doi: 10. 6041/j. issn. 1000-1298. 2018. 10. 038

垂直线源灌土壤湿润体尺寸预测模型研究

范严伟¹ 邵晓霞¹ 王 英² 龚家国²

(1. 兰州理工大学能源与动力工程学院,兰州 730050;2. 中国水利水电科学研究院流域水循环模拟与调控国家重点实验室,北京 100038)

摘要: 基于 HYDRUS-2D 模型建立了垂直线源灌土壤水分运动数学模型,设置 81 种情景,模拟获得不同土壤质地、 初始含水率以及线源长度、线源直径和埋深条件下的湿润体变化过程。湿润体尺寸主要受土壤质地影响,土壤质 地越粗,湿润锋运移越快,线源长度、线源直径和埋深对其影响较小。土壤湿润锋运移过程符合幂函数关系,幂函 数指数在水平和垂直向上方向上变化较小,而在垂直向下方向上随饱和导水率(*K*_s)的增大而增大;幂函数系数随 *K*_s的增大而增大。提出了包含 *K*_s在内的垂直线源灌土壤湿润体尺寸预测模型,试验验证了所建模型的可靠性, MAE 和 RMSE 接近 0, PBIAS 在 -4% ~9% 之间, NSE 不小于 0.929,说明预测效果良好。所建模型仅需 *K*_s即可推 求,试验设计简单,初步实现了由土壤物理参数预测垂直线源灌土壤湿润锋运移距离的可能。 关键词: 垂直线源灌;湿润体尺寸;经验模型; HYDRUS-2D 模型 中图分类号: S275.4 文献标识码: A 文章编号: 1000-1298(2018) 10-0336-11

Empirical Model for Predicting Wetted Soil Dimensions under Vertical Line Source Irrigation

FAN Yanwei¹ SHAO Xiaoxia¹ WANG Ying² GONG Jiaguo²

(1. College of Energy and Power Engineering , Lanzhou University of Technology , Lanzhou 730050 , China

2. State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins,

China Institute of Water Resources and Hydropower Research, Beijing 100038, China)

Abstract: The wetting pattern is difficult to observe during the vertical line source irrigation. Knowledge of the dimensions of wetted soil around the emitter under irrigation is essential to design of cost-effective and efficient vertical line source irrigation systems. Based on the HYDRUS-2D model, a mathematical model of soil water movement in vertical line source irrigation was established. And 81 scenarios were set up to simulate the changing process of wetted soil under different soil textures, initial water content, line source length , diameter and depth conditions. The dimensions of wetted soil were mainly affected by soil texture , the thicker the soil texture was , the faster the wetted front was moved , and the length , diameter and buried depth of line source had little influence on it. The migration process of soil wetting front was in accordance with the power function relationship. The power function index was changed little in the horizontal and vertical upward directions, but it was increased with the saturated hydraulic conductivity (K_s) in the vertical downward direction. The power function coefficient was increased with the increase of $K_{\rm c}$. An empirical model for predicting the wetted soil dimensions under vertical line source irrigation containing K, was proposed, the model reliability was verified by using experimental data. MAE and RMSE were close to 0 , PBIAS was between -4% and 9% , and NSE was not less than 0.929 , indicating that the prediction effect was good. The model can be estimated only by K_s , and the experimental design was simple. The possibility of predicting the soil wetting front migration distance under vertical line source irrigation by soil physical parameters was initially realized.

Key words: vertical line source irrigation; wetted soil dimension; empirical model; HYDRUS-2D model

收稿日期: 2018-08-26 修回日期: 2018-09-11

基金项目: 国家自然科学基金项目(51409137)和甘肃省自然科学基金项目(18JR3RA144)

作者简介: 范严伟(1982—), 男 讲师, 博士,主要从事水土资源高效利用和节水灌溉理论研究 E-mail: fanyanwei24@163.com 通信作者: 龚家国(1977—), 男 高级工程师, 博士,主要从事陆地水文过程模拟研究, E-mail: jiaguogong@163.com

0 引言

我国西北旱区土地资源丰富,日照充足,昼夜温 差大,是发展林果业的理想区域^[1]。然而,这些地 区降雨量有限,果树生产在很大程度上取决于灌 溉^[2]。传统灌溉方式耗水量大、水分利用效率低, 不利于生态经济的可持续发展^[3-4]。因此,灌溉技 术和水资源管理的改进将发挥重要作用。

垂直线源灌是一种适用于深根植物的节水灌溉 方法,其灌水器垂直埋入土体,灌水过程中,水分直 接进入植物根部 湿润体不易观测^[5]。湿润体的形 状及大小影响着植物的生长与产量,了解垂直线源 灌湿润体动态变化特征,可确保灌水器在活性根区 的精确放置 对设计经济高效的垂直线源灌溉系统 至关重要^[6-7]。土壤质地是决定灌溉设计参数的重 要因素 地下灌溉系统的设计应考虑土壤质地的影 响^[8-12];相同土壤质地条件下,土壤容重增加,孔隙 度减小,土体入渗能力下降[13-16];土壤初始含水率 决定了渗透初期的土壤水势,土壤初始含水率增加, 湿润体尺寸逐渐增大^[5,11,17-20]。线源长度和直径决 定了灌水器渗水界面的大小 线源长度或直径增大, 渗水界面面积变大,意味着水分进入土壤的通道增 加,导致相同时间内入渗水量增多,湿润体随之增 大^[21-24]。因此,从实用角度出发,线源直径既要尽 可能的大以加快其渗水速率 提高灌水均匀度 汉要 尽可能的小以减弱对作物根系生长的影响。灌水器 埋深直接改变湿润体水分分布位置,是实现作物根 系与湿润体有效匹配的关键因素,埋深过浅会增加 地表水分无效蒸发,埋深过深又会引起深层渗漏和 表土水分亏缺^[25-29]。因此,埋深应与土壤条件、根 系分布及耕作要求等相适应。灌溉必须适时适量, 灌水时间过早或过晚、灌水定额过大或过小都是无 益的。DU 等^[2] 研究表明,中国西北干旱区苹果根 区土壤含水率低于田间持水率的 50%~55%时,会 对树木生长和最终产量造成水分胁迫;周罕觅等^[30] 研究水肥耦合对3年生苹果幼树生长、产量、品质及 水肥利用的效应,得出灌水下限为田间持水率的 65%~75%;贾俊杰等^[31]指出 SH 矮砧苹果幼树滴 灌条件下适宜灌水下限为 60% 的田间持水率。孙 三民等^[32] 通过小区试验 确定 13 L/(棵•次) 的灌水 量为适宜的新疆红枣间接地下滴灌灌溉模式;张陆 军等[33]指出,陕北山地梨枣树涌泉根灌时,每株2 个灌水器及每个灌水器 40 L/(株·次)的灌水量组 合是适宜的布置方式; 吴悠等^[34] 通过遮雨棚下可称 量式蒸渗桶试验得出,生育期内8.4 L/(株·次)为柱 状苹果树相对节水的灌溉模式。

湿润体动态变化可通过湿润锋距离量化表征。 国内外学者开发了一些用于确定湿润锋距离的模 型,其中,最常见的是分析模型^[21,35-38]、数值模 型^[39-40]和经验模型^[11,41-45]。通常,通过求解特定 初始和边界条件的控制方程(Richards 方程)来开发 分析模型和数值模型,而使用实验或数值模拟的回 归分析来开发经验模型。文献 [46-48] 对数值和 经验模型进行了比较和评估,研究表明,HYDRUS 模型计算结果能较好地反映十壤水分运动基本规 律,但模型较复杂,需输入大量参数才能模拟计算; 另外,每个经验模型都是土壤水力特性和灌溉参数 的函数方程 形式较简单 但仅适用于具体的灌溉技 术 如开发的滴灌或沟灌湿润体预测模型并不适用 于垂直线源灌。因此,有必要开发一种可以预测垂 直线源灌土壤湿润体尺寸的经验模型,为确定适宜 的灌水技术参数和实现灌溉系统优化运行提供实用 而方便的手段。

数值模拟方法可对不同土壤特性、不同灌水器 规格和不同设计参数条件下的土壤水分运动过程进 行模拟^[49-51]。李淑芹等^[52]、FAN等^[53]通过试验验 证了垂直线源灌 HYDRUS-2D 模拟结果的有效性。 基于此,本文采用 HYDRUS-2D 软件,模拟研究土壤 质地、初始含水率、线源长度、线源直径和线源埋深 对垂直线源灌湿润体运移特征值的影响;利用模拟 数据筛选影响湿润体运移的主导因素,进而构建预 测湿润体尺寸的简化经验模型;最后,通过土箱试验 验证经验模型的可靠性。

1 材料与方法

1.1 试验设计

试验装置由3部分组成:土箱、马氏瓶和线源灌 水器 如图1 所示。土箱由10 mm 厚有机玻璃制成, 长×宽×高为50 cm×50 cm×100 cm。土箱底部留 有多个通气孔(直径2mm) 以防气阻发生。线源与 土箱接触面开取土孔(直径 2 cm,间距 5 cm),用于 测量灌溉结束时的土壤含水率。线源采用1/4圆柱 体 底端密封 管底向上 1 长度的柱面均匀开孔。马 氏瓶直径为10 cm 高度为100 cm。试验前将供试 土样按设定的初始含水率加水 均匀混合后 用塑料 薄膜密闭静置1d,待土壤水分分布均匀后,按设计 容重分层(5 cm) 装入土箱,以获得均匀土壤剖面。 为了便于观察土壤湿润体变化过程,将线源灌水器 用纱布包裹,并置于土箱一角,确保灌水器管壁与土 壤紧实接触,待次日进行入渗试验。试验中,马氏瓶 提供恒定水头 按先密后疏的时间间隔记录累积入 渗量,并用马克笔绘制湿润锋运移图。入渗达到设

定灌水定额后停止供水,迅速从灌水器两侧预留孔 取土,用干燥法(105℃干燥24h)测定土壤含水率。 为尽量消除试验误差,每个试验重复3次。

图1 垂直线源灌试验装置及灌水器细部结构

Fig. 1 Experimental equipment for vertical line source irrigation and detailed structure of emitter

1.调节水头支架
 2.马氏瓶
 3.灌水器
 4.橡胶管
 5.渗水孔
 6. 土箱
 7.取土孔
 8.通气孔
 9. 土壤表面
 10. 灌水器细部
 结构

参照文献 [2,30-34]研究成果,取民勤地区砂 壤土(容重 γ_d = 1.45 g/cm³,田间持水率 θ_f = 0.332 cm³/cm³,饱和导水率 K_s = 0.039 cm/min)和 风沙土(γ_d = 1.56 g/cm³, θ_f = 0.051 cm³/cm³, K_s = 0.345 cm/min),每种土壤采用 2 种处理(初始含水 率 θ_0 = 60% θ_f 、线源直径 d = 4 cm、线源长度 l = 20 cm、线源埋深 b = 40 cm、灌水量 V = 40 L; θ_0 = 70% θ_f 、d = 6 cm、l = 30 cm、b = 50 cm、V = 40 L)进行 垂直线源灌土壤入渗试验。

1.2 数学建模

1.2.1 基本方程

假设土壤是均匀和各向同性的,垂直线源灌可 概念化为轴对称的三维入渗过程。使用 HYDRUS-2D 模拟^[54]。土壤水分运动控制方程为 Richards 方程

$$\frac{\partial \theta}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} \left(rK(h) \frac{\partial h}{\partial r} \right) + \frac{\partial}{\partial z} \left(K(h) \frac{\partial h}{\partial z} \right) - \frac{\partial K(h)}{\partial z}$$
(1)

$$S_e = \frac{\theta - \theta_r}{\theta_s - \theta_r} = \frac{1}{\left(1 + |\alpha h|^n\right)^m}$$
(2)

$$K(h) = K_s S_e^{0.5} [1 - (1 - S_e^{1/m})^m]^2 \qquad (3)$$
$$m = 1 - 1/n$$

其中

式中
$$S_e$$
——土壤相对饱和度

θ_r — 土壤残余含水率 cm³/cm³
 θ_s — 土壤饱和含水率 cm³/cm³
 α — 与进气值成反比的经验参数 cm⁻¹
 n_xm — 影响土壤水分特征曲线形状的经验
 常数

1.2.2 定解条件

图 2(图中 A、B、C 分别为线源最高点、最低点和中心点)为本研究中用于模拟不同建模情景的初始和边界条件。

在所有的模拟情景中,土壤含水率按初始含水 率设置;上边界 DE 受大气条件影响,考虑灌水过程 中地表为干土层,蒸发量很小,为简化计算,按零通 量面设置;下边界 FG 不受灌水影响,为自由排水, 按零通量面设置;左边界 GH 为灌水器中心轴,AD 为塑料管壁,均无水量交换,按零通量面设置;右边 界 EF 灌溉水未到达,按零通量面设置;线源底部 BH 密封,为零通量边界;渗水面边界为充分供水方 式,供水开始后很快达到饱和,可按定水头边界处 理^[20,22]。

综上 初始条件可表述为

$$\begin{cases} \theta = \theta_0 \\ t = 0 \\ (r z) \in \Omega \end{cases}$$

式中 θ_0 ——土壤初始含水率 cm³/cm³
 Ω ——计算域(图 2)

边界条件可表述为

$$\begin{cases} -K(h) \left(\frac{\partial h}{\partial z} - 1\right) = 0 & (t > 0 \ DE \ FG \ \Pi \ BH \ \square P) \\\\ \theta = \theta_s & (t > 0 \ AB \ \square P) \\\\ -K(h) \ \frac{\partial h}{\partial r} = 0 & (t > 0 \ EF \ GH \ \Pi \ DA \ \square P) \end{cases}$$

1.2.3 模拟方案

采用单因素分析法,设置 81 种情景,模拟分析 不同土壤质地(表 1)、 θ_0 (50% θ_f 、60% θ_f 、70% θ_f)、 d(2,4,6 cm)、l(10,20,30 cm)和b(30,40,50 cm)等 因素对垂直线源灌湿润体的影响。土壤质地 VG-M 模型 参数取自 CARSEL 等^[57]资料以及文 献[52]如表1所示。

	表 1 HYDRUS 模拟中 9 种典型土壤的 VG-M 模型参数
Tab. 1	VG-M model parameters of nine typical soils in HYDRUS simulation

(5)

			••		
土壤质地	$\theta_r / (\mathrm{cm}^3 \cdot \mathrm{cm}^{-3})$	$\theta_s / (\mathrm{cm}^3 \cdot \mathrm{cm}^{-3})$	α/cm^{-1}	n	$K_s/(\text{ cm} \cdot \text{min}^{-1})$
黏壤土 [*]	0.095	0.410	0.019	1.31	0.0043
粉土*	0.034	0.460	0.016	1.37	0.0042
粉壤土*	0.067	0.450	0.020	1.41	0.0075
砂黏壤土*	0.100	0.390	0.059	1.48	0. 0218
壤土*	0.078	0.430	0.036	1.56	0.0173
砂黏壤土**	0.029	0.430	0.079	1.87	0.0730
砂壤土*	0.065	0.410	0.075	1.89	0.0737
壤砂土*	0.057	0.410	0.124	2. 28	0. 2432
砂土*	0.045	0. 430	0. 145	2.68	0. 4950

注:* 表示取自文献[57],**表示取自文献[52]。

不同质地土壤田间持水率采用 RAB 等^[58] 建立 的预测模型获得 ,具体表达式为

$$\theta_f = 8.05 + 1.68\theta_p - 1.62\theta_p^2 \tag{6}$$

式中 θ_p——凋萎系数 ,可采用 VG-M 模型参数中 的 θ,表示^[11] cm³/cm³

1.2.4 求解方法

利用 HYDRUS-2D 进行数值求解。求解过程 中,采用隐式差分格式进行时间离散,Galerkin 有限 元法对土壤剖面进行空间离散。考虑到田间实际和 计算精度的要求,确定有限单元计算域深度为 100 cm,宽度为50 cm,空间步长为1 cm,时间步长为 0.1 min 模拟历时由灌水定额(40 L)决定。

1.3 分析方法

垂直线源灌湿润体形状近似为"梨"型^[22,52]。 选取5个特征值(A点水平方向、B点水平方向、C 点水平方向、C点垂直向上和C点垂直向下)勾画 出湿润体轮廓,点A、B和C见图2。研究表明地下 三维入渗土壤湿润锋运移过程可采用幂函数描述, 且具有很高的精度^[22,59-61]。因此,采用幂函数定量 分析垂直线源灌土壤湿润锋运移过程,其具体表达 式为

$$U_c = l/2 + b_1 t^{a_1} \tag{7}$$

$$D_c = l/2 + b_2 t^{a_2} \tag{8}$$

$$R_A = d/2 + b_3 t^{a_3} \tag{9}$$

$$R_B = d/2 + b_4 t^{a_4} \tag{10}$$

$$R_c = d/2 + b_5 t^{a_5} \tag{11}$$

式中 U_c、D_c-----C 点垂直向上、垂直向下湿润高度 cm

 $a_1 a_2 a_3 a_4 a_5 b_1 b_2 b_3 b_4 b_5$ ——拟合参数

根据模拟结果分析湿润体运移规律,探讨影响 机理,筛选主导因素,采用式(7)~(11) 拟合获得 $a_1,a_2,a_3,a_4,a_5,b_1,b_2,b_3,b_4$ 和 b_5 值,研究拟合参数 与主导因素间的量化关系,进而建立垂直线源灌土 壤湿润体运移距离模型。

1.4 误差分析

选取4个指标,即平均绝对误差 MAE、均方根 误差 RMSE、偏差百分比 PBIAS 和纳什效率系数 NSE 对湿润体尺寸的实测值和预测值进行误差分 析。指标参数定义为

$$E_{\text{MAE}} = \frac{1}{N} \sum_{i=1}^{N} |M_i - S_i|$$
 (12)

$$E_{\text{RMSE}} = \left[\frac{1}{N} \sum_{i=1}^{N} (M_i - S_i)^2\right]^{0.5}$$
(13)

$$E_{\rm PBIAS} = \frac{\sum_{i=1}^{N} (M_i - S_i)}{\sum_{i=1}^{N} M_i}$$
(14)

$$E_{\rm NSE} = 1 - \frac{\sum_{i=1}^{N} (M_i - S_i)^2}{\sum_{i=1}^{N} (M_i - M_{\rm mean})^2}$$
(15)

式中 E_{MAE}——平均绝对误差

0.50

 $\Delta d = 6 \text{ cm}$

0.25

 $K/(\text{cm} \cdot \text{min}^{-1})$

(b) $l=20 \text{ cm}, \theta_0=60\%\theta_c, b=40 \text{ cm}$

0.1 L

由图 3 可见,相同 K,时,拟合参数 a1 主要受线 源长度和埋深的影响,而土壤初始含水率和线源直 径对其影响较小。主要是线源长度和埋深影响湿润 锋到达地表的时间 线源越长或埋深越浅 湿润锋到 达地表时间越短,导致拟合参数 a1时数据量减少, 产生了拟合误差。不同 K_s 情况下 拟合参数 a_1 随 K_s

0.50

 $\Delta \theta = 70\%\theta$

0.25

 $K/(\text{cm} \cdot \text{min}^{-1})$

(a) l=20 cm, d=4 cm, b=40 cm

0.1 L

先增大后减小,但增减幅度不大(0.172~0.355), 为简化计算,可取平均值,即 $a_1 = 0.3$ 。

0.1 L

0.25

 $K/(\mathrm{cm}\cdot\mathrm{min}^{-1})$

(d) $l=20 \text{ cm}, \theta_0 = 60\% \theta_c, d=4 \text{ cm}$

0.50

2.1.2 拟合参数 a₂

△ /=30 em

0.25

 $K/(\text{cm} \cdot \text{min}^{-1})$

(c) $d=4 \text{ cm}, \theta_0=60\%\theta_c, b=40 \text{ cm}$

0.50

0.1 L

利用 HYDRUS-2D 模拟结果,采用式(8),拟合 获得不同影响因素下 a, 如图 4 所示。

由图4可见,土壤初始含水率和线源直径、线源

Fig. 4 Variations of fitting parameter a_2 with saturated hydraulic conductivity K_s

长度和埋深对拟合参数 a,影响较小。拟合参数 a, 随 K_的增大而增大,两者具有较好的幂函数关系, $\square a_2 = 0.65 K_s^{0.108} (R^2 = 0.996)$

2.1.3 拟合参数 a₃

利用 HYDRUS-2D 模拟结果,采用式(9) ,拟合 获得不同影响因素下 a3 如图 5 所示。

下 拟合参数 a,随 K,先增大后减小,但增减幅度不 大(0.269~0.381),为简化计算,可取平均值,即 $a_3 = 0.348$ ° 2.1.4 拟合参数 a₄

长度和埋深对拟合参数 a₃影响较小。不同 K₅情况

利用 HYDRUS-2D 模拟结果 采用式(10) 拟合

Variations of fitting parameter a_3 with saturated hydraulic conductivity K_{e} Fig. 5

图 0 10日多数 04 10 10 11 平 15 11 文化水洋

Fig. 6 Variations of fitting parameter a_4 with saturated hydraulic conductivity K_s

由图 6 可见,相同 K_s时,拟合参数 a₄主要受线 源长度的影响,而土壤初始含水率、线源直径和埋深 对其影响较小。线源越长,其渗水速率越快,导致湿 润体水分叠加效应增强,同时,由于重力势的作用, 下部湿润体的叠加效应强于上部。不同 K_s情况下, 拟合参数 a₄随 K_s先增大后减小,但增减幅度不大 (0.298~0.414),为简化计算,可取平均值,即 *a*₄ = 0.374。

2.1.5 拟合参数 a₅

利用 HYDRUS-2D 模拟结果,采用式(11),拟合获得不同影响因素下 *a*₅,如图 7 所示。

Fig. 7 Variations of fitting parameter a_5 with saturated hydraulic conductivity K_s

下 拟合参数 a_5 主要受线源长度的影响,不同 K_s 情况下 拟合参数 a_5 随 K_s 先增大后减小,但增减幅度不大(0.278~0.379),为简化计算,可取平均值,即 $a_5 = 0.346$ 。

综上所述,拟合参数 a_1 、 a_3 、 a_4 和 a_5 随 K_s 、 θ_0 、d、l和 b的变化规律不明显,且变化幅度较小。为简化 计算,分别取其平均值。 a_2 随 θ_0 、d、l和 b的增减而 稍有变化,但变化较小,而随 K_s 的增大而增大,两者 具有较好的幂函数关系。

将
$$a_1 \sim a_5$$
分别代入式(7) ~(11) 得
 $U_c = l/2 + b_1 t^{0.300}$ (16)
 $D_c = l/2 + b_2 t^{0.65K_s^{0.108}}$ (17)

$$R_{\star} = d/2 + b_{\star} t^{0.348}$$
 (18)

$$P = \frac{1}{2} + \frac{1}{2} +$$

$$R_{B} = d/2 + b_{4}t$$
(1))
$$R_{C} = d/2 + b_{5}t^{0.346}$$
(20)

$$\mathbf{R}_{c} = u_{1} \mathbf{Z} + \mathbf{0}_{5} \mathbf{u}$$

2.2 拟合参数 $b_1 \sim b_5$ 影响因素分析

利用 HYDRUS-2D 模拟结果,采用式(16)~ (20) 再次拟合获得不同 $\theta_0 \ d \ l \ n \ b \ d$ 合下的 $b_1 \sim b_5$ 如图 8 所示。

由图 8 可见 拟合参数 b_1, b_2, b_3, b_4 和 b_5 均随 K_s 的增大而增大 ρ_0, d_1 和 b 对其影响相对较小。进 一步分析发现 b_1, b_3, b_4 和 b_5 与 K_s 具有很好的幂函数 关系 ,而 b_2 与 K_s 呈线性关系。基于此 ,可得垂直线 源灌湿润体尺寸简化预测模型 即

$$U_c = l/2 + 3.319 \ 8K_s^{0.157} t^{0.300} \tag{21}$$

$$D_c = l/2 + (5.095\ 2K_s + 1.048\ 2)\ t^{0.65K_s^{0.108}}$$
 (22)

$$R_A = d/2 + 4.\ 036K_s^{0.\ 217\ 4}t^{0.\ 348} \tag{23}$$

$$R_B = d/2 + 5.\ 093\ 8K_s^{0.\ 300\,4}t^{0.\ 3/4} \tag{24}$$

$$R_c = d/2 + 5.\ 132\ 8K_s^{0.\ 249\ 1}t^{0.\ 346} \tag{25}$$

2.3 模型验证

利用试验数据对简化预测模型进行验证。将砂 壤土和风沙土的 K_s分别代入式(21)~(25),得 2 种 土壤的垂直线源灌湿润体尺寸简化预测模型为:

民動砂壤土
$$\begin{cases} U_{c} = l/2 + 1.99t^{0.300} \\ D_{c} = l/2 + 1.25t^{0.458} \\ R_{A} = d/2 + 2.00t^{0.348} \\ R_{B} = d/2 + 1.92t^{0.374} \\ R_{c} = d/2 + 2.29t^{0.346} \end{cases}$$
(26)
民勤风沙土
$$\begin{cases} U_{c} = l/2 + 2.90t^{0.300} \\ D_{c} = l/2 + 3.20t^{0.592} \\ R_{A} = d/2 + 3.35t^{0.348} \\ R_{B} = d/2 + 3.93t^{0.374} \\ R_{c} = d/2 + 4.14t^{0.346} \end{cases}$$
(27)

将简化预测模型计算值与试验特征值(2个处理3个重复)进行对比分析,如图9所示。

undervertical line source irrigation

之一。

采用式(12)~(15),对计算值与实测值进行统 计分析,计算结果见表 2。

由表 2 可知, MAE 和 RMSE 接近 0, PBIAS 为 -4%~9%之间, NSE 靠近 1(NSE 不小于 0.929), 说明简化预测模型计算值与实测值一致性良好,但 仍存在一定误差,究其原因可能是垂直线源灌土壤 湿润锋运移距离受土壤质地影响最大,而土壤初始 含水率以及线源直径、长度和埋深对其尚有一些影 响,为了简化计算,仅考虑了土壤质地的影响,建立 了单变量模型,从而在一定程度上影响了计算结果 的准确性。另外,仅采用饱和导水率K,来表征不同

土壤质地湿润锋运移规律也是存在部分误差的原因

表 2 计算值与实测值统计分析

Tab. 2 Statistical analysis of calculated and

measured values

土壤质地	编号	MAE/cm	RMSE/cm	PBIAS/%	NSE
	重复1	2.337	2.875	8.471	0. 929
民勤砂壤土	重复 2	1.663	2.348	4.353	0.952
	重复3	1.900	2.468	5.133	0.947
	重复 1	1.161	1.970	- 3. 996	0.977
民勤风沙土	重复 2	0.956	1.364	0.704	0.987
	重复3	0.978	1.602	-2.397	0.985

3 结论

(1)垂直线源灌湿润体尺寸主要受土壤质地影响,土壤质地越粗(K,越大),湿润锋运移越快;线源 长度、线源直径和埋深对其影响较小。

(2) 土壤湿润锋运移过程符合幂函数关系,幂 函数系数随 K_s的增大而增大,幂函数指数在垂直向 上和水平方向上变化较小,而在垂直向下方向上随 K_x的增大而增大。

(3)提出了包含 K_s的垂直线源灌土壤湿润体尺 寸预测模型 利用试验验证了预测模型的有效性 初 步实现了由土壤物理参数预测垂直线源灌土壤湿润 锋运移距离的可能。

参考文献

- - YU Ji'an ,LIU Hui ,HE Yaxian. Motivation and strategies of developing characteristics wood's fruit industry in arid zone—a case study of Minqin county ,Gansu [J]. Province Resource Development and Market 2017 33(9):1095 1099. (in Chinese)
- 2 DU S KANG S LI F et al. Water use efficiency is improved by alternate partial root-zone irrigation of apple in arid northwest China [J]. Agricultural Water Management 2017, 179: 184 - 192.
- 3 DENG X P ,SHAN L ,ZHANG H ,et al. Improving agricultural water use efficiency in arid and semiarid areas of China [J]. Agricultural Water Management 2006 ,79(1):23-40.
- 4 KANG S HU X JERIE P et al. The effects of partial rootzone drying on root trunk sap flow and water balance in an irrigated pear (*Pyrus communis* L.) orchard [J]. Journal of Hydrology 2003 280(1): 192 206.
- 5 曾辰 王全九 樊军.初始含水率对土壤垂直线源入渗特征的影响[J].农业工程学报 2010 26(1):24-30. ZENG Chen ,WANG Quanjiu ,FAN Jun. Effect of initial water content on vertical line-source infiltration characteristics of soil[J]. Transactions of the CSAE 2010 26(1):24-30. (in Chinese)
- 6 KANDELOUS M M SIMUNEK J. Numerical simulations of water movement in a subsurface drip irrigation system under field and laboratory conditions using HYDRUS-2D[J]. Agricultural Water Management 2010 97(1):1070-1076.
- 7 BENGAL A , LAZOROVITCH N , SHANI U. Subsurface drip irrigation in gravel-filled cavities [J]. Vadose Zone Journal , 2004 , 3(4): 1407-1413.
- 8 江培福,雷廷武, BRALTS V F,等. 土壤质地和灌水器材料对负压灌溉出水流量及土壤水运移的影响 [J]. 农业工程学报, 2006 22(4):19-22. JIANG Peifu, LEI Tingwu, BRALTS V F, et al. Effects of soil textures and emitter material on the soil water movement and
- efficiency of negatively pressurized irrigation system [J]. Transactions of the CSAE 2006 22(4):19-22.(in Chinese) 9 李刚,白丹,王晓愚,等. 土壤质地对地下滴灌灌水器水力要素的影响[J]. 农业机械学报 2009 40(2):58-62. LI Gang ,BAI Dan ,WANG Xiaoyu ,et al. Effect of different textural soils on hydraulic characteristics of emitters under subsurface
- drip irrigation [J]. Transactions of the Chinese Society for Agricultural Machinery 2009 40(2):58-62. (in Chinese)
 10 KHOSHRAVESH-MIANGOLEH M ,KIANI A. Effect of magnetized water on infiltration capacity of different soil textures [J]. Soil Use and Management 2014 30(4):588-594.
- 11 NAGLIC B KECHAVARZI C COULON F et al. Numerical investigation of the influence of texture, surface drip emitter discharge rate and initial soil moisture condition on wetting pattern size [J]. Irrigation Science 2014 32(6):421-436.
- 12 余小弟 刘小刚 朱益飞 等. 土壤质地和供水压力对竖插式微润管入渗的影响[J]. 排灌机械工程学报 2017 35(1):71-79. YU Xiaodi LIU Xiaogang ZHU Yifei et al. Effects of soil texture and water pressure on moistube infiltration in vertical inserting mode [J]. Journal of Drainage and Irrigation Machinery Engineering 2017 35(1):71-79. (in Chinese)
- 13 李卓,吴普特,冯浩,等.容重对土壤水分入渗能力影响模拟试验[J].农业工程学报 2009 25(6):40-45. LI Zhuo,WU Pute,FENG Hao, et al. Simulated experiment on effect of soil bulk density on soil infiltration capacity [J]. Transactions of the CSAE 2009 25(6):40-45. (in Chinese)
- 14 YANG J L ZHANG G L. Water infiltration in urban soils and its effects on the quantity and quality of runoff [J]. Journal of Soils and Sediments 2011 ,11(5):751-761.
- 15 ZHANG Y Y ZHAO X N ,WU P T. Soil wetting patterns and water distribution as affected by irrigation for uncropped ridges and furrows [J]. Pedosphere 2015 25(3):468 477.
- 16 刘小刚,朱益飞,佘小弟,等.不同水头和土壤容重下微润灌湿润体内水盐分布特性[J/OL].农业机械学报 2017 48(7): 189-197. http://www.j-csam.org/jcsam/ch/reader/view_abstract.aspx? flag = 1&file_no = 20170724&journal_id = jcsam. DOI: 10.6041/j.issn.1000-1298.2017.07.024.

LIU Xiaogang ZHU Yifei ,YU Xiaodi ,et al. Water-salinity distribution characteristics in wetted soil of moistube irrigation under different pressure heads and soil bulk densities [J/OL]. Transactions of the Chinese Society for Agricultural Machinery ,2017 , 48(7):189-197. (in Chinese)

17 解文艳 樊贵盛. 土壤含水量对土壤入渗能力的影响[J]. 太原理工大学学报 2004 35(3):272-275. XIE Wenyan, FAN Guisheng. Influence of soil structure on infiltration characteristics in field soils [J]. Journal of Taiyuan University of Technology 2004 35(3):537-540.(in Chinese) 18 陈洪松,邵明安,王克林. 土壤初始含水率对坡面降雨入渗及土壤水分再分布的影响 [J]. 农业工程学报,2006,22(1): 44-47. CHEN Hangsong SHAO Mingán WANG Kalin Effects of initial water content on killelong minfell infiltration and exil water

CHEN Hongsong ,SHAO Ming'an ,WANG Kelin. Effects of initial water content on hillslope rainfall infiltration and soil water redistribution [J]. Transactions of the CSAE 2006 22(1):44-47. (in Chinese)

- 19 LIU H ,LEI T W ZHAO J ,et al. Effects of rainfall intensity and antecedent soil water content on soil infiltrability under rainfall conditions using the run off-on-out method [J]. Journal of Hydrology 2011 396(1):24 32.
- 20 张俊,牛文全,张琳琳,等.初始含水率对微润灌溉线源入渗特征的影响[J].排灌机械工程学报 2014 32(1):72-79. ZHANG Jun NIU Wenquan ZHANG Linlin et al. Effect of initial water content on vertical line-source infiltration characteristics of soil[J]. Journal of Drainage and Irrigation Machinery Engineering 2014 32(1):72-79. (in Chinese)
- 21 赵伟霞 涨振华 蔡焕杰 等. 间接地下滴灌土壤湿润体特征参数 [J]. 农业工程学报 2010 26(4):87-92. ZHAO Wenxia ZHANG Zhenhua ,CAI Huanjie ,et al. Characteristic parameters of soil wetted volume under indirect subsurface drip irrigation [J]. Transactions of the CSAE 2010 26(4):87-92.(in Chinese)
- 22 程慧娟,王全九,白云岗,等. 垂直线源灌线源长度对湿润体特性的影响[J]. 农业工程学报 2010 26(6): 32 37. CHENG Huijuan, WANG Quanjiu, BAI Yungang, et al. Influence of line source length of vertical line source irrigation on wetted soil change characteristics [J]. Transactions of the CSAE 2010 26(6): 32 - 37. (in Chinese)
- 23 冀荣华,王婷婷,祁力钧,等. 基于 HYDRUS-2D 的负压灌溉土壤水分入渗数值模拟 [J/OL]. 农业机械学报 2015 46(4): 113 - 119. http://www.j-csam.org/jcsam/ch/reader/view_abstract.aspx? flag = 1&file_no = 20150417&journal_id = jcsam. DOI: 10.6041/j.issn.1000-1298.2015.04.017.

JI Ronghua ,WANG Tingting ,QI Lijun ,et al. Numerical simulation of soil moisture infiltration under negative pressure irrigation based on HYDRUS-2D[J/OL]. Transactions of the Chinese Society for Agricultural Machinery , 2015 ,46(4): 113 - 119. (in Chinese)

- 24 FAN Y W HUANG N ZHANG J et al. Simulation of soil wetting pattern of vertical line source moistube-irrigation [J]. Water , 2018 ,10(5):601.
- 25 许迪 程先军. 地下滴灌土壤水运动和溶质运移数学模型的应用[J]. 农业工程学报 2002 ,18(1):27-30. XU Di ,CHENG Xianjun. Model application of water flow and solute transport during non-steady diffusion from subsurface emitter source[J]. Transactions of the CSAE 2002 ,18(1):27-30. (in Chinese)
- 26 PATEL N ,RAJPUT T B S. Effect of drip tape placement depth and irrigation level on yield of potato [J]. Agricultural Water Management 2007 88(1): 209 - 223.
- 27 刘玉春 ,李久生. 毛管埋深和土壤层状质地对地下滴灌番茄根区水氮动态和根系分布的影响[J]. 水利学报 2009 40(7):
 782 790.

LIU Yuchun ,LI Jiusheng. Water and nitrate nitrogen dynamics and root distribution as affected by lateral depth and layered-textural soil for drip fertigated tomato [J]. Journal of Hydraulic Engineering 2009 40(7):782 - 790. (in Chinese)

28 牛文全 涨俊 涨琳琳 等. 埋深与压力对微润灌湿润体水分运移的影响 [J/OL]. 农业机械学报 2013 A4(12):128-134. http://www.j-csam.org/jcsam/ch/reader/view_abstract.aspx? flag = 1&file_no = 20131221&journal_id = jcsam. DOI: 10. 6041/j.issn.1000-1298.2013.12.021.

NIU Wenquan ZHANG Jun ,ZHANG Linlin ,et al. Effects of buried depth and pressure head on water movement of wetted soil during moistube-irrigation [J/OL]. Transactions of the Chinese Society for Agricultural Machinery ,2013 ,44(12):128 – 134. (in Chinese)

- 29 白丹 孙淑贞 任培琦 等.地下灌竖管灌水器湿润体时空变化规律 [J]. 农业工程学报 2018 34(7):107-113. BAI Dan SUN Shuzhen ,REN Peiqi ,et al. Temporal and spatial variation of wetting volume under sub-irrigation with vertical emitter [J]. Transactions of the CSAE 2018 34(7):107-113. (in Chinese)
- 30 周罕觅 涨富仓 ,KJELGREN R ,等. 水肥耦合对苹果幼树产量、品质和水肥利用的效应 [J/OL]. 农业机械学报 ,2015 , 46(12):173-183. http://www.j-csam.org/jcsam/ch/reader/view_abstract.aspx? flag = 1&file_no = 20151224&journal_id = jcsam. DOI: 10.6041/j.issn.1000-1298.2015.12.024.

ZHOU H M ,ZHANG F C ,KJELGREN R ,et al. Effects of water and fertilizer coupling on yield , fruit quality and water and fertilizer use efficiency of young apple tree [J/OL]. Transactions of the Chinese Society for Agricultural Machinery 2015 A6(12): 173 – 183. (in Chinese)

31 贾俊杰,马娟娟 郭向红,等. SH 矮砧苹果幼树滴灌条件下适宜灌水上限试验研究[J].太原理工大学学报 2017 48(5): 798-804.

JIA Junjie MA Juanjuan GUO Xianghong et al. Experimental research on reasonable drip irrigation upper limit of young SH dwarf apple trees [J]. Journal of Taiyuan University of Technology 2017 48(5): 798 - 804. (in Chinese)

32 孙三民 安巧霞 蔡焕杰 /等. 枣树间接地下滴灌根区土壤盐分运移规律研究 [J/OL]. 农业机械学报 2015 A6(1):160 – 169. http://www.j-csam.org/jcsam/ch/reader/view_abstract.aspx? flag = 1&file_no = 20150124&journal_id = jcsam. DOI: 10. 6041/j.issn.1000-1298.2015.01.024.

SUN Sanmin AN Qiaoxia CAI Huanjie et al. Research on salt movement law in jujube root zone under indirect subsurface drip irrigation [J/OL]. Transactions of the Chinese Society for Agricultural Machinery 2015 46(1):160-169. (in Chinese)

33 张陆军,汪有科,辛小桂,等.山地梨枣树涌泉根灌适宜布置方式与灌水量研究[J].西北农林科技大学学报(自然科学版) 2010 38(3):211-217.

ZHANG Lujun , WANG Youke , XIN Xiaogui et al. Appropriate surge spring root irrigation layout and irrigation norm of jujube on mountain land [J]. Journal of Northwest A&F University (Natural Science Edition) 2010 38(3):211-217. (in Chinese)

34 吴悠 涨富仓 闫世程 等. 柱状苹果树生长生理与蒸散特征对水分的响应研究 [J/OL]. 农业机械学报 2016 47(12): 213 – 222. http: // www. j-csam. org/jcsam/ch/reader/view_abstract. aspx? flag = 1&file_no = 20161226&journal_id = jcsam. DOI: 10. 6041/j. issn. 1000-1298. 2016. 12. 026.

WU You ,ZHANG Fucang ,YAN Shicheng ,et al. Responses of growth , physiological and evapotranspiration characteristics of columnar apple trees to different irrigation depths [J/OL]. Transactions of the Chinese Society for Agricultural Machinery 2016 , 47(12):213-222. (in Chinese)

- 35 PHILIP J R. Travel times from buried and surface infiltration point sources [J]. Water Resources Research 1984 20:990 994.
- 36 CHU S T. Green-Ampt analysis of wetting patterns for surface emitters [J]. Journal of Irrigation and Drainage Engineering ,1994 , 120(2):414-421.
- 37 COOK F J ,THORBURN P J ,FITCH P ,et al. WetUp: a software tool to display approximate wetting patterns from drippers [J]. Irrigation Science 2003 22(3-4):129-134.
- 38 MONCEF H ,KHEMAIES Z. An analytical approach to predict the moistened bulb volume beneath a surface point source [J]. Agricultural Water Management 2016(166): 123 - 129.
- 39 BRANDT A ,BRESLER E ,DINER N ,et al. Infiltration from a trickle source: I. Mathematical models [J]. Soil Science Society of America Journal ,1971 ,35(5):683-689.
- 40 SIMUNEK J, VAN GENUCHTEN M T, SEJNA M. Development and applications of the HYDRUS and STANMOD software packages and related codes [J]. Vadose Zone Journal 2008, 72(9):587-600.
- 41 SCHWARTZMAN M, ZUR B. Emitter spacing and geometry of wetted soil volume [J]. Journal of Irrigation and Drainage Engineering ,1986, 112(9): 242 - 253.
- 42 MALEK K ,PETERS R T. Wetting pattern models for drip irrigation: new empirical model [J]. Journal of Irrigation and Drainage Engineering 2011 ,137(8): 530 - 536.
- 43 AL-OGAIDI A A M ,WAYAYOK A ,ROWSHON M K ,et al. Wetting patterns estimation under drip irrigation systems using an enhanced empirical model [J]. Agricultural Water Management , 2016 , 176: 203 – 213.
- 44 聂卫波,马孝义,聂坤堃,等. 沟灌土壤湿润体空间矩特征参数估算模型[J]. 水科学进展 2017 28(6):829-838. NIE Weibo, MA Xiaoyi, NIE Kunkun et al. Estimated model for spatial moment character parameters of wetted pattern under furrow irrigation infiltration [J]. Advances in Water Science 2017 28(6):829-838. (in Chinese)
- 45 陈帅 毛晓敏. 地表滴灌条件下土壤湿润体运移量化表征 [J/OL]. 农业机械学报 2018 49(8): 285 292. http: // www. jcsam. org/jcsam/ch/reader/view_abstract. aspx? flag = 1&file_no = 20180833&journal_id = jcsam. DOI: 10.6041/j. issn. 1000-1298.2018.08.033.

CHEN Shuai ,MAO Xiaomin. Quantification of soil wetted volume development under surface drip irrigation [J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2018 49(8): 285 - 292. (in Chinese)

- 46 KANDELOUS M M ,SIMUNEK J. Comparison of numerical , analytical , and empirical models to estimate wetting patterns for surface and subsurface drip irrigation [J]. Irrigation Science 2010(28): 435 – 444.
- 47 SUBBAIAH R. A review of models for predicting soil water dynamics during trickle irrigation [J]. Irrigation Science 2013 31(3): 225 - 258.
- 48 AL-OGAIDI ,A A M , WAYAYOK A ,KAMAL M R ,et al. Modelling soil wetting patterns under drip irrigation using HYDRUS-3D and comparison with empirical models [J]. Global Journal of Engineering and Technology Review 2016(1):17 25.
- 49 SIMUNEK J, VAN GENUCHTEN M T, SEJNA M. Recent developments and applications of the HYDRUS computer software packages [J]. Vadose Zone Journal 2016, 15(7):1-25.
- 50 冀荣华,刘秋霞 陈振海,等. 基于 HYDRUS-3D 模型的微润灌溉土壤水分入渗模拟 [J/OL]. 农业机械学报 2017 48(增刊): 290 295. http://www.j-csam.org/jcsam/ch/reader/view_abstract.aspx? flag = 1&file_no = 2017s044&journal_id = jcsam. DOI: 10.6041/j.issn.1000-1298.2017.S0.044.

JI Ronghua ,LIU Qiuxia ,CHEN Zhenhai et al. Numerical simulation of soil water infiltration based on HYDRUS-3D finite element model under moistube-irrigation [J/OL]. Transactions of the Chinese Society for Agricultural Machinery 2017 48(Supp.): 290 – 295. (in Chinese)

51 范严伟,赵彤,白贵林,等.水平微润灌湿润体 HYDRUS-2D 模拟及其影响因素分析[J].农业工程学报,2018,34(4): 115-124.

FAN Yanwei ZHAO Tong ,BAI Guilin ,et al. HYDRUS-2D simulation of soil wetting pattern with horizontal moistube-irrigation and analysis of its influencing factors [J]. Transactions of the CSAE 2018 34(4):115-124. (in Chinese)

- 52 李淑芹,王全九. 垂直线源入渗土壤水分分布特性模拟[J]. 农业机械学报 2011 42(3):51-57. LI Shuqin, WANG Quanjiu. Simulation of soil water distribution under vertical line source infiltration [J]. Transactions of the Chinese Society for Agricultural Machinery 2011 42(3):51-57. (in Chinese)
- 53 FAN Y W ,HUANG N ,GONG J ,et al. A simplified infiltration model for predicting cumulative infiltration during vertical line source irrigation [J]. Water 2018 ,10(1):89.
- 54 SIMUNEK J ,SEJNA M ,VAN GENUCHTEN M T. The HYDRUS-2D software package for simulating the two-dimensional movement of water heat and multiple solutes in variably-saturated media: version 2.0 [M]. California: US Salinity Laboratory ,

Agricultural Research Service, US Department of Agriculture ,1999.

- 55 VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils [J]. Soil Science Society of America Journal 1980 44(5): 892 - 898.
- 56 MUALEM Y. A new model for predicting the hydraulic conductivity of unsaturated porous media [J]. Water Resources Research , 1976, 12(3):513-522.
- 57 CARSEL R F PARRISH R S. Developing joint probability distributions of soil water retention characteristics [J]. Water Resources Research ,1988 24(5):755 - 769.
- 58 RAB M A ,CHANDRA S ,FISHER P D ,et al. Modelling and prediction of soil water contents at field capacity and permanent wilting point of dryland cropping soils [J]. Soil Research 2011 49(5): 389 - 407.
- 59 张建丰 帖西宁 杨潇 等. 土壤初始含水率对深层坑渗灌入渗特性的影响 [J]. 中国农业大学学报 2013 ,18(5):44-50. ZHANG Jianfeng ,TIE Xi'ning ,YANG Xiao ,et al. The impact of initial soil water content on infiltration properties of deep pit infiltration irrigation [J]. Journal of China Agricultural University 2013 ,18(5):44-50. (in Chinese)
- 60 张智韬,吴普特,陈俊英,等. 涌泉根灌土壤湿润体运移模型[J]. 排灌机械工程学报 2013 31(2):173-179. ZHANG Zhitao, WU Pute, CHEN Junying, et al. Prediction model of wetted front migration distance under bubbled-root irrigation [J]. Journal of Drainage and Irrigation Machinery Engineering, 2013, 31(2):173-179. (in Chinese)
- 61 费良军,刘显,王佳,等. 土壤容重对涌泉根灌土壤水氮运移特性的影响[J/OL]. 农业机械学报 2017 48(8):219-228. http://www.j-csam.org/jcsam/ch/reader/view_abstract.aspx? flag = 1&file_no = 20170825&journal_id = jcsam. DOI: 10. 6041/j.issn.1000-1298.2017.08.025.

FEI Liangjun ,LIU Xian ,WANG Jia ,et al. Effects of soil bulk density on transport characteristics of water and nitrogen under bubbled-root irrigation [J/OL]. Transactions of the Chinese Society for Agricultural Machinery ,2017 ,48 (8) : 219 – 228. (in Chinese)

62 MORIASI D N ,ARNOLD J G ,VAN LIEW M W ,et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations [J]. Transactions of the ASABE 2007 50(3):885 - 900.

(上接第 299 页)

- 25 田昌玉,林治安,赵秉强,等. 氮肥利用率测定规范化探讨[J]. 农业资源与环境学报,2016,33(4): 327-333. TIAN Changyu, LIN Zhian, ZHAO Bingqiang, et al. Discussing the determination standard of recovery efficiency of nitrogen fertilizer[J]. Journal of Agricultural Resources and Environment, 2016,33(4): 327-333. (in Chinese)
- 26 巨晓棠. 氮肥有效率的概念及意义——兼论对传统氮肥利用率的理解误区 [J]. 土壤学报, 2014, 51(5): 921-933. JU Xiaotang. The concept and meanings of nitrogen fertilizer availability ratio discussing misunderstanding of traditional nitrogen use efficiency [J]. Acta Pedologica Sinica, 2014, 51(5): 921-933. (in Chinese)
- 27 朱兆良,金继运.保障我国粮食安全的肥料问题[J]. 植物营养与肥料学报,2013,19(2):259-273.
 ZHU Zhaoliang, JIN Jiyun. Fertilizer use and food security in China[J]. Plant Nutrition and Fertilizer Science 2013,19(2):259-273. (in Chinese)
- 28 SEBILO M, MAYER B, NICOLARDOT B, et al. Long-term fate of nitrate fertilizer in agricultural soils [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(45): 18185 - 18189.
- 29 银敏华,李援农,李昊,等. 氮肥运筹对夏玉米根系生长与氮素利用的影响[J/OL]. 农业机械学报 2016,47(6):129-138.http://www.j-csam.org/jcsam/ch/reader/view_abstract.aspx? file_no = 20160617&flag = 1. DOI: 10.6041/j.issn.1000-1298.2016.06.017.
 YIN Minhua, LI Yuannong, LI Hao, et al. Effects of nitrogen application rates on root growth and nitrogen use of summer maize [J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(6): 129-138. (in Chinese)
- 30 于红梅,李子忠,龚元石. 传统和优化水氮管理对蔬菜地土壤氮素损失与利用效率的影响[J]. 农业工程学报,2007,23(2):54-59.
 YU Hongmei, LI Zizhong, GONG Yuanshi. Comparison of nitrogen loss and use efficiency of vegetable in vegetable field under

traditional and improved water and N-fertilizer management [J]. Transactions of the CSAE 2007 23(2): 54 – 59. (in Chinese)

31 赵丰云,郁松林,孙军利,等.加气灌溉对温室葡萄生长及不同形态氮素吸收利用影响[J/OL].农业机械学报,2018,49(1):228-234.http://www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?file_no=20180128&flag=1.DOI:10.6041/j.issn.1000-1298.2018.01.028.

ZHAO Fengyun , YU Songlin , SUN Junli , et al. Effect of rhizosphere aeration on growth and absorption , distribution and utilization of NH_4^+ -N and NO_3^- -N of red globe grape seedling [J/OL]. Transactions of the Chinese Society for Agricultural Machinery , 2018 49(1): 228 – 234. (in Chinese)