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Abstract: The nervous system is made of a large number of neurons. Time-varying balance between excitatory and inhibitory 
neurons is important to activate appropriate modes of electrical activity. A realistic biological neuron is complex, often pre-
senting various electrophysiological activities and diffusive propagation of ions in the cell. Therefore, the physical effects of 
electromagnetic induction become very important and should be considered when estimating signal encoding and mode selec-
tion. Synaptic plasticity and anatomical structure have been developed to enhance the self-adaption of neurons. Thus, the elec-
trical mode with the most effective links and weights can be selected to benefit information encoding and signal propagation 
between neurons in the network. As a result, the demand for metabolic energy can be greatly reduced. In this review, neuron 
model setting with biophysical effects, modulation of astrocytes, autapse formation and biological function, synaptic plasticity, 
memristive synapses, and field coupling between neurons and networks are reviewed briefly to provide guidance in the field of 
neurodynamics. 
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1  Building a neuron model 
 

Electrophysiological processes in the cell can 
induce distinct bioelectricities and these charged ions 
are pumped to flow across the cell membrane via 
channels embedded in the membrane (Kawato et al., 
1984; Stent, 1984; Busciglio et al., 1992). As a result, 
the balance of ion concentration between the inside 
and outside of the cell is disturbed and membrane 
potential becomes time-varying when an external 
electric stimulus is imposed on the neuron. From a 
physical viewpoint, static potassium and sodium can 

activate an electric field and the field energy can be 
generated by spatial distribution in the cell. Further-
more, the diffusion and propagation of these charged 
ions will change the energy distribution and energy 
propagation. In particular, the continuous current 
across the membrane channels will change the density 
distribution of charged ions, energy storage and re-
lease. Therefore, capacitance for the cell membrane 
can be used to estimate the membrane potential, and 
signal propagation will be modulated (Holmes and 
Loew, 2008). Biological cells are elastic and their 
geometry alters to change the capacitance of mem-
branes exposed to external electromagnetic fields due 
to the effect of polarization and magnetization. Most 
previous studies seldom considered the elastic prop-
erties of cell membranes (Valverde, 1976; Pellionisz, 
1989; Tomba et al., 2014) and thus the capacitance 
was considered fixed as a constant in biological 
neuron models (Fitzhugh, 1966; Hassard, 1978; 
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Morris and Lecar, 1981; McCormick et al., 2007; 
Pospischil et al., 2008). These neuron models can be 
simplified and rebuilt in circuits for nonlinear analy-
sis (Tsumoto et al., 2006; González-Miranda, 2007; 
Storace et al., 2008; Goldwyn et al., 2011; Mao, 
2017). For example, Patel and DeWeerth (1997) de-
signed a very-large-scale integration (VLSI) circuit 
for producing electrical activity in a Morris-Lecar 
neuron, which was verified in an analog circuit by Hu 
et al. (2016). In this paper, we analyze the reasons for 
tolerance fluctuations, construct a condition-driven 
adaptive design method for tolerance using a hidden 
Markov model algorithm, and then present the results 
of some experiments on the precision stamping pro-
cess and discuss the feasibility and effectiveness of 
the adaptive design method.  

As the basic functional unit in the nervous 
system, a reliable neuron model is important to 
estimate the dynamic properties and predicate 
possible mode transition in neural activities. The 
propagation and pumping of ions in the cell can be 
very complex, but the application of a patch clamp 
benefits the estimation and detection of the membrane 
potential of neurons. As a result, implicit and 
auxiliary variables can be used to build reliable 
neuron models. Astrocytes (Dani et al., 1992; Parpura 
et al., 1994; Zonta et al., 2003; Navarrete et al., 2014) 
play an important role in regulating the concentration 
of calcium and inositol triphosphate (IP3) by adjusting 
the neurotransmitters adenosine triphosphate (ATP) 
and glutamic acid. For some interneurons, an 
auxiliary loop is formed to develop an autapse (van 
der Loos and Glaser, 1972; Seung et al., 2000; Yue et 
al., 2017; Song et al., 2018). An autapse is a specific 
synapse, connecting its own body via a closed loop. It 
can be developed to enhance signal propagation when 
the axon of the neuron is injured (Wang CN et al., 
2017). Thus, the anatomical structure of neurons and 
interaction between astrocytes and neurons should be 
considered. Guo et al. (2017) proposed that an 
astrocyte-neuron network driven by autapses can 
detect the possible occurrence of mode selection and 
firing pattern in the electrical activities. For isolated 
neurons, the involvement of an autapse connection 
can enhance the self-adaption of mode selection and 
response in electrical activities (Song et al., 2015; Ren 
et al., 2017; Uzun, 2017; Zhao and Gu, 2017; Xu Y et 
al., 2018a). Furthermore, setting an appropriate 

distribution of autapse connections in the network can 
induce coherence resonance (Uzun et al., 2017; Yang 
et al., 2017) and enhance the realization of synchro-
nization (Ma et al., 2015b) and pattern selection (Ma 
et al., 2015a) in the network. 

More importantly, physical effects should be 
considered in building reliable neuron models. From a 
dynamic point of view, a variety of neural circuits 
(Tamaševičius et al., 2015; Wei et al., 2017; Carro- 
Pérez et al., 2018; Wang RB et al., 2018; Bao et al., 
2019) can be designed to generate different firing 
patterns by adjusting the parameters or applying an 
appropriate external stimulus. Thus, spiking, burst-
ing, and even chaotic series can be produced to match 
the nonlinear properties of neural activities. In phys-
ical and mechanical systems, continuous energy sup-
ply is critical to support stable oscillation. In biolog-
ical systems, sufficient metabolic energy is needed to 
maintain normal electrical activities. An energy 
model for estimating the electrical activities of 
neurons has recently been proposed (Wang ZY et al., 
2015; Zheng et al., 2016; Wang YH et al., 2017; Wang 
and Wang, 2018). Results from the model are 
important for estimating the relation between blood 
flow, energy supply, and mode transition. Inspired by 
the Helmholtz theorem (Kobe, 1986), scale trans-
formation is often applied to neuronal models and 
nonlinear circuits. The Hamilton energy (Wang Y et 
al., 2017; Wu et al., 2018a; Zhang et al., 2018) can be 
calculated to estimate the dependence of energy on 
oscillation modes, chaos control, and nonlinearity in 
the system. For example, a neuron will maintain 
lower Hamilton energy in a bursting and/or chaotic 
state than in a spiking state. The occurrence of multi- 
scroll attractors also presents lower Hamilton energy 
in chaotic systems. Most neuron models emphasize 
the occurrence and fluctuation of membrane potential 
induced by the channel current and an external elec-
tric stimulus, while the intrinsic physical field effect is 
missed. Potassium, sodium, and calcium are known to 
be kept and transmitted in and out of the cell mem-
brane. Any slight spatial change or flow of these 
charged ions will induce a complex electromagnetic 
field in the cell and thus the successive transmission 
and pumping of ions will be changed to modulate 
electrical activity.  

Therefore, Ma and Tang (2015) and Wu et al. 
(2017) suggested that magnetic flux can be added as 
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new variable to existing neuron models. The law of 
electromagnetic induction indicates that an equivalent 
induction current can be imposed to approach the 
effect of an induced electromotive force, which shows 
certain weight modulation on the membrane poten-
tial. Indeed, a memristor can be magnetic flux- 
controlled or charge-controlled, and the memristive 
function is dependent on the relation between mag-
netic flux and charges. At least two variables 
(membrane potential and current) should be used to 
estimate the electrical activity of a neuron. Ma and 
Tang (2015) introduced magnetic flux as a new 
additive variable to the three-variable neuron model, 
and the same magnetic flux was introduced into the 
four-variable neuron model. As a result, the effect of 
electromagnetic induction is estimated by supplying 
additive current to the membrane. The ability of a 
two-variable neuron model to describe the field effect 
resulting from electromagnetic induction can be 
improved by using three variables. For building a 
generic and simple neuron model, the effect of 
electromagnetic induction and radiation on neural 
activity can be estimated as  
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where u represents the membrane potential, i is the 
channel current, q is the charge, φ represents the 
magnetic flux, p is the intrinsic parameter, and k0, k1, 
and k2 are parameters associated with the media. 
When a neuron is considered as an excitable media, 
its physical parameters can be approached by using 
equivalent capacitance C and inductance L. t denotes 
time. Iext denotes an external stimulus, and iinduct the 
induction current resulting from electromagnetic 
induction. ext is used to describe different types of 
electromagnetic radiations. ρ(φ) calculates the 
memductance of the memristor. This kind of elec-
tromagnetic induction can also be considered in the 
Hindmarsh-Rose, Hodgkin-Huxley (HH), and other 

neuron models (Ma and Tang, 2015; Wu et al., 2017) 
by including the magnetic flux variable and memris-
tive function. In particular, when this effect is esti-
mated in cardiac tissue, which is often described by 
two-variable reaction-diffusion equations, two kinds 
of death mechanisms (Wu et al., 2016; Ma et al., 2017) 
of heart tissue from electromagnetic radiation can be 
explained by a breakup of spiral waves and blocking 
of the propagation of target waves.  
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where 2 is the Laplace operation, and D represents 
the diffusion coefficient. The variables u and v often 
describe the activator such as membrane potential, 
and inhibitor such as recovery variable for current, 
respectively. In the cardiac tissue of a healthy heart, 
the sinoatrial node can emit a continuous electrical 
signal and maintain a stable target wave (Wu et al., 
2016; Ma et al., 2017). A higher intensity of electro-
magnetic radiation can block the propagation of a 
target wave, thereby suppressing the blood pump in 
the heart (Qu et al., 2014). On the other hand, in the 
case of arrhythmia and tachycardia, when some spiral 
waves can be detected in the cardiac tissue, electro-
magnetic radiation can induce breakup of spiral 
waves, and ventricular fibrillation is induced leading 
to final rapid death of the heart. Inspired by model 
setting for neural activity (Ma and Tang, 2015; Wu et 
al., 2017), extensive studies have been carried out to 
investigate the collective behavior of neural networks 
and wave propagation in cardiac tissue in the presence 
of electromagnetic induction and radiation (Mvogo et 
al., 2017; Zhan and Liu, 2017; Ge et al., 2018b; 
Rostami et al., 2018; Takembo et al., 2018; Xu Y et al., 
2018b; Lv et al., 2019; Mostaghimi et al., 2019).  

It is accepted that an induction current can be 
used to estimate the effect of electromagnetic induc-
tion resulting from a time-varying concentration of 
charged ions under transmission and exchange. Also, 
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by generating memristive currents it can give helpful 
clues to help understand the function of memristive 
synapses. Therefore, when two neurons are connected 
by a memristive synapse (Park et al., 2015; Covi et al., 
2016; Azghadi et al., 2017; Xu F et al., 2018), the 
synapse current for the coupled neurons is estimated 
by 

 

m 1 2( )( ,)I k u u                           (3) 

 
where u1 and u2 describe the membrane potential for 
each of the two neurons respectively, ρ(φ) is de-
pendent on the synapse property, and k is the coupling 
intensity. According to the difference in function 
mechanism, an electrical synapse is often considered 
as a gap junction coupling between neurons, while 
chemical synapse coupling is activated between 
neurons by the release of neurotransmitters. From a 
physical viewpoint, electrical synapse coupling could 
account for voltage coupling via a resistor, while 
chemical synapse coupling can be recognized as field 
coupling (Perea et al., 2009; Ma SY et al., 2019; Wu 
et al., 2019) because any release of neurotransmitter 
can induce a time-varying electromagnetic field and a 
change in the distribution of charged ions in the cell. 
The field variable is not presented in this model, 
though its field effect is considered by using an in-
duction current. Therefore, a variable E is introduced 
to describe the effect of the electric field in the neu-
ron, that is, the continuous exchange of ions across 
the membrane channels can be considered as placing 
a certain distribution of charges on the cell mem-
brane. For simplicity, a two-variable nonlinear circuit 
is used and the intrinsic electric field E of the capac-
itor is estimated. As a result, its generic form and the 
relations of physical variables are estimated as fol-
lows (Ma J et al., 2019): 
 

ext

d
( , , ),

d
d

( , ) ,
d

d
,

d

V
C f V i p

t
i

L g V i rE
t

E
ki E

t

 

  



 

                        (4) 

 
where V and E describe the membrane potential and 
inner and outer electric fields of the cell membrane, 

respectively. C, L, r, k, and p are normalized param-
eters for equivalent capacitance, inductance, the size 
of the membrane and intrinsic properties of the me-
dia. Eext is the external static or the time-varying 
electric field, and the propagation of an ion flow will 
be regulated to modulate the channel current. When 
more than two neurons are exposed to the external 
electric field, the electric field between the neurons 
will be activated to adjust the synapse coupling. As 
suggested in open problems (Ma SY et al., 2019), the 
Hindmarsh-Rose and HH neuron models can be used 
to describe the nonlinearity in Eq. (4). Thus, field 
coupling-induced synchronization and pattern for-
mation can be further investigated. From physical 
and chemical viewpoints, the neuron cell can be 
regarded as an excitable media in which the inner 
propagation of charged ions and external electro-
magnetic field will change the distribution of mag-
netic and electrical fields, as shown in Fig. 1. As a 
result, the transient distribution and flow of ions 
across the membrane will have a distinct impact on 
membrane potential. Therefore, it is useful to include 
appropriate variables to estimate the membrane po-
tential, channel current, magnetic field, and electrical 
field. Wu et al. (2019) proposed a new neuron model 
with four physical variables: membrane voltage, 
current, charge number on the membrane, and mag-
netic flux. Their paper includes a detailed description 
of the dynamical response induced by electromag-
netic radiation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1  Ion propagation in a neuron cell. Calcium, potas-
sium, and sodium ions can trigger spatial distribution of 
electric fields ECa, EK, and ENa  
Continuous movement and propagation of ions can induce a 
time-varying magnetic field which can be described by 
magnetic flux 



Ma et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2019 20(9):639-659 643

2  Contribution of astrocytes 
 

Astrocytes were thought to be passive elements 
playing merely nutritional and structural roles in the 
central nervous system of mammals. However, new 
evidence suggests that they can have a great effect on 
neuron function (Perea et al., 2009). It was suggested 
that astrocytes implement a feedback control to neural 
activity through synapses by regulating neurotrans-
mitter release (Volterra and Meldolesi, 2005; Wang et 
al., 2009; Halassa and Haydon, 2010; Henneberger et 
al., 2010; Khakh and Sofroniew, 2015; Poskanzer and 
Yuste, 2016). This feedback may involve different 
biochemical pathways (de Pittà et al., 2012), among 
which, the astrocytic calcium modulation pathway is 
most involved. Astrocytes are not electrically excita-
ble cells, but they can sense and respond to synaptic 
activity by adjusting their Ca2+ concentration. When 
the neurotransmitter glutamate is released from a 
presynaptic neuron, the astrocyte Ca2+ concentration 
will be increased. Furthermore, astrocytes can release 
some active gliotransmitters which can modulate the 
excitability and synaptic plasticity of pre- and 
postsynaptic neurons (Araque et al., 2014). Indeed, 
astrocytes are connected via gap junctions, and any 
increase of Ca2+ concentration in one astrocyte may 
induce a Ca2+ wave in nearby astrocytes (Newman 
and Zahs, 1997). As a result, neurons connected to 
those astrocytes will be excited and may have epi-
leptic activity in the whole neuron-astrocyte network. 

Due to the limitations of experimental technol-
ogy, most studies on astrocyte Ca2+ signaling are 
performed in vitro (Bezprozvanny et al., 1991; Höfer 
et al., 2002; Sloan and Barres, 2014; Manninen et al., 
2018). Thus, the reliability of these results may be 
dependent on the method applied and the context 
selection. Therefore, a reliable computational method 
is often required to understand the complexity of 
different astrocyte Ca2+ signals and estimate the dy-
namics of astrocytic Ca2+. The most popular astrocyte 
Ca2+ models are the DeYoung-Keizer (de Young and 
Keizer, 1992) and Li-Rinzel (Li and Rinzel, 1994) 
models, and the Höfer model (Höfer et al., 2002), 
which includes a calcium (Ca2+)-induced Ca2+ release 
(CICR) mechanism (Höfer et al., 2002). The Höfer 
model was proposed specifically to simulate astro-
cytes, and comprises the dynamics of the cytoplasmic 

Ca2+ concentration ( 2+Ca
C ), endoplasmic reticulum 

(ER) store Ca2+ concentration ( 2+Ca ,ER
C ), IP3 concen-

tration (CI), and active fraction of IP3R (CR). The 
nonlinear relation between these variables can be 
calculated by 
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where vrel, vSERCA, vin, and vout represent the Ca2+ re-
lease from the ER store, Ca2+ pump into the ER store, 
Ca2+ transmembrane influx, and transmembrane out-
flow, respectively. vrec and vinact are the recovery and 
inactivate rates, respectively, of the IP3 receptor. vPLCβ 
and vPLCδ are the activation rates of IP3 mediated by 
PLCβ and PLCδ, respectively, and vdeg is the IP3 
degradation rate. The diffusion of Ca2+ and IP3 inside 
the astrocyte cell is described by the last diffusive 

terms, where DCa and 
3IPD  are the diffusion coeffi-

cients. The Höfer model assumes that IP3 is the key 
messenger that mediates information communication 
between cells. Based on this model, many studies of 
Ca2+ signaling in astrocytes (Lavrentovich and Hem-
kin, 2008; Zeng et al., 2009; Toivari et al., 2011) have 
been discussed. The DeYoung-Keizer and Li-Rinzel 
models, in which the neurotransmitter is taken into 
account at the same time (Gibson et al., 2007; Bennett 
et al., 2008; Chander and Chakravarthy, 2012; 
Witthoft and Karniadakis, 2012; Hadfield et al., 2013; 
Witthoft et al., 2013; Kenny et al., 2018), have also 
been selected for detecting signal propagation in and 
between cells.  

A pioneering model named the ‘dressed neuron’ 
model, which includes a neuron and an astrocyte, was 
proposed by Nadkarni and Jung (2003). They adapted 
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the HH model (Hodgkin and Huxley, 1952) to simu-
late the action of a neuron, and the Li-Rinzel model to 
simulate the Ca2+ dynamics in an astrocyte. When the 
neuron is triggered to produce an action potential, 
neurotransmitter is released into the synaptic cleft and 
binds to the transmitter receptor on the astrocyte. 
Thus, the intracellular IP3 is released as follows (de 
Young and Keizer, 1992; de Pittà et al., 2012): 
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where 
3IPC  represents the concentration of IP3 in the 

astrocyte cell, and 
3

*
IPC  is the equilibrium value of IP3. 

3IP  determines the time scale of chemical transmis-

sion of IP3. A step function Θ(x) is used to simulate 

the IP3 release triggered by action potential, and 
3IPr  

represents the strength of coupling between the neu-
ron and the astrocyte. The feedback of astrocytes to 
the HH neuron is estimated by introducing the current 
Iastro, which can be obtained by fitting the experi-
mental data (de Young and Keizer, 1992; de Pittà et 
al., 2012):  
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Note that the time scale of the action potential of 
the neuron is millisecond, whereas the Ca2+ dynamics 
simulated by the Li-Rinzel model is on a much slower 
time scale of seconds. Some results confirmed that 
with a stronger coupling strength, i.e. a high value of 

3IPr  that is related to the density of mGlu receptors on 

the astrocyte membrane, seizure-like oscillations 
emerge without an external stimulus (Nadkarni and 
Jung, 2003). Therefore, Nadkarni and Jung (2003) 
suggested that higher expression of mGlu receptors 
may be one of the physiological reasons for epilepsy. 
Based on a similar modeling scheme, Tang et al. 
(2013, 2016) obtained a tripartite synapse model and 
discussed in detail the information transmission be-
tween neurons. They found that the presence of an 
astrocyte facilitates the occurrence of episodic spikes 
(ESs) in both presynaptic and postsynaptic neurons. 

Furthermore, the noise, originating from random 
open-close transitions of calcium ion channels in the 
endoplasm reticulum membrane of the astrocyte, can 
change the firing patterns of two neurons and facili-
tate the occurrence of ESs in both neurons during 
neuronal information transmission.  

In addition to the HH model, other neuron 
models, such as the Pinsky-Rinzel Model (Nadkarni 
and Jung, 2007), FitzHugh-Nagumo model (Postnov 
et al., 2007), and leaky integrate-and-fire model 
(Wade et al., 2012; Nazari et al., 2017), can be effec-
tive for examining information transmission between 
neurons and astrocytes. These models can reproduce 
the phenomena of hyperexcitability, plasticity, and 
Ca2+ oscillation observed in experiments. Other evi-
dence has indicated that astrocytes can be organized 
into networks (Halassa and Haydon, 2010), inter-
connected through gap junction channels. These are 
regulated by extracellular and intracellular signals 
that enable the effective exchange of information. For 
exploring two networks, the concept of ‘astroglial 
networks’ was suggested in a recent review paper 
(Giaume et al., 2010). Network models including 
multiple neurons and astrocytes have been developed 
to study information transmission in the cortex (Al-
legrini et al., 2009; Liu and Li, 2013; Chan et al., 2017; 
Tang et al., 2017), hippocampus (Amiri et al., 2012a, 
2013; Mesiti et al., 2015), and other parterres in the 
brain (Amiri et al., 2012b, 2012c; Yang and Yeo, 
2015). The main issues discussed in those models are 
synchronization, information transfer, and hyperex-
citability. For example, Amiri et al. (2012a, 2013) 
constructed a neural network model to study the effect 
of astrocytes on synchronization reach. It is thought 
that astrocytes are capable of changing the threshold 
value of transition from synchronous to asynchronous 
behavior among neurons. Tang et al. (2017) con-
structed a chain-type neuron-astrocyte network model 
to study the correlation between an astrocytic calcium 
wave and seizure-like behavior in a neuron network. 
They concluded that calcium wave propagation in 
astrocytes dominates the propagation of seizure-like 
discharges (SDs) in coupled neurons (Tang et al., 
2017). As reviewed by Manninen et al. (2018), cal-
cium signaling models in astrocytes can be catego-
rized into four groups: isolated astrocyte models, 
astrocyte network models, neuron-astrocyte synapse 
models, and neuron-astrocyte network models. 
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3  Synaptic plasticity 
 

Elastic media, such as cardiac tissue and muscle, 
can capture and slow down external mechanical 
pressure by inducing an appropriate deformation 
orientation. Complex electrophysiological activity 
occurs in the cardiac tissue and nervous system, and 
an appropriate response will be triggered when an 
external electric stimulus is applied. Synapses behave 
synchronously as receptors and transmitting terminals. 
In particular, the input signal will be encoded by a 
synapse and then converted to an equivalent trans-
membrane potential. Furthermore, intracellular and 
extracellular ion exchange will be regulated to induce 
a variety of firing patterns. External stimuli, including 
a signal from the post-synapse from an adjacent 
neuron, can change the polarization properties of a 
synapse. As a result, the impendence of the synapse 
will be changed under an external stimulus. When 
two or more neurons are coupled via synapses, the 
time-varying exchange of charged ions and fluctua-
tion of membrane potentials can propagate electric 
signal along the axon to emit changeable signals to 
the pre-synapse of another neuron. Therefore, the 
impendence of the coupling synapse is changed to 
present different intensities. The nervous system has 
distinct self-adaption due to synaptic plasticity 
(Zucker, 1989; Bliss and Collingridge, 1993; Abra-
ham and Bear, 1996; Abbott and Nelson, 2000; 
Zucker and Regehr, 2002). The connection intensity 
of synapses can be changeable, and the property or 
phenomenon of relatively permanent alteration in the 
morphology and function of synapses is confirmed. 
That is, the synapse current can be enhanced by an 
increase in involvement in the processing electrical 
activities, while its intensity is reduced by a decrease 
in involvement in signal encoding.  

Synaptic plasticity can be short-term or long- 
term. Potentiation, depression, and facilitation are the 
main aspects of short-term synaptic plasticity. Short- 
duration synaptic plasticity (Salin et al., 1996; Buo-
nomano, 2000; Junge et al., 2004; Pan and Zucker, 
2009; Tutkun et al., 2010) is an important form of 
synaptic plasticity and plays an important role in 
activating the normal function of nervous systems. 
Synaptic short-duration plasticity can strengthen the 
certainty of synaptic transmission, and regulate the 
balance between the cortical excitation and inhibition. 

As a result, a switch between excitation and inhibition 
enables neurons to select the most suitable response 
and firing patterns. In a word, its biological function 
is to form the temporal and spatial characteristics of 
neural activities, and to enhance and regulate the 
synchronous oscillation of the cortical thalamic net-
work. Synaptic short-duration plasticity is involved in 
the realization of higher nervous system functions 
such as attention, priming effect, sleep rhythm, 
learning, and memory. Short-duration synaptic plas-
ticity can be divided into short-duration enhancement 
and short-duration inhibition. Long-term synaptic 
plasticity (Bear and Malenka, 1994; Engert and 
Bonhoeffer, 1999; Nestler, 2001; Yuste and Bon-
hoeffer, 2001; Trachtenberg et al., 2002) is charac-
terized by long-term potentiation (LTP) and long- 
term depression (LTD). Long-term potentiation is 
also called the long-term gain effect, and is a persis-
tent potentiation phenomenon in signal transmission 
resulting from synchronous stimulation of two neu-
rons. This is one of several phenomena associated 
with synaptic plasticity, the ability of synapses to 
change strength (Bliss and Collingridge, 1993). Since 
memory is thought to be encoded by changes in 
synaptic strength, LTP is widely regarded as one of 
the major molecular mechanisms underlying learning 
and memory.  

In 1966, LTP was discovered in the hippocam-
pus of rabbits by Terje Lomo and has long been a hot 
topic of research. Many modern LTP studies attempt 
to better understand its biological rationale, while 
others aim to explore the causal relationship between 
LTP and behavioral learning. Some researchers are 
developing ways to improve learning and memory by 
enhancing LTP, for example, by injecting drugs. LTP 
is also the subject of clinical research in areas such as 
Alzheimer’s disease and addiction medicine. LTP has 
several characteristics, including input specificity, 
relevance, synergy, and persistence. LTD is known as 
long-term depression and long-term depotentiation, 
which refers to the inhibitory behavior of nerve syn-
apses lasting for several hours to several days. Strong 
synaptic stimulation (cerebellar Purkinje cells) or 
long-term weak synaptic stimulation (hippocampus) 
can lead to long-term inhibition, which is thought to 
be induced by changes in postsynaptic receptor den-
sity. However, changes in presynaptic release may 
also have an effect on inhibition. Long-term inhibition 
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of the cerebellum is assumed to play an important role 
in motor learning, and long-term suppression of the 
hippocampus can be effective in erasing past memo-
ries. LTD of the hippocampus/cerebral cortex is con-
trolled by the N-methyl-D-aspartate (NMDA) recep-
tor, mGluR, or the endocannabinoid. 

The coupling intensity and equivalent synapse 
current are dependent on the involvement of synapses 
such that external input-induced polarization can be 
balanced and less energy can be consumed. As a re-
sult, the synchronization between neurons and model 
selection can be controlled completely. For example, 
Wang JY et al. (2018) constructed a modular neuronal 
network with modified Oja’s learning rule, and used it 
to eliminate the pathological synchronized rhythm of 
interacting bursting neurons. They found that synap-
tic plasticity with a high learning rate can effectively 
suppress bursting synchronization among strongly 
synchronous neurons in a modular neural network by 
applying a specific range of coupling intensity. Based 
on an Izhikevich neuron within a subthreshold excit-
atory population, these individual neurons can exhibit 
noise-induced bursts with increasing coupling inten-
sity. The neuronal population has adaptive dynamic 
synaptic strength governed by spike-timing-dependent 
plasticity (STDP), and the neuron cannot fire spon-
taneously without noise. Kim and Lim (2018) inves-
tigated the effect of additive STDP on stochastic burst 
synchronization (SBS) by changing the noise inten-
sity in a Barabási–Albert scale-free network (SFN). 
They explained a Matthew effect in synaptic plastic-
ity which occurs due to a positive feedback process. 
Furthermore, perfect burst synchronization (with a 
high bursting measure) improves with LTP of synap-
tic strength, while non-perfect burst synchronization 
(with a low bursting measure) deteriorates with LTD. 
Tarai et al. (2019) discussed the neurobiological 
mechanisms of stress and mood disorders with the 
aim of enhancing the pharmacological effects of an-
tidepressants and mood stabilizers. They found that 
regulation of neurotrophic factors can blockade stress 
and enhance neuronal survival, even though limbic 
regions can be paralyzed. Neurotrophic factors and 
molecular agents also adjust behavioral and synaptic 
plasticity in addiction and stress disorders. Short-term 
synaptic depression mainly reveals the depletion of 
the readily releasable pool (RRP) of quanta. Bui and 
Glavinović (2013) used patterned stimulation on the 

Schaeffer collateral fiber pathway and model-fitting 
of the excitatory postsynaptic currents (EPSCs) rec-
orded from CA1 neurons in rat hippocampal slices. 
Ursino et al. (2018) implemented new synaptic 
learning rules to take into account the role of partially 
shared features and distinctive features with different 
saliency. The trained network handled word recogni-
tion and task naming tasks in an effective way, and 
the different roles of salient versus marginal features 
in concept identification were exploited. Li (2014) 
studied dendritic and synaptic integration with dif-
ferent spatial distributions of synapses on the den-
drites of a biophysically-detailed layer 5 pyramidal 
neuron model. They found that temporally synchro-
nous and spatially clustered synaptic inputs make 
dendrites perform a highly nonlinear integration. Lu 
et al. (2019) analyzed the propagation and fidelity of a 
subthreshold EPSC signal in a feed-forward neural 
network composed of five layers by using the spike 
timing precision and power norm and the EPSC signal 
imposed on the Hodgkin–Huxley neurons of the first 
layer. They found that background noise contributed 
to the propagation of subthreshold EPSC signal in the 
feed-forward neural network and the fidelity between 
the system’s response and subthreshold EPSC signal 
was preserved. Sun et al. (2019) discussed the de-
pendence of signal detection on coupling strength and 
network topologies in small-world neuronal networks. 
They confirmed that the shorter the average path 
length, the better the signal detection under interme-
diate coupling strengths.  

Synaptic plasticity, involving changes in synap-
tic strength observed in vivo or in vitro after learning, 
is one of the mechanisms underlying memory storage. 
Long-lasting forms of synaptic plasticity, including 
both LTP that synaptic strength increases (Bliss and 
Gardner-Medwin, 1973; Bliss and Lømo, 1973), and 
LTD that synaptic strength decreases (Ito, 1989), are 
the cellular bases of learning and memory (Bliss and 
Collingridge, 1993), which are fundamental mental 
processes critical for adaptation and survival.  

Quantitative computational models have become 
important for obtaining a deep understanding of 
complex networks of interacting pathways with 
convergence, divergence, and positive and negative 
feedback loops. Some evidence has revealed that a 
large number of molecules, and complex interactions 
between them, underlie plasticity (Collins et al., 2005; 
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Coba et al., 2009). Presynaptic release of glutamate 
and postsynaptic depolarization are the two crucial 
features of most induction protocols at excitatory 
synapses. Biophysical models involving both elec-
trophysiological properties and biochemical reactions 
(signaling pathways) have been developed to under-
stand the pre- and postsynaptic events in LTP and 
LTD (Kotaleski and Blackwell, 2010; Manninen et al., 
2010). For example, a framework for computational 
models of signaling pathways was proposed to un-
derstand the molecular mechanisms underlying syn-
aptic plasticity of glutamatergic synapses (Kotaleski 
and Blackwell, 2010). Some computational postsyn-
aptic signal transduction models have been developed 
to investigate the dependence of synaptic plasticity on 
species and interactions (Manninen et al., 2010).  

An elevation in intracellular calcium in the 
postsynaptic neuron is crucial for LTP or LTD (Bliss 
and Collingridge, 1993; Malenka and Bear, 2004), 
and shows some differences from the molecular 
mechanisms leading to synaptic plasticity. Ca2+ can 
activate protein kinases and phosphatases for induc-
ing phosphorylation–dephosphorylation cycles, LTP 
and LTD. There are various pre- and postsynaptic 
mechanisms of changes in synaptic strength, in which 
cytosolic Ca2+/calmodulin-dependent signals play an 
important role in synaptic plasticity (Lisman and 
Goldring, 1988a, 1988b). Most mechanistic models 
typically confirm the role of calcium in synaptic 
plasticity by detecting calcium dynamics in electrical 
activity (Schiegg et al., 1985; Gamble and Koch, 
1987; Holmes and Levy, 1990). It is claimed that the 
amplitude of calcium elevation depends on the fre-
quency of synaptic stimulation, while kinases are not 
directly implicated in plasticity. It remains open why 
some stimulation protocols produce depression and 
others produce potentiation, because Ca2+ can activate 
multiple processes and enzymes. The interaction of 
multiple signaling pathways at multiple points lead-
ing to kinase activation, as well as neuromodulators, 
is nonlinear processing, which makes a quantitative 
understanding more difficult. Indeed, further com-
putational modeling of signaling pathways is needed 
to investigate these complex interactions and predict 
important molecular mechanisms, and then to guide 
researchers to the most valuable experiments.  

It is assumed that the number of molecules in 
deterministic modeling is large enough to be repre-

sented as a concentration. However, many subcellular 
compartments are so small as to contain finite mole-
cules, which results in stochastic fluctuation in mol-
ecule numbers and changes the outcome of signaling 
pathways. Stochastic simulations have revealed that 
signaling pathways, such as positive feedback loops 
with bistable switches modeled deterministically, are 
no longer bistable. For example, taking an extremely 
long time to spontaneously switch states resembles 
the bistability mechanism, and suggests that synapses 
can exhibit multiple stable states (Hayer and Bhalla, 
2005). These spontaneous transitions cause thresh-
olds to be located in some ranges and so switches 
become either less sensitive to signals or more sensi-
tive to noise (Bhalla, 2004; Hayer and Bhalla, 2005). 
Deterministic simulations (Bhalla and Iyengar, 1999; 
Bhalla, 2002; Ajay and Bhalla, 2004) have revealed 
several emergent properties of a global network of 
interacting pathways that are not present in individual 
pathways. Consequently, stochastic effects should be 
considered when modeling a system.  

Spatial gradients of signaling molecules are 
known to be prominent in neurons with elongated 
dendritic structures, and the spatial aspect of cell 
signaling should be estimated. For example, synaptic 
inputs in one part of the dendrite induce the genera-
tion and diffusion of secondary messengers to other 
parts of the dendrite (Blackwell and Jedrzejewska- 
Szmek, 2013). When all synapses of a neuron are 
potentiated in response to synaptic stimulation, the 
neuron will respond not only to previously learned 
patterns, but also to any arbitrary spatial pattern of 
synaptic input from environmental stimuli (Irvine et 
al., 1994). Modeling this spatial aspect of neurons is a 
relatively new approach to investigating neuronal 
plasticity (Ajay and Bhalla, 2007; Neves et al., 2008). 
Although there are many non-spatial models of sig-
naling pathways, it is necessary to focus on models 
incorporating significant morphological features of 
neurons, such as a soma with an elongated dendrite or 
a dendrite with spines (Blackwell and Jedrzejewska- 
Szmek, 2013). A more comprehensive, deterministic 
spatial model of signaling pathways (including  
mitogen-activated protein kinase (MAPK), protein 
kinase A (PKA), calcium/calmodulin-dependent 
protein kinase II (CaMKII), and protein kinase C 
(PKC)) needs to incorporate a multi-compartmental, 
multi-channel electrical model of a dendrite. 
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In summary, computational models of synaptic 
plasticity have taken into account the involvement of 
molecules in synaptic plasticity and that some par-
ticular molecular mechanisms are responsible for 
experimental observations. Most models at the mo-
lecular level are far from complete due to a lack of 
knowledge of the biology and exact setting for kinetic 
parameters. This also raises some challenges for un-
derstanding the role of the stochasticity induced by 
sometimes only dozens of copies of a certain protein 
in a synaptic spine, and how to estimate the effect of 
spatial inhomogeneity remains an open question. The 
scarcity of complete models of synaptic plasticity 
reflects the complexity of the underlying mechanisms 
resulting from insufficient information on the quan-
tity and subcellular localization of critical enzymes. 
Therefore, applying a synthetic and integrative  
systems-level approach to model setting facilitates a 
deeper understanding of nonlinear processes of mul-
tiple interactions in information processing and 
memory storage in neurons. 

 
 

4  Collective behavior in neural networks 
 

Due to the application of nanotechnology, fea-
sible micro circuits and artificial synapses can be 
designed to build intelligent neuron processors. In a 
practical sense, the collective responses of neural 
processors and artificial neurons are worthy of further 
investigation so that signal propagation and infor-
mation encoding in nervous systems can be under-
stood. In this way, the occurrence and emergence of 
neural disease could be predicted, enabling possible 
suppression or curing. Neurons can be soaked in po-
tassium, sodium, calcium, and even chloride ion so-
lutions. A concentration gradient of ions can be acti-
vated to enhance the exchange and pumping of 
charged ions, thereby changing the membrane poten-
tial to trigger a variety of firing modes (Gu and Chen, 
2014; Gu et al., 2014a, 2014b; Gu and Pan, 2015a, 
2015b). In the nervous system, 20% of neurons can be 
inhibitory while 80% are kept in excitatory states. 
Therefore, it is important to consider the balance 
between excitability and inhibition (Zhao and Gu, 
2015; Xiao et al., 2016) of neurons in estimating 
collective responses and pattern selection in neural 
networks. The collective behavior of networks de-

pends mainly on the local kinetics of node and topo-
logical connection (Ma et al., 2016b; Mei et al., 2016, 
2018; Xu et al., 2016; Wei et al., 2018), and even 
initial setting (Ma et al., 2016a). For example, syn-
chronization transition between neurons can be in-
duced by resetting parameters and initial values (Gu 
et al., 2015). Multistability emerges in memristive 
systems involved with memristor-based functions. 
Therefore, synchronization stability between memris-
tive systems (oscillators) is dependent on the initial 
values (Wu et al., 2018b, 2018c; Liu Y et al., 2019). 
As a result, resetting the initial values will induce 
different types of synchronization. 

In biological neurons, chemical and electrical 
synapses are activated to receive and encode signal 
inputs and wave propagation between neurons. An 
electric synapse can couple neurons via a gap junction 
while a chemical synapse can connect neurons by 
release of a neurotransmitter. From a dynamic view-
point, the parameters of many nonlinear circuits or 
systems can be modulated to trigger quiescent, spiking, 
bursting, and even chaotic series, which can be con-
sistent with modes of electrical activity in the mem-
brane potential of biological neurons. Any electrical 
devices such as resistors, capacitors, induction coils, 
and memristors can be used to connect the nonlinear 
circuits, and appropriate setting of parameters (re-
sistance, capacitance, inductance, and memductance) 
for the coupling device can realize phase synchroni-
zation and/or complete synchronization. Indeed, gap 
junction coupling shows properties similar to those of 
direct voltage coupling via a resistor by consuming a 
certain Joule heat. This kind of coupling is often used 
as direct variable coupling. As explained by Liu ZL et 
al. (2019a) and Xu et al. (2019), capacitor coupling 
provides effective electric field coupling by balancing 
and pumping the energy from the connected circuits. 
The energy pumping in the coupling device is esti-
mated from H=0.5C(V1–V2)

2, where C is the capaci-
tance of the coupling device, and V1 and V2 are the 
output voltages of the circuits. On the other hand, 
inductor coupling (Yao et al., 2019) bridges magnetic 
field coupling by balancing the energy estimated as 
H=0.5LI2, where L is the inductance and I the current 
across the coupling induction coil. A biological tissue 
such as a synapse can present complex physical 
properties such as resistance, capacitance, and in-
ductance. Ma J et al. (2019) used a resistor, capacitor, 
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and induction coil to investigate synchronization 
realization between memristive circuits. Therefore, 
hybrid synapses can be more reliable in processing 
information and signal propagation than a sole 
chemical or electrical synapse. Liu ZL et al. (2019b) 
combined a capacitor, resistor, and induction coil to 
design hybrid coupling devices. By connecting these 
electrical devices in parallel or series, they found that 
parallel connection was more effective in stabilizing 
synchronization than connection in series, and that the 
intensity threshold via resistance coupling could be 
reduced and power consumption greatly reduced in 
the coupling device. For example, Fig. 2 is a diagram 
representing two artificial neurons connected via a 
hybrid synapse. 

These hybrid synapses bridge the same output 
ends by balancing the energy flow and energy con-
sumption. Nonlinear circuits can draw out many 
output ends, and thus more than two coupling chan-
nels can be opened for signal and energy exchange. 
For an isolated neuron, low frequency, high frequency 
signals and even different kinds of noise can be im-
posed synchronously, and the intrinsic properties of 
excitable media account for mode selection and dy-
namical response in the electrical activities. From a 
physical viewpoint, continuous or intermittent release 
of a neurotransmitter can change the propagation and 
distribution of charged ions. As a result, an electro-
magnetic field is induced to propagate signals be-
tween neurons. Therefore, this kind of field coupling 
gives physical evidence for understanding the bio-
logical function of chemical synapses. In realistic and 
biological nervous systems, neurons show diversity in 
excitability and inhibition, and can be considered in 
different clusters and layers in the networks. As a 
result, the collective response in hybrid networks with 
cluster connections and a layered distribution is  
 

 
 
 
 
 
 
 
 
 
 
 

worthy of investigation by activating multiple chan-
nel coupling and hybrid synapses. In estimating the 
degree of spatial regularity and synchronization, the 
statistical synchronization factor (Qin et al., 2014; 
Wang and Ma, 2018) R is calculated using mean field 
theory, as follows: 
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where xi is any detectable variable of node i in a 
network composed of N nodes, and <*> represents the 
average value over time with a transient period. R≈1 
indicates perfect synchronization and the network 
will show a homogeneous distribution, while R≈0 
indicates the occurrence of non-perfect synchroniza-
tion and a regular spatial pattern is formed in the 
network. In previous studies with the preferred 
chemical synapse between neurons, the coupling 
effect was estimated by adding an equivalent forcing 
current to each neuron. In our view, any winding or 
facing between synapses of two neurons can be ap-
proached by estimating the field coupling effect. 
Firstly, the gap junction can be thought of as an 
equivalent capacitor coupling in which a time-varying 
electric field is induced before reaching complete 
synchronization in the series for membrane potential. 
The interaction between synapse ends can be esti-
mated by the induction current as follows: 
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where v1 and v2 are the membrane potentials of two 
neurons (output voltages from the same output end of  
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2  Neuron connections bridged via hybrid synapses: (a) capacitor connecting inductor in series; (b) resistor con-
necting inductor in series; (c) capacitor connecting inductor in parallel; (d) resistor connecting inductor in parallel  
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the neural circuits), and C is the equivalent capaci-
tance for the coupling synapse (or gap junction). The 
symbols “+” and “–” denote the current term included 
in the two neurons. As a result, a time-varying electric 
field is generated in this gap junction and energy is 
pumped between the two neurons. Considering the 
random flow and exchange of ions in the cell, a 
magnetic field also can be generated due to the flow 
of ions, and the neuron cell has a certain inductance. 
In this way, a magnetic field coupling can be consid-
ered when synapses are twisted together, then an 
induced electromotive force and induction current 
will be generated to balance the two neurons. As a 
result, the induced electromotive force ε modulates 
the membrane potential by imposing the induction 
current as follows: 
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where L is the equivalent inductance for the coupling 
synapse, and v1 and v2 denote the membrane poten-
tials of the neurons (also the output voltages from the 
output ends of the neural circuits). According to 
Eqs. (9) and (10), the capacitance and inductance of 
the coupling terms enables the ability to pump energy 
between neurons, and thus the membrane potential to 
be regulated for reaching synchronization. Further-
more, when the interaction between synapses is con-
sidered as field coupling, the winding and twisting 
between synapses can be explained as building an 
effective energy harvester, which can capture field 
energy from external electromagnetic radiation. For 
example, when the neurons (or neural circuits) are 
exposed to electromagnetic radiation, the coupling 
devices or coupled synapses can capture energy as 
follows: 
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where HC and HL represent the energy in the coupling 
capacitor and induction coil, respectively. Hext repre-
sents the energy flow from electromagnetic radiation, 
and c1 and c2 are coefficients for energy absorption. 
These coefficients are associated with the intrinsic 
properties of the media and neurons. A schematic 

diagram of this kind of field coupling between neu-
rons is shown in Fig. 3. 

From a physical viewpoint, each neuron of a 
multi-layer network is embedded into a certain field 
node superposed by other neurons, and continuous 
flow between intracellular and extracellular ions will 
induce coexistence of a magnetic field and an electric 
field. Therefore, it is a challenge to discuss the col-
lective behavior and regularity of a network when 
magnetic and electric field couplings between neu-
rons are activated with different ratios. Recent studies 
of signal processing and communication between 
neurons suggest that synchronization stability and 
transition become more attractive when synaptic 
plasticity and memristive synapse function are con-
sidered (Zhang and Liao, 2017; Xu Q et al., 2018; 
Sharma et al., 2019; Zayer et al., 2019).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5  Open problems 
 

It is well known that the nervous system has a 
large number and diversity of neurons and these 
neurons can have different biological functions. 
However, most neuron models consider only a single 
biological function and the external stimulus is often 
handled as an equivalent current. Neural activities are 
often described by a series of membrane potentials 
and the anatomical structure and functional connec-
tivity can be estimated by supplying appropriate ad-
ditive current to the membrane potential. From a 
physical viewpoint, the electromagnetic field is often 
described by the electric field and magnetic field, 

Fig. 3  Magnetic field coupling and electric field coupling 
between neurons whose synapses are twisted together 
and/or placed in parallel 
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while many neuron models seldom involve the  
electromagnetic field variables directly. Therefore, it 
is difficult to estimate the electrical activities of 
neurons from a physical viewpoint in these neuron 
models. For an artificial and biological neuron model, 
auditory, visual, and perceptual effects should be 
included to describe the responses to acoustic, optical, 
or piezoelectric signals. In this way, multiple channel 
inputs can be processed to guide the body morphol-
ogy and movements. Furthermore, when synapse 
coupling is explained as field coupling, it is interest-
ing to investigate the collective responses of neural 
networks and the weight of the contribution of the 
electromagnetic field of each neuron is kept open. 
Noise is known to play an important role in mode 
transition and information encoding of neural activi-
ties. From a physical viewpoint, external noise in 
nonlinear and neural circuits can be considered as a 
stochastic disturbance resulting from electromagnetic 
radiation, which can be estimated by low frequency, 
high frequency, Gaussian white noise, and color noise. 
Based on our neuron model (Ma and Tang, 2015) with 
electromagnetic induction, electromagnetic radiation 
can be described by adding an appropriate magnetic 
flux function to the dynamical equation for magnetic 
flux (Lu et al., 2017; Ge et al., 2018a; Jin et al., 2019). 
That is, the external magnetic field can change the 
magnetic flux across the membrane and then the in-
duction current can be used to estimate the electro-
magnetic induction. However, the physical electric 
field cannot be estimated directly when the magnetic 
field is changed. 

In a summary, building a reliable neuron model 
with biophysical effects is critical for estimating the 
mode transition and coexistence of multiple modes of 
electrical activity. Considering the difference in per-
ceptive function, the photoelectric, piezoelectric, and 
acoustoelectric conversion can be estimated to build a 
multifunctional neuron model. Thus, a stimulus of 
light, sound, or mechanical stress can be included for 
designing intelligent neuron sensors and processors. 
Also, the dependent and independent relations be-
tween different sense functions should be recognized. 
From the viewpoint of complex networks, path op-
timization in one-layer, multi-layer, and cluster net-
works should be reconsidered so that signal can be 
propagated in the most effective way, while mini-
mizing energy consumption. The involvement of field 

coupling in multiscale networks gives new insights 
and guidance for exploring neurodynamics.  
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中文概要  
 
题 目：从物理学角度认知计算神经动力学 

目 的：基于物理学基本原理解释神经元电活动过程中存

在的物理效应，解释突触生物功能活化过程的物

理机制，以及分析神经元建模中的电磁场效应

（图 1）。探讨神经元建模、胶质细胞调控、突触

可塑性和神经元群体电活动的网络效应。 

创新点：1. 论证荷控和磁控忆阻器非线性函数在物理神经

元模型构建中的作用。2. 提出神经元突触耦合的

物理机制就是电场和磁场耦合（图 3）。3. 研究神

经元电路混合突触耦合的物理实现（图 2）以及

能量存储与泵浦。 

方 法：依据物理学电磁感应定律和赫姆霍兹定理论证神

经元电活动过程产生的电磁感应效应以及能量

输运过程。基于忆阻器物理特性和量纲一致原理

来构建物理神经元模型，从物理角度解释突触功

能实现过程的物理机制。 

结 论：在神经元电活动过程中需考虑电磁感应效应；场

耦合可以调控神经元突触耦合作用；在神经元网

络中信号传递需考虑物理场耦合过程。 

关键词：神经元；神经网络；自突触；哈密顿能量；电磁

感应 

 


