
	1 Introduction
	1.1 Related work

	2 Preliminaries
	2.1 Latent Dirichlet allocation
	2.2 Supervised latent Dirichlet allocation
	2.3 Mixture of softmax model

	3 Supervised latent Dirichlet allocation with a mixture of sparse softmax
	3.1 Supervised latent Dirichlet allocation with a mixture of softmax
	3.2 Parameter estimation
	 Variational E-step
	 M-step
	3.3 Supervised latent Dirichlet allocation with a mixture of sparse softmax
	3.4 Predicting category

	4 Experiments
	4.1 Classification accuracy
	4.2 Confusion matrix
	4.3 “Components” in combined classification criterion
	4.4 Discussion

	5 Analysis of convergence
	5.1 The change of likelihood

	6 Conclusion and future work
	6.1 Conclusion
	6.2 Future work

	 Acknowledgments
	 References


