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A B S T R A C T

To improve the mechanical properties of carbon fibers/lithium aluminosilicate (Cf/LAS) composites, Cf/LAS
with in-situ grown SiC nanowires (SiCnw-Cf/LAS) were prepared by chemical vapor phase reaction, precursor
impregnation, and hot press sintering, consecutively. The effect of multi-scaled reinforcements (micro-scaled Cf

and nano-scaled SiCnw) on the mechanical properties was investigated. The phase composition, microstructure
and fracture surface of the composites were characterized by XRD, Raman Spectrum, SEM, and TEM. The
morphology of SiCnw has a close relation with the content of Si. Microstructure analysis suggests that the growth
of SiC nanowires depends on the VLS mechanism. The multi-scale reinforcement formed by Cf and SiCnw can
significantly improve the mechanical properties of Cf/LAS. The bending strength of SiCnw-Cf/LAS reaches to
597MPa, achieving an increase of 19% to Cf/LAS. Moreover, the samples show a maximum fracture toughness of
11.01MPam1/2, achieving an increase of 46.4% to Cf/LAS. Through analysis of the fracture surface, the im-
proved mechanical properties could be attributed to the multi-scaled reinforcements by the pull-out and de-
bonding of Cf and SiCnw from the composites.

1. Introduction

Lithium aluminosilicate (LAS) is a kind of glass-ceramic materials,
which possesses excellent chemical durability, high-temperature stabi-
lity, low coefficient of thermal expansion and thermal shock resistance
[1–5]. LAS has been considered as a functional and structural material
in many industrial applications, such as high-temperature heat insula-
tion systems, aerospace structures, and optical lens [6,7].

Nevertheless, some problems still exist for wide applications for
LAS. Generally, LAS glass ceramics are fabricated through the pre-
cipitation of β-spodumene or β-eucryptite from the glass matrix which
demonstrates relatively low mechanical properties. Their flexural
strength and fracture toughness are roughly located in the range of
100–250MPa and 1–1.5MPam1/2, respectively [8], which hardly
meets the application needs of structural materials. To enhance the
mechanical properties of LAS is still a challenge, the introduction of
reinforcements has become a popular method to improve the

mechanical properties of LAS. Currently, for LAS and other ceramic
matrix composites (CMC), reinforcements generally use metal particles
[9,10], carbon fibers [11,12], alumina fibers [13], PVA fibers [14], zinc
oxide nanowires [15], carbon nanotubes [16,17], graphene [18]. Re-
gardless of the composition and shape, the reinforcements could be
generally divided into two types, micro-scale, and nano-scale re-
inforcements, based on the differences in dimensions. Though the CMC
with a single reinforcement is widely studied and applied, the reports
on CMC with multiple reinforcements are still rare. Particularly, re-
searches on CMC with multi-scale reinforcement are preliminary. The
multi-scale reinforcements have more advantages than the single re-
inforcement, such as higher mechanical properties and more functional
properties [19–23].

Compared with other reinforcements, carbon fiber (Cf) possesses the
outstanding advantages of high strength, low density and excellent
wear resistance for structural application [24]. According to reported
studies, the fracture toughness and work of fracture of Cf/LAS
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composites could reach 11.4MPam1/2 and 12 kJ·m−2. Herein, to fur-
ther enhance the mechanical properties, nano-scale SiC is introduced
into Cf/LAS to achieve multi-scale reinforcement. SiCnw could be re-
garded as an effective reinforcement, due to the excellent mechanical
properties and chemical stability [25,26]. Some studies about SiCnw as a
kind of reinforcement in ceramic matrix composite were reported
[25,27]. Here, we report multi-scaled reinforcement of Cf and SiC na-
nowire (SiCnw-Cf) fabricated by the chemical vapor reaction process,
and the SiCnw-Cf/LAS was fabricated by precursor impregnation and
hot-pressing sintering. The effects of the multi-scaled reinforcements
(micro-scaled Cf and nano-scaled SiCnw) on the mechanical properties
were systematically investigated as well.

2. Experimental

2.1. materials and fabrication

Fig. 1 shows the schematic illustration for the fabrication of speci-
mens. First, the C powder (Acetylene Black, Jinghong New Energy In-
dustries, China) and Fe-Ni50 powder (1200 mesh, Changsha Tianjiu
Metal Co. Ltd., China), as a raw material and catalyst, were dispersed in
a dilute PVA solution and stirred ultrasonically for 0.5 h. The PAN-
based non-woven Cf felts (Jiangsu Tianniao High Technology Co. Ltd.,
China) were impregnated with this solution and dried for 24 h in 80 ℃.
During the growing process of nanowires, the Cf felts were suspended
over the ball-milled Si powder (2000 mesh, Liaoning Nitrogen com-
pound Co. Ltd., China) under an argon atmosphere at 1500 ℃ for 4 h.

LAS sol in the form of β-spodumene (Li2O-Al2O3-4SiO2) was syn-
thesized following a sol-gel method by starting with mixing boehmite
sol, silica sol and the lithium salt, using deionized water as media. The
slurry was prepared with the LAS sol through ball milling approach
[28–31].

The Cf felts, and the SiCnw-Cf felts were stacked and infiltrated into
the as-prepared slurry of LAS. SiCnw-Cf/LAS were prepared by hot-
pressing with 10MPa at 1300 °C for 0.5 h under vacuum condition.

To investigative the effect of SiCnw, the mole ratio between Si and C

was designed as 1:1, 1:2 and 1:3 during the growth of SiCnw. The SiCnw-
Cf samples were respectively referred to as SiCnw-Cf-1, SiCnw-Cf-2, and
SiCnw-Cf-3. The composites with different SiCnw-Cf were respectively
referred to as SiCnw-Cf/LAS-1, SiCnw-Cf/LAS-2, and SiCnw-Cf/LAS-3. For
the comparison, the composite without SiCnw was prepared in the same
process, referred to as Cf/LAS.

2.2. Characterization

The flexural strength and fracture toughness were tested by a me-
chanical testing machine (Instron 3345, Norwood, MA, UK) to in-
vestigate the effect of the in-situ grown SiCnw on the mechanical
properties of LAS. The flexural curve was measured by three-point-
bending tests on 3mm×4mm×36mm bars with a span of 30mm
and a cross-head speed of 0.5 mm/min. Single-edge-notched-beam
(SENB) test was used to assess the fracture toughness with a cross-head
of 0.05mm/min and a span of 20mm. The samples were
2mm×4mm×20mm with a notch depth to sample thickness ratio of
0.5. For each test, at least five specimens were used to obtain the mean
value.

The phase of the samples was characterized by XRD (DX-2700,
Dandong Haoyuan) with Cu Ka radiation and Raman Spectrum. The
morphology of in-situ grown SiCnw and fracture surfaces were observed
by FE-SEM (MERLIN Compact, Zeiss) and TEM (JEOL-2100, Hitachi,
Ltd.).

3. Results and discussion

3.1. Phase analysis and microstructure of SiCnw-Cf

Fig. 1 shows the photograph of the samples at different stages of
fabrications. As shown in Fig. 1c, the fiber felts exhibit green colored
surface for all samples, consistent with other reports of SiCnw growth
[32,33].

Fig. 2a shows X-ray diffraction patterns for SiCnw-Cf samples and Cf.
The diffraction peak at 25.9° is observed in all of the diffraction

Fig. 1. Schematic illustration of composites preparation.
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patterns, which is assigned to (002) diffraction plane of Cf. SiC is
characterized by the four diffraction peaks, which are indexed into (1 1
1), (2 0 0), (2 2 0), and (3 1 1) diffraction planes of SiC. Meanwhile, the
shoulder (33.6° peak marked by a star) emerges on the left side of the (1
1 1) peak. The similar phenomenon in SiCnw preparation is also ob-
served by other researchers, which can be ascribed to the stacking faults
formed during the growth of SiCnw [32,34,35]. Compared with carbon
fiber felt, the intensity of (0 0 2) diffraction peak of carbon was further
improved as shown in Fig. 2a, which is recognized as the product of
graphitization of excess carbon at high temperatures. The relative in-
tensities of (0 0 2) diffraction peak of specimens are also listed in
Fig. 2a. As the relative content of carbon increases, the intensity of the
diffraction peak increases. Also, the diffraction peak of SiO2 is observed
in the XRD patterns, which results from a small amount of remaining
oxygen in the argon atmosphere.

Fig. 2b shows the Raman Spectra of SiCnw-Cf. The peaks of
795 cm−1 and 971 cm−1 corresponding to SiC appear in the Raman
Spectra. Compared to the peaks of the SiC block, the peaks of SiCnw-Cf

have a small redshift, due to the comprehensive results of quantum
confinement effect and internal defects [36,37]. The peak of 916 cm−1

is indexed as SiO2, which is consistent with XRD results.
Fig. 3 shows the microstructures of the surface of SiCnw-Cf-1. SiCnw

are synthesized in a considerable amount on the surface of Cf. As shown

in high magnification image (Fig. 3c and d), most of SiCnw are straight
and long. Particular attention is paid to the surface of Cf, and it is found
that SiCnw are rooted in the surface of Cf (Fig. 3d).

FE-SEM images of the composites are shown in Fig. 4. The mor-
phology of SiCnw has a close relation with the Si:C ratio. The nanowires
in SiCnw-Cf-1 (Fig. 4a) are straight, and irregular nanowires appear in
SiCnw-Cf-2 (Fig. 4b). Conspicuously, the content of irregular nanowires
in SiCnw-Cf-3 (Fig. 4c) increases.

3.2. The growth mechanism of SiCnw

The FE-SEM and TEM were applied to characterize the structure and
mechanism of growth of SiCnw. As shown in Fig. 5a, b, and c, the SiCnw

exhibits a clean surface and uneven diameter along the length direction.
The screw-like shape boundary of SiCnw could be attributed to the
stacking faults of SiCnw, which is consistent with XRD and Raman
Spectra results. The interplanar spacing for SiC crystals is 0.25 nm in
Fig. 5d, which corresponds to the (1 1 1) interplanar spacing of β-SiC
crystal [38,39]. The corresponding selected area electron diffraction
(SAED) patterns are shown in Fig. 5e, f, and g, which reveal stacking
faults in the crystal. The formation of stacking faults is quite common in
SiC nanostructures [34,40]. Meanwhile, the metallic ball at the top of
SiCnw is observed in Fig. 5a and b. It can be concluded that the

Fig. 2. X-ray diffraction patterns and Raman Spectra of SiCnw-Cf and Cf.

Fig. 3. FE-SEM images of SiCnw-Cf-1: (a), (b) low magnification; (c), (d) high magnification.
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microstructure of SiCnw implies typical VLS growth mechanism [38,41].
As shown in Fig. 6, Fe-Ni50 alloy melts into liquid droplets on the

surface of Cf at high temperature. Meanwhile, residual oxygen in the
Argon atmosphere reacts with Si and C to produce SiO and CO, as
shown in the following chemical reactions:

2Si(s)+O2(g)= 2SiO(g) (1)

2C(s)+O2(g)= 2CO(g) (2)

The SiO and CO molecules would preferentially adsorb at the sur-
face of liquid catalyst and broken of chemical bonding occurs due to the

presence of catalyst. The carbon atoms and silicon atoms move toward
the inside of the droplet, leading to the formation of Fe-Ni-Si-C alloy,
and the oxygen atoms react with carbon monoxide to form carbon di-
oxide, which overflow from the surface of the droplet. The reaction
equation is as follows:

SiO(g)+3CO(g)=Si(atom)+C(atom)+2CO2(g) (3)

Since the vapor is continuously supplied by an overpressure of SiO
and CO, the Si and C would eventually supersaturate in the droplet,
which will precipitate in the form of eutectic at nucleation point, such
as interface between liquid droplet and solid [42]. After nucleation, C

Fig. 4. FE-SEM images of (a) SiCnw-Cf-1; (b) SiCnw-Cf-2; (c) SiCnw-Cf-3; (d) Cf.

Fig. 5. (a) FE-SEM images of SiCnw; (b), (c), (d) TEM images of SiCnw; (e), (f), (g) SAED pattern of region 1, 2, 3 in.(c) respectively.
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and Si dissolution and SiC crystal precipitates continuously at the li-
quid-solid interface, and then the nanowires form. It has been con-
firmed that the (1 1 1) crystal planes possess the largest planar spacing
and the lowest specific surface energy direction. Hence, SiC crystal
mainly precipitates along the [1 1 1] direction and grows into nano-
wires [32].

While the above process is being carried out, the carbon dioxide
reacts with the carbon powder to form carbon monoxide, and the re-
action is as follows:

CO2(g)+C(s)= 2CO(g) (4)

This process can supply the carbon monoxide consumed in the re-
action. The reaction for the whole process is as follows:

Si(s)+C(s)=SiC(s) (5)

Stacking faults is one of most common defects in single crystal
preparation, which could reduce the surface energy of SiC surface and
benefit the axial growth [38]. This conclusion is also supported by the
TEM and XRD results.

Irregular nanowires were analyzed by SEM, EDS and TEM, and the
results are shown in Fig. 7. The elemental composition of the two points
of the irregular nanowire of SiCnw-Cf-3 is shown in Fig. 7b, and it is
found that the main composition of the irregular nanowires is carbon,
and a small amount of silicon. In the TEM image, one straight nanowire
is wrapped in the irregular nanowire, is identified as silicon carbide.
The interplanar spacing of the crystals in the outer nanowires is about
0.337 nm, and the orientations of the grains are clearly not the same.
The length is the same as the (0 0 2) crystal plane of graphite, indicating
that the outer layer is composed of microcrystalline graphite, con-
firming the results of XRD. This microcrystalline graphite is produced
by graphitization of excess carbon at high temperatures.

Fig. 8 shows the SEM image of SiCnw-Cf-2. The relative content and
diameter of irregular nanowires are less than SiCnw-Cf-3, which in-
dicates that the yield of nanowires composed of graphite crystallites is
relatively low. As shown in Fig. 8c, the surface of the silicon carbide
nanowires is uneven compared to SiCnw-Cf-1, due to the adhesion of
microcrystalline carbon to the surface. Since the relative content of

carbon in this ratio is small compared to SiCnw-Cf-3, microcrystalline
graphite does not completely wrap the SiCnw.

3.3. Mechanical properties

As shown in Fig. 9, the SiCnw-Cf/LAS-1 shows the highest bending
strength and fracture toughness. The bending strength of SiCnw-Cf/LAS-
1 reaches to 597 ± 36MPa, which means an increase of 19% com-
pared with Cf/LAS. Fracture toughness also increase separately by
46.4%, reaching 11.01MPam1/2. This result demonstrates that the in-
situ growth SiCnw has a significant effect on the mechanical properties
of SiCnw-Cf/LAS.

The Fig. 10 shows the bending stress-strain curves for different
composites. The Cf/LAS sample exhibited brittle fracture, consistent
with previous studies that some ceramic-based materials have no
toughness even when carbon fibers are added [31,43,44]. In the re-
ported studies [45], at high temperatures, atoms in the ceramic matrix,
especially lithium atoms, diffuse into the fibers. Li2O reacts with the
carbon of surface of the fibers, which affects the surface graphitic basal
planes of the carbon fibers.

C(s)+Li2O(s)=CO(g)+2Li(s) (6)

The atoms diffuse more quickly into the carbon fiber due to the
irreversible damage of the surface of carbon fibers. This process has a
negative impact on the performance of carbon fiber. Meanwhile, at high
temperatures, lithium atoms react with carbon atoms to generate gra-
phite intercalation compounds (GIC), which causes the crack to deflect
in the axial direction and propagate.

Li(s)+24C(s)=LiC24(s) (7)

However, the generation of GIC has a great relationship with tem-
perature. The yield of GIC is maximized at 1400 °C and the yield at
1350 ℃ is very low. In the present study, the sintering temperature is
1300 ℃, it is difficult to generate GIC. In summary, the combined effect
of these two processes always results in damage to the surface of the
carbon fiber, making it easier for the carbon fiber to break radially
during crack propagation. The fracture process is macroscopically

Fig. 6. Schematic of the in-situ SiCnw growth mechanism.
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characterized by brittle fracture.
SiCnw-Cf/LAS-2 and SiCnw-Cf/LAS-3 also exhibit brittle fracture

characteristics. Notably, the stress-strain curve for SiCnw-Cf/LAS-1
shows a sawtooth shape on the top, suggesting a pseudo-plastic fracture
behavior. This phenomenon illustrates that the toughness of composites
is improved by the introduction of SiCnw.

3.4. Fracture surfaces

To understand the reinforcement mechanism of LAS by SiCnw, the
fracture surfaces of the sample were observed by FE-SEM. Fig. 11 shows
the morphology of the fracture surface of SiCnw-Cf/LAS-1 after the
flexural test. In Fig. 11a and b, the fracture surface of SiCnw-Cf/LAS-1 is
characterized by a porous structure accompanying with the fiber pull-
out (as indicated by yellow arrows). This phenomenon often occurs in
the fracture of fiber-reinforced ceramic material composites [46,47].

The high-resolution images of the fracture surface are obtained to
investigative the effect of SiCnw. The nanowires are imbedded in the
matrix, as Fig. 11c, which shows that the nanowires are well combined
with the matrix during the fabrication of the composite. Meanwhile, the
debonding and pull-out of SiC nanowires are observed in Fig. 11d, e,
and f.

Fig. 12 shows the schematic of the cracking process of the compo-
site. Similar to fiber-reinforced ceramic matrix composites, the addition
of SiC nanowires could increase the composite toughness, which mainly
contains pull-out and debonding of SiCnw, and crack deflection. The
nanowires embedded in the ceramic matrix form a network structure as
shown in Fig. 11d. Under a specific load, initial cracks are generated,
propagate in the matrix and meet with SiCnw network. Due to the high

strength of SiC nanowire, cracks would bypass the nanowires. More
tortuous or branch paths are created during the propagation process of
cracks to dissipate or disperse energy (Fig. 12d), which helps increase
the fracture toughness. In the other hand, when the crack is opened to
both sides, the energy is dissipated by the interfacial friction in the
interface between the SiCnw and ceramic matrix during debonding or
pulling-out of nanowires. Thus, the fracture toughness is improved
(Fig. 12f). Even if the nanowire breaks during the debonding or pull-out
process, the fracture energy can be absorbed to enhance the fracture
toughness of the composite. Compared to Cf in micro-scale (Fig. 12f),
the strengthening effect of SiCnw belongs to nano-scale, which acts on

Fig. 7. FE-SEM image, EDS results, TEM image and HRTEM image of SiCnw-Cf-3.

Fig. 8. FE-SEM images of SiCnw-Cf-2.

Fig. 9. The bending strength and fracture toughness of composites.
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smaller crack propagation and prevents tinier cracks from expanding
effectively.

When varying the Si:C ratio during the SiCnw preparation, the me-
chanical properties of the resulting composites are altered. Compared
with SiCnw-Cf/LAS-1, SiCnw in SiCnw-Cf/LAS-2 and in SiCnw-Cf/LAS-3
contain carbon nanowires as by-products obtained during growth. The
carbon nanowires have poor mechanical properties because they are
composed of microcrystalline graphite. The carbon nanowires in the
composite not only do not have reinforcement effect, but also generate

more cracks even before applying any load. This conclusion is also
supported by the bending strength and fracture toughness of compo-
sites. As the carbon nanowires amount increases, the mechanical
properties of the composite material decrease.

In summary, the SiCnw could serve as the an effectively second re-
inforcement, constructing multi-scaled reinforcement with Cf, which is
beneficial for the improvement of mechanical properties. The reinfor-
cing mechanical for SiCnw-Cf/LAS could be attributed to the pull-out
and debonding of Cf and SiCnw and crack deflection.

4. Conclusions

This paper reports a study of the preparation and characterization of
SiCnw-Cf/LAS composites. The SiCnw-Cf was firstly fabricated by the
chemical vapor reaction process through the VLS mechanism, and the
SiCnw-Cf/LAS composites were fabricated by precursor impregnation
and hot-pressing. The bending strength and fracture toughness of SiCnw-
Cf/LAS are higher than Cf/LAS. The addition of SiCnw results in in-
creases by 19% and 46.4% in bending strength (597 ± 36MPa) and
fracture toughness (11.01 ± 0.36MPa·m1/2), respectively. Through
analysis of the fracture surface, the improved mechanical properties
could be attributed the multi-scaled reinforcements by the pull-out and
debonding of Cf and SiCnw from the composites and crack propagation.
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