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Dual Cross-Entropy Loss for Small-Sample
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Abstract—Fine-grained vehicle classification is a challenging
topic in computer vision due to the high intraclass variance and low
interclass variance. Recently, considerable progress has been made
in fine-grained vehicle classification due to the huge success of deep
neural networks. Most studies of fine-grained vehicle classification
based on neural networks, focus on the neural network structure
to improve the classification performance. In contrast to existing
works on fine-grained vehicle classification, we focus on the loss
function of the neural network. We add a regularization term to
the cross-entropy loss and propose a new loss function, Dual Cross-
Entropy Loss. The regularization term places a constraint on the
probability that a data point is assigned to a class other than its
ground-truth class, which can alleviate the vanishing of the gra-
dient when the value of the cross-entropy loss is close to zero. To
demonstrate the effectiveness of our loss function, we perform two
sets of experiments. The first set is conducted on a small-sample
fine-grained vehicle classification dataset, the Stanford Cars-196
dataset. The second set is conducted on two small-sample datasets,
the LabelMe dataset and the UIUC-Sports dataset, as well as on one
large-sample dataset, the CIFAR-10 dataset. The experimental re-
sults show that the proposed loss function improves the fine-grained
vehicle classification performance and has good performance on
three other general image classification tasks.

Index Terms—Cross-entropy loss, fine-grained vehicle classifi-
cation, deep neural networks.

I. INTRODUCTION

W ITH the development of society, the use of vehicles
in human life has become increasingly universal and

crucial. Research on vehicles has received considerable attention
[1]–[3], including applications in the field of computer vision,
such as vehicle classification [4]–[7], vehicle detection [8]–[10],
vehicle segmentation [11], vehicle re-identification (re-ID) [12],
[13], and fine-grained vehicle classification [14], [15]. In this
paper, we focus on fine-grained vehicle classification, which
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refers to the task of identifying the make, model, and year of
a vehicle, such as Audi, SUV, 2010. Due to the high intraclass
variance and low interclass variance of vehicle images, fine-
grained vehicle classification remains a challenging problem
[16], [17].

Recently, convolutional neural networks (CNNs) have had a
substantial impact on various fields of computer vision, includ-
ing image classification [18], [19], character recognition [20],
[21], object recognition [22], [23], video tracking [24], and im-
age retrieval [25]. Fine-tuning a large CNNs that is trained on a
large dataset, such as ImageNet [26], usually produces impres-
sive results for many vision classification tasks [27].

Many fine-grained vehicle classification works based on
CNNs have been reported [28]–[30]. Liu et al. [31] and Yang
et al. [4] investigated the use of some of the first deep learning
models for fine-grained vehicle classification. Their GoogleNet
model outperformed some of the traditional, part-based ap-
proaches, reinforcing the belief that the use of deep CNNs for
fine-grained classification problems is a viable approach, even
if such an approach did not achieve state-of-the-art results at the
time.

Valev et al. used CNN architectures for the model classifi-
cation of vehicles and achieved performance competitive with
that of state-of-the-art methods [16]. Lin et al. proposed a bi-
linear CNN model consisting of two feature extractors that are
combined to obtain an image descriptor for fine-grained image
classification [32]. The method performed well on a number
of fine-grained datasets and was simple and easy to train. Hu
et al. proposed a spatially weighted pooling strategy that greatly
improved the robustness and effectiveness of the feature rep-
resentation of most dominant deep CNNs and achieved state-
of-the-art performance on the Stanford Cars-196 dataset [33],
[34]. Zhao et al. proposed a diversified visual attention network
that dynamically visits important regions during the training
process and performs well on fine-grained object classification
[35]. Most of these works improved the structure of the neural
network and achieved good performance. In contrast to these
studies, this paper focuses on the loss function of the neural
network.

Among a multitude of neural network loss functions, cross-
entropy loss (CE loss) is one of the most popular. A number
of works have attempted to improve CE loss, such as large-
margin loss [36], center loss [37], and focal loss [38]. Liu et al.
considered that CE loss does not explicitly encourage the dis-
criminative learning of features and proposed large-margin loss,
which improves the accuracy of classification by increasing
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interclass separability and intraclass compactness [36]. Wen
et al. aimed to enhance the discriminative power of the deeply
learned features and proposed center loss, which simultaneously
learns a center for the deep features of each class and constrains
the distances between the deep features and their corresponding
class centers [37]. Li et al. proposed focal loss to address this
class imbalance by reshaping the standard CE loss such that it
down-weights the loss assigned to well-classified examples. Fo-
cal loss surpasses the performance of all existing state-of-the-art
methods [38]. Liu et al. proposed FaceNet and triplet loss for
face verification. Triplet loss focuses on enforcing the margin
between each pair of faces, from one person’s face to all other
faces [39]. Liu et al. proposed congenerous cosine loss, which
improved the accuracy of person recognition by minimizing the
cosine distance between samples and their cluster center [13].
All of these works improved different aspects of the original CE
loss.

In this paper, we note that CE loss focuses on the probability
that a data point is assigned to its ground-truth class and does
not place any constraint on the probability that the data point is
assigned to a class other than its ground-truth class. During the
training process, the probabilities that the data point is assigned
to classes other than its ground-truth class can either increase
or decrease. Therefore, if we constrain the increase in these
probabilities, the optimization speed can be accelerated, and the
performance of the network can be improved indirectly.

To this end, we propose Dual Cross-Entropy Loss, which is
a linear combination of two items: CE loss and a regularization
term, and perform two sets of experiments on four datasets. The
first set is conducted on a fine-grained vehicle dataset (Stan-
ford Cars-196), and the second set is conducted on three gen-
eral image classification datasets: the LabelMe dataset [40],
the UIUC-Sports dataset [41] and the CIFAR-10 dataset [42].
The experimental results demonstrate that compared with CE
loss, the proposed Dual Cross-Entropy Loss has superior per-
formance on the four datasets, accelerates optimization, and
improves the performance within limited epochs. The contribu-
tion of this paper are briefly summarized as that we proposed a
new regularized CE loss, Dual Cross-Entropy Loss, which alle-
viate the vanishing of the gradient when the value of the CE loss
is close to zero, so as to improve generalization performance.

II. DUAL CROSS-ENTROPY LOSS

Before introducing the proposed loss, we first review multi-
class CE loss.

A. Cross-Entropy Loss

Suppose that D = {(x1, y1), . . . , (xi, yi), . . . , (xM , yM )} is
a training dataset of M samples, where yi , a one-hot vector, is
the label of the ith sample xi , and suppose that pi is a vector
in which the j th, j ∈ {1, 2, . . . , C}, element is the probability
that sample xi is assigned to the jth class. Then, the CE loss
can be defined as follows (1):

LC E = − 1
M

M∑

i=1

(yi
T log(pi)) (1)

Fig. 1. Motivation of Dual Cross-Entropy Loss. (a) Explanation of CE loss,
which focuses on the probability that a data point is assigned to its ground-truth
class (labeled in brown) and does not place any constraint on the probability
that the data point is assigned to a class other than its ground-truth class. (b) The
idea of Dual Cross-Entropy Loss, which not only focuses on the probability that
a data point is assigned to its ground-truth class but also adds a constraint on the
probability that the data point is assigned to a class other than its ground-truth
class.

From the formulation, CE loss focuses only on the probability
that a data point is assigned to its ground-truth class and does
not place any constraint on the probability that the data point is
assigned to a class other than its ground-truth class, as shown
in Figure 1 (a). Figure 1 (a) shows, given a data point, the
possible changes in the probability distribution over classes due
to minimization of the CE loss, where the ground-truth class
label of the data point is 2. Except for the second class, the
probabilities of some classes increase, and the probabilities of
some classes decrease in the process of optimization.

B. Dual Cross-Entropy Loss

In this paper, we propose a new loss that not only focuses on
the probability that a data point is assigned to its ground-truth
class but also decreases the probabilities that the data point is
assigned to a class other than its ground-truth class. We call
the proposed loss Dual Cross-Entropy Loss. See Equations (2)
and (3):

LDC E = LC E + βLr (2)

Lr =
1
M

M∑

i=1

((1 − yi)T log(α + pi)) (3)

where LC E is responsible for increasing the probability that a
data point is assigned to its ground-truth class, Lr is responsible
for decreasing the probability that the data point is assigned to
a class other than its ground-truth class, α > 0, β ≥ 0, and the
meanings of M , yi and pi are the same as those in Equation (1).

When β is larger, the impact of Lr on LC E is greater. When
β is equal to 0, our loss LDC E collapses to the CE loss. Our
loss aims to increase the probability that a data point is assigned
to its ground-truth class while simultaneously decreasing the



4206 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 68, NO. 5, MAY 2019

Fig. 2. Example images of the Stanford Cars-196 dataset. The top images are the original images in the dataset, and the bottom images are the ground-truth
annotations of the bounding boxes.

Fig. 3. Curves of the accuracies obtained by the VGG16 and DenseNet161 networks trained by minimizing the CE loss and our loss on the Stanford Cars-196
dataset. Top subfigures: the VGG network with 16 layers. Bottom subfigures: the DenseNet network with 161 layers.

probability that the data point is assigned to a class other than
its ground-truth class, as shown in Figure 1 (b).

III. FINE-GRAINED VEHICLE CLASSIFICATION EXPERIMENTS

Considering our focus on fine-grained vehicle classification,
we choose the Stanford Cars-196 dataset.

A. Stanford Cars-196 Dataset

The Stanford Cars-196 dataset contains 16,185 images of 196
classes of cars. The dataset is split into 8,144 training images
and 8,041 testing images, in which each class is split roughly 50-
50. We employ the information of the bounding boxes provided

by the dataset and process images into a specific area of the car,
which are used to further train the neural network and evaluate
our loss. Several examples of original images and cropped boxes
are shown in Figure 2.

Since the Stanford Cars-196 dataset is a small-sample,
we use the publicly available deep convolutional neural net-
works VGG16 and DenseNet161 pretrained on the ImageNet
dataset directly and then fine-tune the networks on the Stan-
ford Cars-196 dataset. Specifically, we compare (1) VGG16-CE,
(2) VGG16-Ours, (3) DenseNet161-CE and (4) DenseNet161-
Ours, where VGG16 and DenseNet161 are two popular convo-
lutional networks and CE and Ours represent CE loss and Dual
Cross-Entropy Loss.
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To fine-tune VGG16 and DenseNet161, we use the SGD
optimization algorithm with a momentum of 0.9 and set the
batch size to 32, the number of epochs to 200, and the weight
decay parameter to 5 × 10−4. The entire network does not use
the same learning rate. In the convolutional layer, we adopt
a fixed learning rate of 0.0001, and in the fully convolutional
layer, we decrease the learning rate from 0.01 to 0.0 via the
cosine annealing method. We process the images according to
the size of each image bounding box, resize the images to a
uniform size of 224 × 224, and run VGG16 and DenseNet161
by minimizing the CE loss and the proposed loss.

For the setting of α and β, we first randomly extract one
fifth of the training dataset of the Stanford Cars-196 dataset as
the validation dataset and then select the α and β with the best
performance on the validation dataset. Finally, we set α = 1.0
and β = 4.5 to train the original training dataset of the Stanford
Cars-196 dataset, and the experimental results are shown in
Figure 3.

The upper two subfigures of Figure 3 show that the accuracy
of VGG16-CE on the training dataset increases much faster
than that of VGG16-Ours in the first 50 epochs, whereas after
50 epochs, the rate of increase in the accuracy of VGG16-
CE is very similar to that of VGG16-Ours. In terms of the
increasing accuracy on the test dataset, VGG16-Ours surpasses
VGG16-CE within the first several epochs and remains superior
in all following epochs. A similar phenomenon is observed
for DenseNet161; see the bottom two subfigures of Figure 3.
Therefore, our proposed loss improves upon the performance of
CE loss.

According to Figure 3, the proposed Dual Cross-Entropy Loss
alleviates the vanishing of the gradient. The reason is that when
the accuracy on the training dataset is close to 1.0, the original
CE loss will be close to 0, the gradients of all parameters will
be quite small, which easily results in vanishing gradients, and
the accuracy does not increase in optimization. However, for
the proposed Dual Cross-Entropy Loss, the vanishing of the
gradient are alleviated since the accuracy still increases at the
end of optimization.

B. Effect of Reducing the Number of Epochs on Performance

To further demonstrate the superiority of our loss function, we
reduce the number of epochs and compare VGG16-CE, VGG16-
Ours, DenseNet161-CE and DenseNet161-Ours. Specifically,
we reduce the number of epochs from 200 to 150, 100 and 50
while keeping the other settings unchanged. The classification
accuracies are listed in Table I.

Table I shows that on the Stanford Cars-196 dataset, when the
number of epochs is 200, the classification accuracy of VGG16-
Ours is 0.9017, and the classification accuracy of VGG16-CE
is 0.8952. On the DenseNet161 network, the classification ac-
curacy of our loss is 0.9351, and the classification accuracy of
CE loss is 0.9217.

As shown in Table I, as the number of epochs decreases, the
performances of all four methods worsen. However, our loss al-
ways has better performance than CE loss on the Stanford Cars-
196 dataset, regardless of whether VGG16 or DenseNet16 is

TABLE I
COMPARISON OF THE CLASSIFICATION ACCURACIES OBTAINED BY THE

NETWORKS UNDER CROSS-ENTROPY LOSS (CE LOSS) AND THE PROPOSED

DUAL CROSS-ENTROPY LOSS ON THE STANFORD CARS-196 DATASET.
VGG16-CE: VGG16 NETWORK TRAINED BY MINIMIZING CE LOSS.

VGG16-OURS: VGG16 NETWORK TRAINED BY MINIMIZING THE PROPOSED

DUAL CROSS-ENTROPY LOSS. DENSE161-CE: DENSENET161 NETWORK

TRAINED BY MINIMIZING CE LOSS. DENSE161-OURS: DENSENET161
NETWORK TRAINED BY MINIMIZING THE PROPOSED DUAL

CROSS-ENTROPY LOSS

used. Moreover, the performance of VGG16-Ours (100 epochs)
is roughly the same as the performance of VGG16-CE (200
epochs), and the performance of DenseNet161-Ours (50 epochs)
is roughly the same as the performance of DenseNet-CE (200
epochs). In summary, our loss improves the accuracy of CE loss
and accelerates the optimization of the network for fine-grained
vehicle classification.

IV. OTHER IMAGE CLASSIFICATION EXPERIMENTS

Since fine-grained data show high interclass similarity, to
further evaluate the performance of our loss function on other
datasets in which some classes show high interclass similarity, in
this section, we choose the LabelMe dataset, the UIUC-Sports
dataset and the CIFAR-10 dataset. The first two datasets are
small-sample datasets, and the last one is a large-sample dataset.

A. The LabelMe Dataset

The LabelMe dataset contains 8 classes of natural scene im-
ages: coast, mountain, forest, open country, street, inside city,
tall buildings and highways. We randomly select 210 images
for each class, of which 100 images, 100 images and 10 images
are used for the training dataset, test dataset and validation set,
respectively. The total number of images is 1680.

Since the feature quality is vital for image classification per-
formance [43], [44], we resize every image to 256 × 256 and ex-
tract the image features directly using the publicly available deep
neural network VGG16 pretrained on the ImageNet dataset. We
reserve only the features of the last convolutional layer and sim-
ply flatten them, and the feature dimension for each image is
32768. In addition, by selecting one set of values that makes
the network achieve the best performance among different val-
ues on the validation dataset, α and β are set as 1.0 and 4.5,
respectively, on the LabelMe dataset.

On the LabelMe dataset, we select two network structures, a
fully connected network of two layers (FC) and a fully connected
network of one layer (Softmax). Specifically, we compare (1)
FC-CE, (2) FC-Ours, (3) Softmax-CE, and (4) Softmax-Ours,
where CE and Ours represent CE loss and the proposed Dual
Cross-Entropy Loss, respectively.

In FC, the rectified linear unit function (Relu) and softmax
function are the activation functions of the first layer and second
layer, respectively. The dropout technique is not applied in FC
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TABLE II
COMPARISON OF THE CLASSIFICATION PERFORMANCES ON THE LabelMe
Dataset (LABELME). THE METHODS INCLUDE Fully Connected Network

Under CE Loss (FC-CE), Fully Connected Network Under Dual
Cross-Entropy Loss (FC-OURS), Softmax Classifier Under CE Loss

(SOFTMAX-CE), AND Softmax Classifier Under Our Loss (SOFTMAX-OURS).
EACH METHOD IS RUN 60 TIMES. THE MEAN VALUES AND STANDARD

DEVIATIONS OF THE CLASSIFICATION ACCURACIES AND THE p-VALUES OF THE

PAIRED STUDENT’S T-TEST BETWEEN FC-OURS AND FC-CE AND BETWEEN

SOFTMAX-OURS AND SOFTMAX-CE ARE PRESENTED

since the dropout technique does not improve the performance
of FC. The optimization algorithm [45]–[47] is set as RMSprop
with an initial learning rate of 0.001. The batch size and number
of epochs are set to 32 and 1500, respectively, and the weight
decay is set to 0.01. We monitor the performance of the network
on the validation dataset of the LabelMe dataset, and the net-
work weights corresponding to the best performance are used to
predict the unseen test data. For Softmax, we remove only the
first layer of FC and keep the other settings unchanged.

We run FC-CE, FC-Ours, Softmax-CE and Softmax-Ours on
the LabelMe dataset 60 times each. The means and standard
deviations of the accuracies are shown in Table II. The means
and standard deviations are 0.86 and 0.020 for FC-CE, 0.87 and
0.019 for FC-Ours, 0.83 and 0.079 for Softmax-CE, and 0.86
and 0.031 for Softmax-Ours.

Moreover, to demonstrate that our loss outperforming CE
loss on the LabelMe dataset is not due to chance, we conduct
paired Student’s t-tests between FC-CE and FC-Ours and be-
tween Softmax-CE and Softmax-Ours. The p-value of the paired
Student’s t-test for FC-CE and FC-Ours is 0.0021, which is less
than 0.005 (significance level). Therefore, we reject the null hy-
pothesis that FC-CE and FC-Ours have the same mean accuracy.
The p-value of the paired Student’s t-test for Softmax-CE and
Softmax-Ours, however, is 0.062, which is greater than 0.005.
Therefore, the null hypothesis that Softmax-CE and Softmax-
Ours have the same mean accuracy cannot be rejected. These
results show that on the FC network, the CE loss and proposed
loss are significantly different.

To further investigate the effect of the proposed loss on the
robustness and stability of the network, we present box plots
of the accuracies obtained by FC-CE, FC-Ours, Softmax-CE
and Softmax-Ours in Figure 4. In Figure 4, the box plot of FC-
Ours is more compact than that of FC-CE, and the box plot
of Softmax-Ours is more compact than that of Softmax-CE.
Meanwhile, FC-Ours and Softmax-Ours have no lower outliers,
which indicates that the model using the proposed loss has better
stability.

B. The UIUC-Sports Dataset

The UIUC-Sports dataset contains 1578 sports scene images
of 8 classes: bocce (137), polo (182), rowing (250), sailing

Fig. 4. Box plot comparison of the accuracies obtained by FC-CE, FC-Ours,
Softmax-CE, and Softmax-Ours on the LabelMe dataset. The central mark is
the median, and the edges of the boxes are the 25th and 75th percentiles. The
outliers are marked individually. Each method is run 60 times to produce the
box plots.

TABLE III
COMPARISON OF THE CLASSIFICATION PERFORMANCES ON THE UIUC-Sports

Dataset (UIUC). THE METHODS INCLUDE Fully Connected Network Under CE
loss (FC-CE), Fully Connected Network Under Dual Cross-Entropy Loss

(FC-OURS), Softmax Classifier Under CE Loss (SOFTMAX-CE), AND Softmax
Classifier Under Our Loss (SOFTMAX-OURS). EACH METHOD IS RUN 60

TIMES. THE MEANS AND STANDARD DEVIATIONS OF THE CLASSIFICATION

ACCURACIES AND THE p-VALUES OF PAIRED STUDENT’S T-TESTS BETWEEN

FC-OURS AND FC-CE AND BETWEEN SOFTMAX-OURS AND SOFTMAX-CE
ARE REPORTED

(190), snowboarding (190), rock climbing (194), croquet (236)
and badminton (200). Ten randomly sampled images are taken
from each class for the validation dataset, and the remaining
samples are split equally into a training dataset and a test dataset,
resulting in a training dataset of 749 images, a test dataset of
749 images and a validation dataset of 80 images.

We compare FC-CE, FC-Ours, Softmax-CE and Softmax-
Ours on the UIUC-Sports dataset. The parameter settings of
these methods are the same as those used for the LabelMe
dataset. In addition, by selecting one set of values that makes the
network achieve the best performance among different values on
the validation dataset, α and β are set as 1.0 and 7.0, respectively,
on the UIUC-Sports dataset. The means and standard deviations
of the accuracies are reported in Table III.

The mean and standard deviation of FC-CE are 0.89 and
0.010. The mean of FC-Ours is 0.90, which is higher than that
of FC-CE, and the standard deviation of FC-Ours is 0.007, which
is smaller than that of FC-CE. Similar results are observed for
Softmax-CE and Softmax-Ours. Therefore, for both FC and
Softmax, the proposed loss achieves a higher mean accuracy
and a lower standard deviation.

We also conduct paired Student’s t-tests for FC-CE and FC-
Ours and for Softmax-CE and Softmax-Ours on the UIUC-
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Fig. 5. Box plots of the accuracies obtained by FC-CE, FC-Ours, Softmax-
CE, and Softmax-Ours on the UIUC-Sports dataset. The central mark is the
median, and the edges of the boxes are the 25th and 75th percentiles. Outliers
are marked individually. Each method is run 60 times to produce the box plots.

Sports dataset, and the corresponding p-values are listed in
Table III. The p-value of FC-CE and FC-Ours is less than 0.05
(significance level); therefore, the null hypothesis that FC-CE
and FC-Ours have the same mean is rejected. Similarly, the
null hypothesis that Softmax-CE and Softmax-Ours have the
same mean is also rejected. The results indicate that for both FC
and Softmax, CE loss and the proposed loss are significantly
different on the UIUC-Sports dataset.

Figure 5 shows box plots of the accuracies obtained by FC-
CE, FC-Ours, Softmax-CE and Softmax-Ours. From Figure 5,
we can see that on the UIUC-Sports dataset, the box plot of
FC-Ours is more compact than that of FC-CE, and the box plot
of Softmax-Ours is more compact than that of Softmax-CE.
Meanwhile, the maximum, median and minimum accuracies
of FC-Ours and Softmax-Ours are higher than those of FC-CE
and Softmax-CE, respectively. Therefore, compared with the
models using CE loss, the models using the proposed loss have
better stability.

C. The CIFAR-10 Dataset

The CIFAR-10 dataset contains images of 10 classes: air-
plane, automobile, bird, cat, deer, dog, frog, horse, ship, and
truck. The image size is 32 × 32. The total number of images
is 60,000: the training dataset contains 50,000 images, and the
test dataset contains 10,000 images.

We compare two methods, CNNs-CE and CNNs-Ours, on
the CIFAR-10 dataset. We construct the CNNs according to the
literature [48], use the convolutional network structure based on
the ConvPool-CNN-C architecture [48], [49], replace the first
dropout layer with a layer that adds Gaussian noise, extend the
last hidden layer from 10 units to 192 units, and use 3 × 3 max-
pooling. Meanwhile, we adopt the Adam optimization algorithm
and set the batch size and number of epochs to 100 and 200.
In the Adam optimization algorithm, the initial learning rate is
set to 0.0003, and the momentum is set to 0.9 for the first 100
epochs and then to 0.5. The learning rate is linearly decayed to
zero over the second 100 epochs. Regarding the parameters α
and β in our loss function, we first randomly extract one fifth
of the training dataset of the CIFAR-10 dataset as the validation

TABLE IV
COMPARISON OF THE CLASSIFICATION ACCURACIES OBTAINED BY THE

NETWORKS UNDER CROSS-ENTROPY LOSS (CE LOSS) AND THE PROPOSED

DUAL CROSS-ENTROPY LOSS ON THE CIFAR10 DATASET. THE RATIOS

BETWEEN THE TRAINING AND TEST DATASETS ARE 5:1 AND 1:5

dataset and then select the α and β with the best performance
on the validation dataset. Finally, we set α = 0.1 and β = 1.0 to
train the original training dataset. We run CNNs-CE and CNNs-
Ours on two sets of CIFAR-10 data, the CIFAR-10 (5:1) dataset
and the CIFAR-10 (1:5) dataset. In the first dataset, the ratio of
the training data to test data is 5 : 1, and in the second dataset, the
ratio of the training data to test data is 1 : 5. The classification
accuracies are reported in Table IV.

As shown in Table IV, on the CIFAR-10 (5:1) dataset, the
accuracy of CNNs-Ours is 91.20%, which is 0.4% higher than
that of CNNs-CE. On the CIFAR-10 (1:5) dataset, the accuracy
of CNNs-Ours is 78.44%, which is approximately 0.2% higher
than that of CNNs-CE. The experimental results show that the
proposed loss achieves competitive performance on the CIFAR-
10 dataset.

D. Effect of Reducing the Number of Epochs on Performance

In the previous experiments, all the methods used a fixed
number of epochs. To explore the effect of the number of epochs
on the performance of the network for the LabelMe and UIUC-
Sports datasets, we consider 1500, 800, 200, 100 and 50 epochs
for FC-CE and FC-Ours. The other settings remain unchanged.
Each method is still run 60 times, and the means and standard
deviations of the accuracies are listed in Figure 6. A larger mean
and a smaller standard deviation indicate better performance.

As shown in Figure 6, on the LabelMe and UIUC-Sports
datasets, when the number of epochs is 1500, FC-Ours has the
largest mean and smallest standard deviation. Meanwhile, as the
number of epochs decreases, the mean accuracies of both FC-
CE and FC-Ours decrease monotonically. However, compared
with FC-CE, the mean of FC-Ours does not show an obvious
decrease. In addition, on the LabelMe dataset, FC-Ours with
50 epochs has similar mean and standard deviation as FC-CE
with 800 epochs. On the UIUC-Sports dataset, FC-Ours with
100 epochs has similar mean and standard deviation as FC-CE
with 800 epochs. Therefore, our loss function accelerates the
optimization process and reduces the training time.

E. Effect of Varying β on Performance

In the proposed loss, the parameter β is responsible for ad-
justing the ratio of CE entropy loss and the regularized term. To
further show the effect of varying the β of the proposed loss on
the performance of the model, we try different values of β and
train the FC network by minimizing the proposed loss on the
UIUC-Sports dataset. The results for the test data are shown in
Figure 7 in box plot format.
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Fig. 6. Comparison of the classification accuracies obtained by the FC network on the UIUC-Sports dataset (UIUC) and the LabelMe dataset (LabelMe) as the
number of epochs changes. Each setting for FC is run 60 times, and the mean values (Mean, left subfigures) and standard deviations (Std., right subfigures) of the
accuracies are shown.

Fig. 7. Box plots of the accuracies obtained by FC-CE on the UIUC-Sport
dataset. FC-CE is optimized by varying β and minimizing the proposed loss.
FC is run 60 times under each β . The central mark is the median, and the edges
of the boxes are the 25th and 75th percentiles.

From Figure 7, as β increases, the overall trend is that the per-
formance first improves gradually and then declines gradually.
After declining to the worst value, the performance then im-
proves gradually. The reason for this phenomenon is that when
β is small, the regularized term has a positive function for CE
loss, but when β is quite large, the regularized term becomes
the main part of the loss function. In short, the value of β in the
proposed loss can affect the performance of the model. There-
fore, in the experiment above, we use the validation dataset to
select the parameter β, that is, select the value of β that makes
the proposed loss have the best performance on the validation
dataset.

F. Confusion Matrix

In this section, we present the confusion matrices of FC-
Ours and FC-CE for the LabelMe and UIUC-Sports test data,
as shown in Figure 8 The results are from one of the 60 runs of
FC-Ours and FC-CE. We select a run in which the accuracies
of FC-Ours and FC-CE are close to their means. The first two
subfigures are for FC-CE and FC-Ours on the LabelMe dataset,
and the next two subfigures are for FC-CE and FC-Ours on the
UIUC-Sports dataset.

From the first two subfigures in Figure 8, we can see that on the
classes of “coast”, “mountain”, and “street”, the accuracies of
FC-CE are 0.83, 0.78 and 0.56, respectively, and the accuracies
of FC-Ours are 0.95, 0.90 and 0.88, respectively. In particular,
FC-CE has considerable confusion on the classes of “moun-
tain” and “street”, and FC-Ours produces greatly improved re-
sults. Similarly, from the next two subfigures in Figure 8, we
can see that on the classes of “croquet”, “rock climbing” and
“snowboarding”, the accuracies of FC-CE are 0.52, 0.81 and
0.86, respectively, and the accuracies of FC-Ours are 0.62, 0.83
and 0.92, respectively. FC-CE has substantial confusion on the
classes of “croquet” and “snowboarding”, and the results of
FC-Ours are greatly improved.

In summary, the confusion matrices in Figure 8 show that our
loss achieves improved accuracy for those classes that are easily
confused.

G. Discussion

From the experimental results on the LabelMe, UIUC-Sports
and CIFAR-10 datasets, compared with CE loss, the proposed
loss has superior performance on the first two datasets and
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Fig. 8. Confusion matrices of the FC networks for the UIUC-Sports dataset and the LabelMe dataset. (a) and (b) FC-CE and FC-Ours on the LabelMe dataset,
respectively. (c) and (d) FC-CE and FC-Ours on the UIUC dataset, respectively.

competitive performance on the CIFAR-10 dataset. First, our
loss works better on small-sample datasets and performs well
on large-sample datasets. Second, on the LabelMe and UIUC-
Sports datasets, a comparison of the standard deviations and box
plots indicates that our loss can ensure that the network or model
has more stable performance compared to CE loss. Third, the
proposed loss can help improve the classification accuracy of
the model or network for those classes that are easily confused.

The proposed loss possesses these advantages for the follow-
ing reasons: In the proposed loss, the CE loss is responsible
for increasing the probability that a data point is assigned to its
ground-truth class, and the regularized term is responsible for
decreasing the probability that the data point is assigned to a
non-ground-truth class. When the CE loss is close to zero, since
the deviation of the regularized term will not be zero, that is,
the total loss can continue to decrease, the proposed loss can
alleviate the vanishing of the gradient. In addition, in the pro-
cess of optimization, increases in the probability that the data
point is assigned to any non-ground-truth class are constrained,
and thus, the probability that the data point is assigned to its
ground-truth class increases. Consequently, the proposed loss
accelerates the optimization of the model or network.

V. CONCLUSION

In this paper, we propose a Dual Cross-Entropy Loss built
on CE loss. The proposed loss can be viewed as a linear com-
bination of CE loss and a regularized loss. The regularization
term places a constraint on the probability that the data point
is assigned to a class other than its ground-truth class, which
can alleviate the vanishing of the gradient when the CE loss
is close to zero. The results of two sets of experiments show
that compared with CE loss, the proposed loss (1) can acceler-
ate the optimization of the neural network; (2) has better per-
formance on a small-sample fine-grained vehicle classification
dataset (Stanford Cars-196), a small-sample scene classifica-
tion dataset (LabelMe), and a small-sample event classification
dataset (UIUC-Sports); and (3) has competitive performance on
a large-sample dataset (CIFAR-10).
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