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Abstract
The layer-by-layer viscoelastic sandwich nanocomposites have been widely used as high-efficient shock absorbers in nano-

engineering since its excellent performance in vibration isolation. Such structure often works in thermoelastic coupling

condition, and a thorough and comprehensive investigation on its structural dynamic responses is imperatively needed to

achieve the goal of improving heat isolation and avoiding unwanted vibration. In this work, an analytical study is

conducted to investigate the structural dynamic responses of layer-by-layer viscoelastic sandwich nanocomposites based on

nonlocal thermo-viscoelasticity theory. The two lateral bounding surfaces of the structure are subjected to the time-varying

symmetric thermal shock loadings. It is assumed that thermal contact resistance and elastic wave impedance at the interface

are zero with idealized adhesion. Governing equations of each homogeneous isotropic viscoelastic layer are derived and

solved by a semi-analytical technique via Laplace transformation. The achieved results show that the heat isolation will be

maximally improved and harmful thermal induced stress is lowered to some extent if properly selecting nonlocal

parameters and material constants ratios.

List of symbols

q ið Þ Mass density

k ið Þ; l ið Þ Lame’s constants

T0 Reference temperature

K
ið Þ
0

Bulk modulus

c
ið Þ
E

Specific heat at constant strain

CðÞ Gamma function

HðÞ Heaviside function

a ið Þ
T

Coefficient of linear thermal expansion

j ið Þ Coefficient of thermal conductivity

w ið Þ Components of displacement vector in the z-

direction

h ið Þ Temperature increment

r ið Þ
zz

Component of stress tensor in the z-direction

e ið Þ
zz

Component of strain tensor in the z-direction

q ið Þ
z

Components of heat flux vector in the z-

direction

S ið Þ Entropy density

v ið Þ
q

Thermal nonlocal parameter

e0a
ið Þ Elastic nonlocal parameter

1 Introduction

Viscoelastic sandwich composites stand as a class of effi-

cient damping structures which have been widely used in

passive vibration control systems (Akbarov et al. 2014;

Sheng et al. 2018; Li et al. 2018). In recent years, the rapid

development of viscoelastic materials (Zhou et al. 2016)

leads to extensive applications of viscoelastic sandwich

composites. Since the discovery of new viscoelastic

nanomaterials (e.g., ethylene glycol-Al2O3, etc.), vis-

coelastic sandwich nanocomposites becomes one of the

most promising candidates for next-generation vibration

damping structures, nano-sensors, and nano-actuators. In

actual engineering, such structure often serves in a
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thermoelastic coupling condition, where heat transfer and

thermal induced stress will be accompanied. In such a case,

its structural dynamic responses to the external thermal

shock loadings need to be seriously studied. However, in

view of current works, the following questions remain

unsolved. Firstly, analytical model of nonlocal thermo-vis-

coelastic coupling for such structure still has not been

developed. Secondly, the influences of size effects of

inherent elastic deformation and heat transfer on structural

dynamic responses are still not clear. Consequently, it needs

to contribute significant efforts to address these problems,

which will be beneficial to the safe functioning and vibration

control of such structure in the thermoelastic condition. This

forms the main objective of the current research.

At the nanoscale, the classical or non-Fourier thermo-

viscoelastic models should be further extended by intro-

ducing the intrinsic size effects of elastic deformation and

heat transfer and additional material size-dependent char-

acteristic lengths. Firstly, the classical viscoelasticity

models (e.g., Maxwell model, Voigt model, Zener model,

etc.) (Gurtin and Sternberg 1962; Zhou et al. 2016) should

be modified by considering material microstructure

(Govindjee and Sackman 1999). To characterize mechan-

ical properties of viscoelastic nanomaterials, Eringen’s

nonlocal elastic stress field theory (Eringen

1972, 1983, 2002) with additional material internal length

scale is often used. This continuum-mechanical model is

more applicable than the molecular dynamics simulation,

which is only valid to nano-systems with limited number of

atoms or molecules. Thereafter, some other nonlocal con-

tinuum-based elasticity models have been developed to

consider size effect of elastic deformation (Polizzotto

2014; Mindlin 1965; Yang et al. 2002; Lim et al. 2015; Li

et al. 2019; Li et al. 2021b; Guo et al. 2021a, b; Li et al.

2022), whilst investigations on the mechanical behaviors of

nano structures were also performed (Li and Hu,

2015, 2016). In addition, it needs to be emphasized that

Eringen’s nonlocal differential model is only an approxi-

mate one, and some scholars pointed out that this model

will be ill-posed in some specific cases (Romano and

Barretta 2017; Romano et al. 2017; Barretta and de Sciarra

2018; Zhu and Li 2017). Enlightened by Eringen’s works,

nonlocal viscoelasticity model has been further developed

by introducing size-dependent characteristic length (Lei

et al. 2013; Kolahchi 2017; Li et al. 2019).

Secondly, the application of classical heat conduction

model will be questionable at the nanoscale. Jou et al.

(2010) suggested that the size effect of heat transport will

be significant if mean free path of heat carriers becomes

comparable to or longer than the characteristic length of

the system. Such effect was also verified by an experi-

mental study (Chan et al. 2008), which measures the

melting dynamics of silver following femtosecond laser

excitation by optical third-harmonic generation. More

importantly, some celebrated scholars (Sobolev 1994; Tzou

and Guo 2010) believed that the size-dependent heat

transport models should be extended by introducing addi-

tional material characteristic length. So far, there have been

many papers that contributed significant efforts to develop

size-dependent heat transfer models, for examples, GK

model (Guyer and Krumhans1966), thermomass model

(Cao and Guo 2007; Guo and Hou 2010), ballistic-diffusive

model (Chen 2001), and collectively diffusive model

(Hoogeboom-Pot et al. 2015). Inspired by Eringen’s non-

local stress field theory and nonlocal heat conduction

model, Li et al. (2021a) fully considered size effects of

elastic strain and thermal fields to develop a complete

nonlocal model of thermo-viscoelasticity to provide a

thorough and comprehensive understanding on the thermo-

mechanical coupling of viscoelastic nanomaterials. In this

work, Li et al. used this model to investigate structural

dynamic responses of bi-layered composite viscoelastic

nanoplate with non-idealized interfacial conditions.

As the above literature survey and further examination

of other available works reveal, no work has thoroughly

investigated the dynamic thermo-mechanical responses of

layer-by-layer viscoelastic sandwich nanocomposites by

considering size effects and material constants ratios. To

deal with the problem, present work aims to study struc-

tural dynamic responses of such structure, of which upper

and lower bounding surfaces subjected to time-varying

symmetric thermal shock loadings. The thermal contact

resistance and elastic wave impedance are assumed to be

zero at the interfaces of two adjacent layers. In the context

of nonlocal thermo-viscoelasticity theory (Li et al. 2020),

the governing equations are derived for isotropic homo-

geneous viscoelastic layer and are solved by a semi-ana-

lytical method via Laplace transformation. The effects of

nonlocal parameters and material constants ratios on

structural nonlocal thermo-viscoelastic responses are

evaluated and illustrated graphically. Finally, some con-

cluding remarks are summarized.

2 Modeling of layer-by-layer viscoelastic
sandwich nanocomposites subjected
to time-varying symmetric thermal shock
loadings

Nano-plate stands as a key component nano-enegineering

which has been widely used in various material systems

without and in the presence of the thermal field (Kolahchi

et al. 2016; Kiani 2016a, b, 2017; Hosseini 2017; Shahr-

babaki 2018; Karami and Shahsavari 2019; Biswas 2020).

Recently, layer-by-layer viscoelastic sandwich nanocom-

posites works in thermoelastic coupling condition, and the

1144 Microsystem Technologies (2022) 28:1143–1165

123



structural dynamic responses analysis of such structure is

of great importance for its vibration control and thermal

management. In this section, an analytical model of layer-

by-layer viscoelastic sandwich nanoplates composed of

two kinds of viscoelastic materials will be investigated.

It is assumed that the structure is initially quiescent. The

rectangular coordinate system x; y; zð Þ is chosen. The

thickness of two lateral viscoelastic layers is set as h Ið Þ

(h IIIð Þ) and the middle one is valued as h IIð Þ. It is assumed

that the thickness of the structure in z-direction is much

smaller than its dimension in y- and x-axial direction (i.e.

hz\\hy and hz\\hx). Additionally, thermal contact

resistance and elastic wave impedance at the interfaces are

zero. It is known that van der Waals forces (i.e., the weak

forces that contribute to intermolecular bounding between

molecules) can be considered in the vibration analysis of

nano-structures (Pradhan and Phadikar 2009; Mahmoud-

pour et al. 2018; Dowlati and Rezazadeh 2018; Fan and

Kiani 2021). Furthermore, it needs to be emphasized that

this work mainly contributes to evaluate the size-effects of

elastic deformation and heat transfer on the structural

dynamic thermo-mechanical responses of layer-by-layer

viscoelastic nanoplates. Similar to the work of Yu et al.

(2016), the van der Waals forces will be neglected in this

paper. In addition, the upper and lower bounding surfaces

are considered to be traction free and subjected to time-

varying symmetric thermal shock loadings. During the

analysis, only the thermo-viscoelastic responses along

thickness direction will be studied, so the problem con-

sidered in this section can be viewed as a one-dimensional

problem (see Fig. 1). Consequently, all the physical vari-

ables only depend on z and t. The components of dis-

placement and temperature can be expressed as:

u ið Þ
x ¼ 0; u ið Þ

y ¼ 0; u ið Þ
z ¼ w ið Þ z; tð Þ; h ið Þ ¼ h ið Þ z; tð Þ:

ð1Þ

Initial conditions are:

w ið Þ z;0ð Þ ¼ _w ið Þ z;0ð Þ ¼ 0; h ið Þ z; 0ð Þ ¼ _h ið Þ z; 0ð Þ ¼ 0:

ð2Þ

Boundary conditions are:

r Ið Þ
zz �h Ið Þ;t
� �

¼ 0; h Ið Þ �h Ið Þ;t
� �

¼ f tð Þ: ð3Þ

Interfacial conditions are:

w Ið Þ
z¼�0:5h IIð Þ
�� ¼ w IIð Þ

z¼�0:5h IIð Þ
�� ;

w IIð Þ
z¼0:5h IIð Þ
�� ¼ w IIIð Þ

z¼0:5h IIð Þ
�� ;

ð4Þ

q Ið Þ
z z¼�0:5h IIð Þ
�� ¼ q IIð Þ

z z¼�0:5h IIð Þ
�� ;

q IIð Þ
z z¼0:5h IIð Þ
�� ¼ q IIIð Þ

z z¼0:5h IIð Þ
�� :

ð5Þ

Based on nonlocal thermo-viscoelasticity model (Li

et al. 2021a), the basic equations for one-dimensional

nonlocal thermo-viscoelastic problem of layer-by-layer

viscoelastic sandwich nanoplates can be formulated as

follows (in the absence of body force and internal heat

generation):

(i). Motion equation:

or ið Þ
zz

oz2
¼ q ið Þ o

2w ið Þ

ot2
ð6Þ

(ii). Strain–displacement relation:

e ið Þ
zz ¼ ow ið Þ

oz
ð7Þ

(iii). Energy equation:

oq ið Þ
z

oz
þ q ið ÞT0

oS ið Þ

ot
¼ 0 ð8Þ

(iv). Nonlocal heat conduction equation:

1� v ið Þ
q

� �2 o2
ox2

� �
q ið Þ
z ¼ �j ið Þ oh

ið Þ

oz
ð9Þ

(v). Constitutive equations:

1� e0að Þ2ið Þ
o2

oz2

� �
r ið Þ
zz ¼ 2

3
R ið Þ þ K

ið Þ
0

� �
ow ið Þ

oz

� c ið Þh ið Þ

ð10Þz

y (or x)

Ti
m

e-
de

pe
nd

en
t t

he
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al
 lo

ad
s

-0.5h(II)

Tim
e-dependent therm

al loads

-h(I) 0

I II III

h(III)0.5h(II)

Fig. 1 The schematic model of layer-by-layer viscoelastic sandwich

nanoplates subjected to time-varying symmetric thermal shock

loadings
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1� e0að Þ2ið Þ
o2

oz2

� �
r ið Þ
yy ¼ 1� e0að Þ2ið Þ

o2

oz2

� �
r ið Þ
xx

¼ � 1

2
R ið Þ þ K

ið Þ
0

� �
ow ið Þ

oz

� c ið Þh ið Þ

ð11Þ

r ið Þ
xy ¼ r ið Þ

yz ¼ r ið Þ
zx ¼ 0 ð12Þ

q ið ÞS ið Þ ¼ c ið Þe ið Þ
zz þ q ið Þc

ið Þ
E

T0
h ið Þ ð13Þ

where

R ið Þ ¼ 2l ið Þ 1� A�ð Þ ið Þ
Z t

0

e� b�ð Þ ið Þ
t a�ð Þ ið Þ�1dt

� �
;

R ið Þ 0ð Þ ¼ 2l ið Þ;

K
ið Þ
0 ¼ k ið Þ þ 2

3
l ið Þ; c ið Þ ¼ 3k ið Þ þ 2l ið Þ

� �
a ið Þ
T ;

0\ a�ð Þ ið Þ\1; b�ð Þ ið Þ [ 0; 0� A�ð Þ ið Þ\
b�ð Þ ið Þ

C a�ð Þ ið Þ
h i ;

in which a�ð Þ ið Þ
, b�ð Þ ið Þ

and A�ð Þ ið Þ
represent dimen-

sionless empirical constants. In addition, relaxation func-

tion R ið Þ satisfies the conditions: R ið Þ [ 0; d
dt
R ið Þ\0. The

superscript/subscript i represents the material constants and

variable considered in the Medium I, II, III of the vis-

coelastic laminated sandwich nanoplates. In the constitu-

tive Eqs. (10) and (11), the elastic nonlocal parameter e0a

has been used to evaluate size effect of elastic deformation

in the analysis of size-dependent buckling, bending and

vibration of nanobeam (Reddy 2007). Within theoretical

formulation of Eringen’s nonlocal elasticity model, the

material constant e0a=l refers to the long-range forces

between atoms, where e0 is a material dependent constant,

a is internal characteristic length (e.g., lattice spacing

between individual atoms, granular size, etc.), l is external

characteristic length (e.g., crack length, wave length, etc.).

Eringen (1983) suggested that the parameter e0 is a con-

stant appropriated to the materials and structures at the

nanoscale, for example e0 ¼ 0:39. However, Eringen

(1983) also pointed out that the value of e0 should be

determined by experimentations or matched through dis-

persion curves of plane waves with those of atomic lattice

dynamics. So far, the issue is still not thoroughly solved

and deserves more investigation efforts on this topic. More

importantly, some scholars believed that the parameter e0
should be valued as a magnitude that depends on the order

of hundreds or even thousands, so that the size effect of

elastic deformation to have significance. Additionally, it

has been found that the parameter a can be valued as the

length of a C–C bond (i.e., a ¼ 1:42� 10�8cm) for a

single walled carbon nanotube (Lu 1997). In view of cur-

rent studies, one can conclude that the parameter e0a is

always arbitrarily chosen to predict the elastic nonlocal

effect on structural dynamic responses of nanoplate or

nanocomposites in different material systems (Yu et al.

2016; Li et al. 2019b, 2021). However, the determination

of its true value is still far from a common agreement in the

field of nano-mechanics. The term v ið Þ
q

� �2
o2q

ið Þ
z

ox2
represents

the size effect of heat transfer. In general, classical Fourier

heat conduction law is only valid in the cases of l\\h and

sq\\t0, where l is the mean free path, h is the charac-

teristic length of the system, sq is the thermal relaxation

time, t0 is the characteristic time of the heat transport

process under consideration. However, this phenomeno-

logical law will questionable if sq\\t0; l ! h, and the

size effect of heat transfer should be seriously considered.

To author’s knowledge, the mathematical term v ið Þ
q

� �2
o2q

ið Þ
z

ox2

has been used to predict thermal nonlocal effect in size-

dependent thermo-mechanical problems of bi-layered

elastic nanocomposites (Yu et al. 2016), multilayered

piezoelectric nanoplates (Li et al. 2019b), and bi-layered

composite viscoelastic nanoplate (Li et al. 2021a).

Substitution of Eqs. (7) and (10) into Eq. (6) yields the

governing equation of motion:

2

3
R ið Þ þ K

ið Þ
0

� �
o2w ið Þ

oz2
� c ið Þ oh

ið Þ

oz

¼ q ið Þ 1� e0að Þ2ið Þ
o2

oz2

� �
o2w ið Þ

ot2
:

ð14Þ

Substitution of Eqs. (7), (9) and (13) into Eq. (8) yields

the governing equation of temperature:

j ið Þ o
2h ið Þ

oz2
¼ 1� v ið Þ

q

� �2 o2
oz2

� �
T0c

ið Þ o
2w ið Þ

ozot
þ q ið Þc

ið Þ
E

oh ið Þ

ot

" #
:

ð15Þ

For convenience, the dimensionless quantities are

introduced as follows:

z; w ið Þ; e0að Þ ið Þ; v ið Þ
q

h i
¼ cg z; w ið Þ; e0að Þ ið Þ; v ið Þ

q

h i
; t¼ c2gt;

r ið Þ
xx ; r

ið Þ
yy ; r

ið Þ
zz

� �
¼ 1

K
Ið Þ
0

r ið Þ
xx ; r

ið Þ
yy ; r

ið Þ
zz

� �
; h

ið Þ ¼ h ið Þ

T0
; R

ið Þ ¼ 2

3K
Ið Þ
0

R ið Þ;

q ið Þ
z ¼

q ið Þ
z

j Ið ÞT0cg
; g¼ q Ið Þc

Ið Þ
E

j Ið Þ ; c2¼K
Ið Þ
0

q Ið Þ :

ð16Þ

In terms of Eqs. (10), (11), (14) and (15) can be further

written as:
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1� e0að Þ2ið Þ
o2

oz2

� �
r ið Þ
zz ¼ R

ið Þ þ K
ið Þ
0

K
Ið Þ
0

 !
ow ið Þ

oz
� u ið Þh

ið Þ
;

ð17Þ

1� e0að Þ2ið Þ
o2

oz2

� �
r ið Þ
yy ¼ 1� e0að Þ2ið Þ

o2

oz2

� �
r ið Þ
xx

¼ � 1

2
R

ið Þ þ K
ið Þ
0

K
Ið Þ
0

 !
ow ið Þ

oz
� u ið Þh

ið Þ
;

ð18Þ

w ið Þ o
2w ið Þ

oz2
� / ið Þ oh

ið Þ

oz
¼ 1� e0að Þ2ið Þ

o2

oz2

� �
o2w ið Þ

ot2
; ð19Þ

o2h
ið Þ

oz2
¼ 1� v ið Þ

q

� �2 o2
oz2

� �
g ið Þ o

2w ið Þ

ozot
þ f ið Þ oh

ið Þ

ot

 !
; ð20Þ

where

u ið Þ ¼ c ið ÞT0

K
ið Þ
0

; w ið Þ ¼ K
Ið Þ
0

q ið Þc2
R

ið Þ þ K
ið Þ
0

K
Ið Þ
0

 !
;

/ ið Þ ¼ c ið ÞT0
q ið Þc2

; g ið Þ ¼ c ið Þ

j ið Þg1
; f ið Þ ¼ q ið Þc

ið Þ
E

j ið Þg
:

3 Analytical solutions

Performing Laplace transformation:

f 0 sð Þ ¼ L f tð Þ½ � ¼
Z 1

0

e�stf tð Þdt; ð21Þ

to both sides of Eqs. (17) to (20) with zero initial condition

(2) yields:

1� �e0 �að Þ2ið Þ
d2

d�z2

� �
�r0 ið Þzz ¼ �R0 ið Þ sð Þ þ K

ið Þ
0

KI
0

" #
d �w0 ið Þ �z; sð Þ

d�z

� u ið Þ�h0 ið Þ; ð22Þ

1� �e0 �að Þ2ið Þ
d2

d�z2

� �
�r0ðiÞyy ¼ 1� �e0 �að Þ2ið Þ

d2

d�z2

� �
�r0ðiÞxx

¼ � 1

2
�R0 ið Þ þ K

ið Þ
0

K
Ið Þ
0

 !
d �w0 ið Þ

d�z

� u ið Þ�h0 ið Þ; ð23Þ

w ið Þ d
2w0 ið Þ

dz2
� / ið Þ dh

0 ið Þ

dz
¼ s2 1� e0að Þ2ið Þ

d2

dz2

� �
w0 ið Þ; ð24Þ

d2�h0ðiÞ

d�z2
¼ s 1� v ið Þ

q

� �2 d2
dz2

� �
1� �v2ið Þ

d2

d�z2

� �
g ið Þ d �w

0ðiÞ

d�z
þ f ið Þ�h0ðiÞ

� �
;

ð25Þ

where

�R0 ið Þ ¼ 4l ið Þ

3sK
ið Þ
0

1� A�ð Þ ið ÞC a�ð Þ ið Þ
h i	

sþ b�ð Þ ið Þ
h i a�ð Þ ið Þ
 �

:

In terms of dimensionless quantities (16), boundary

conditions and interfacial conditions in the Laplace trans-

formation domain are given as below:

r0 Ið Þzz �h Ið Þ;s
� �

¼ 0; h
0 Ið Þ �h Ið Þ;s
� �

¼ f sð Þ; ð26Þ

w0 Ið Þ
z¼�0:5h

IIð Þ

��� ¼ w0 IIð Þ
z¼�0:5h

IIð Þ

��� ;

w0 IIð Þ
z¼0:5h

IIð Þ

��� ¼ w0 IIIð Þ
z¼0:5h

IIð Þ

��� ;
ð27Þ

�q0 Ið Þz �z¼�0:5 �h IIð Þ
�� ¼ �q0 IIð Þ

z �z¼�0:5 �h IIð Þ
�� ,

�q0 IIð Þ
z �z¼0:5 �h IIð Þ
�� ¼ �q0 IIIð Þ

z �z¼0:5 �h IIð Þ
�� :

ð28Þ

Eliminating �h0ðiÞ between Eqs. (24) and (25), the fol-

lowing fourth-order ordinary differential equation is

derived:

d4 �w0 ið Þ

d�z4
� p ið Þ d

2 �w0 ið Þ

dz2
þ r ið Þw0 ið Þ ¼ 0; ð29Þ

where

p ið Þ ¼
s/ ið Þg ið Þ þ sf ið Þ w ið Þ þ s2 e0að Þ2ið Þ

h i
þ s2 1þ sf ið Þv2ið Þ

� �

s/ ið Þg ið Þv2ið Þ þ 1þ sf ið Þ v ið Þ
q

� �2� �
w ið Þ þ s2 e0að Þ2ið Þ
h i ;

Table 1 Material parameters of

Medium I (Polymethyl

Methacrylate)

k Ið Þ ¼ 453:7� 107kg/m s2 l Ið Þ ¼ 194� 107kg/m s2 q Ið Þ ¼ 1:2� 103kg/m3

j Ið Þ ¼ 0:55W/(mK) E Ið Þ ¼ 525� 107N/m2 c Ið Þ ¼ 210� 104N/m2K

a Ið Þ
T ¼ 13� 10�5K�1 c

Ið Þ
E ¼ 1:4� 103J/(kgK) T0 ¼ 293 K

c1 ¼ 2200m/s
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r ið Þ ¼ s3f ið Þ

s/ ið Þg ið Þv2ið Þ þ 1þ sf ið Þ v ið Þ
q

� �2� �
w ið Þ þ s2 e0að Þ2ið Þ
h i :

In a similar manner, h
0 ið Þ

satisfies the ordinary differ-

ential equation:

d4h
0 ið Þ

dz4
� p ið Þ d

2h
0 ið Þ

dz2
þ r ið Þh

0 ið Þ ¼ 0: ð30Þ

In view of Eqs. (29) and (30), the solutions of dis-

placement and temperature are given as below:

w0 ið Þ z; sð Þ ¼
X4
j¼1

w
ið Þ
j e�k

Nð Þ
j z; h

0 ið Þ
z; sð Þ ¼

X4
j¼1

h
ið Þ
j e�k

ið Þ
j z;

ð31Þ

where w
ið Þ
j and h

ið Þ
j are parameters depending only on s. The

roots with positive real parts k
ið Þ
j j ¼ 1; 2; 3; 4ð Þ satisfy the

following characteristic equation:

k
ið Þ
j

� �4
�p ið Þ k

ið Þ
j

� �2
þr ið Þ ¼ 0; ð32Þ

where

k
ið Þ
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p ið Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p ið Þð Þ2�4r ið Þ

q

2

vuut
;

k
ið Þ
2 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p ið Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p ið Þð Þ2�4r ið Þ

q

2

vuut
;

k
ið Þ
3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p ið Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p ið Þð Þ2�4r ið Þ

q

2

vuut
;

k
ið Þ
4 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p ið Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p ið Þð Þ2�4r ið Þ

q

2

vuut
:

Substitution of Eq. (31) into Eq. (24) yields:

h
0 ið Þ

z; sð Þ ¼
X4
j¼1

h
ið Þ
j e�k

ið Þ
j z ¼

X4
j¼1

d ið Þ
j w

ið Þ
j e�k

ið Þ
j z ð33Þ

where

d ið Þ
j ¼ �

w ið Þ þ e0að Þ2ið Þs2
h i

k
ið Þ
j

� �2
�s2

k
ið Þ
j / ið Þ :

Substitution the solutions of displacement and temper-

ature into the constitutive equations of (22) and (23) yields:

�r0 ið Þzz �z; sð Þ ¼
X4
j¼1

v ið Þ
1j �w

ið Þ
j e�k

ið Þ
j �z;

�r0 ið Þyy �z; sð Þ ¼ �r0 ið Þxx �z; sð Þ ¼
X4
j¼1

v ið Þ
2j �w

ið Þ
j e�k

ið Þ
j �z;

ð34Þ

where

v ið Þ
2j ¼

� k
ið Þ
j

� �2
/ ið ÞR

0 ið Þ
sð Þþ/ ið Þ K ið Þ

0

K
Ið Þ
0

�u ið Þl ið Þ
� �

�s2u ið Þ 1� e0að Þ2ið Þ k
ið Þ
j

� �2� �

/ ið Þk
ið Þ
j 1� e0að Þ2ið Þ k

ið Þ
j

� �2� � :

By introducing solutions of stress and temperature into

the boundary conditions (26), and then one has:

X4
j¼1

v Ið Þ
1j w

Ið Þ
j ekj Ið Þh

Ið Þ ¼ 0;
X4
j¼1

v Ið Þ
1j w

Ið Þ
j e�kj Ið Þh Ið Þ ¼ 0; ð35Þ

X4
j¼1

d Ið Þ
j w

Ið Þ
j ekj Ið Þh

Ið Þ ¼ 1=s;
X4
j¼1

d Ið Þ
j w

Ið Þ
j e�kj Ið Þh Ið Þ ¼ f sð Þ:

ð36Þ

Clearly, the unknown parameters w
Ið Þ
j can be obtained by

dealing with linear algebraic equations of (35) and (36). To

acquire the analytical formula of w
IIð Þ
j , the interfacial con-

ditions at z ¼ �0:5h
IIð Þ

[i.e. Eqs. (27) and (28)] are adop-

ted. According to the dimensionless quantities (16), the

nonlocal heat conduction Eq. (9) for Medium I and II in the

Laplace transformation domain are:

1� v Ið Þ
q

� �2 d2
dz2

� �
�q0 Ið Þz �z¼�0:5 �h IIð Þ
�� ¼ � d�h0 Ið Þ

d�z �z¼�0:5 �h IIð Þ
�� ; ð37Þ

1� v IIð Þ
q

� �2 d2
dz2

� �
�q0 IIð Þ
z �z¼0:5 �h IIð Þ
�� ¼ �1

d�h IIð Þ

d�z �z¼0:5 �h IIð Þ
�� ; ð38Þ

where 1 ¼ j IIð Þj IIð Þj Ið Þ � j Ið Þ. From Eqs. (37) and (38), the

heat flux between the two adjacent layers at the interface

z ¼ �h IIð Þ in the Laplace transformation domain are given

as below:

q Ið Þ
z z¼�0:5h IIð Þ
�� ¼ 1

1� v Ið Þ
q

� �2
k

Ið Þ
j

� �2
X4
j¼1

k
Ið Þ
j d Ið Þ

j w
Ið Þ
j e0:5kj Ið Þh

IIð Þ
;

ð39Þ

q IIð Þ
z z¼0:5h IIð Þ
�� ¼ 1

1� v IIð Þ
q

� �2
k

IIð Þ
j

� �2
X4
j¼1

k
IIð Þ
j d IIð Þ

j w
IIð Þ
j e�0:5kj IIð Þh IIð Þ

:

ð40Þ

Substitution the solutions of displacement and temper-

ature into Eqs. (27) and (28) yields:
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X4
j¼1

w
Ið Þ
j e0:5kj Ið Þh

IIð Þ

�
X4
j¼1

w
IIð Þ
j e0:5kj IIð Þh IIð Þ

¼ 0; ð41Þ

X4
j¼1

w
IIð Þ
j e�0:5kj IIð Þh IIð Þ

�
X4
j¼1

w
Ið Þ
j e�0:5kj Ið Þh

IIð Þ
¼ 0; ð42Þ

1

1� v Ið Þ
q

� �2
k

Ið Þ
j

� �2
X4
j¼1

k
Ið Þ
j d Ið Þ

j w
Ið Þ
j ekj Ið Þh

Ið Þ

� j IIð Þ

j Ið Þ
1

1� v IIð Þ
q

� �2
k

IIð Þ
j

� �2
X4
j¼1

k
IIð Þ
j d IIð Þ

j w
IIð Þ
j ekj IIð Þh IIð Þ

¼ 0;

ð43Þ

j IIð Þ
11

j Ið Þ
11

1

1� v IIð Þ
q

� �2
k

IIð Þ
j

� �2
X4
j¼1

k
IIð Þ
j d IIð Þ

j w
IIð Þ
j e�kj IIð Þh IIð Þ

� 1

1� v2Ið Þ k
Ið Þ
j

� �2
X4
j¼1

k
Ið Þ
j d Ið Þ

j w
Ið Þ
j e�kj Ið Þh

Ið Þ

¼ 0: ð44Þ

The analytical formula of w
IIð Þ
j can be obtained by

solving the linear algebraic equations (41) to (44). Thus far,

the solutions of the problem formulated in Sect. 2 are

totally completed in the Laplace transformation domain.

4 Results and discussion

In this section, a numerical inverse Laplace transformation

(NILT) based on fast Fourier transformation (Brancik

1999) will be applied to achieve the structural thermo-

viscoelastic responses in time domain. The dimensionless

results of temperature, displacement, and compressive

stress are graphically illustrated. The influences of nonlocal

parameter and material constants ratios on structural

dynamic responses will be evaluated and discussed by the

method of controlling variables. The viscoelastic material

constants of Medium II are valued by ratios of those in

Medium I (III), whose material constants can refer to

Table 1. In addition, it needs to be emphasized that the

non-mentioned material parameters of Medium I (III) are

the same as those in Medium II unless the specific illus-

tration attached.

Figures 3, 4, 5, 6, 7, 8, 9 present the dimensionless

responses along the dimensionless thickness of the sand-

wich nanoplates for dimensionless time t ¼ 0:2. The

dimensionless thickness of the layer-by-layer viscoelastic

sandwich nanoplate h Ið Þ(h IIIð Þ) and h IIð Þ are respectively

valued as 0.50 and 1.00. In addition, the symmetric thermal

shock loadings at the bounding planes z ¼ h Ið Þ and z ¼
h IIIð Þ will adopt the form as f tð Þ ¼ 25t2. As a consequence,

the temperature rise at z ¼ h Ið Þ and z ¼ h IIIð Þ is 1.0. Clearly,
the analytical model formulated in Sect. 2 will be reduced

to a one layer with one end subjected to time-dependent

thermal loads if the following conditions are satisfied:

(i) the viscous effect is ignored; (ii) temperature change at

the lower surface is assumed to be zero. As shown in

Fig. 2, the predicted results of temperature response match

well with that in Yu et al. (2016). This ensures the validity

and accuracy of the numerical algorithm via Laplace

transformation adopted in this work.

4.1 The effect of thermal nonlocal parameter v(iÞq

The effect of nonlocal parameter v ið Þ
q on the structural

responses is mainly discussed in this subsection. During the

analysis, the size effect of elastic deformation is neglected,

i.e. e0a
ið Þ ¼ 0. As shown in Fig. 3, the dimensionless

results for v Ið Þ
q ¼ v IIð Þ

q ¼ v IIIð Þ
q ¼ v ið Þ

q are graphically illus-

trated. If v ið Þ
q increases, the following conclusions will be

reached. Firstly, the absolute values of temperature and

compressive stress are greatly enhanced, even at the

interfaces. Secondly, the displacement will become

smoother, whilst the Medium II deforms larger and a clear

increase of displacement is observed at the interfaces.

Figure 4 presents dimensionless results for

v Ið Þ
q v IIIð Þ

q

� �
6¼ v IIð Þ

q . If v Ið Þ
q v IIIð Þ

q

� �
is larger than that in

Medium II (i.e. )v Ið Þ
q

.
v IIð Þ
q [ 1:00, it is observed that: (i)

the temperature is larger in Medium I and III, but lower in

Medium II; (ii) the displacement is almost unchanged in

Medium I and III, while Medium II deforms smaller; (iii)

the comprehensive stresses �r0zz and �r0xx (�r0yy) increase in

Medium I and III, but reduced in Medium II; (iv) an

0.0 0.2 0.4 0.6 0.8 1.0
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T
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x

Fig. 2 Comparison studies of present model without piezoelectric

effect and Yu et al. (2016)
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evident jump of dynamic responses exists at the interfaces,

that is, the temperature, displacement or compressive stress

�r0zz (�r0yy) will suddenly jumps from a higher value to a

lower one. If the ratio v Ið Þ
q

.
v IIð Þ
q \1:00 is adopted, it is

obtained that: (i) temperature response is not changed in

both Medium I and III, but it will be greatly increased in

Medium II; (ii) the Medium II deforms larger, but there is

no change for the deformation in Medium I and III; (iii) the

comprehensive stresses �r0zz and �r0xx (�r0yy) is significantly

Fig. 3 Dimensionless results for

v Ið Þ
q ¼ v IIð Þ

q ¼ v IIIð Þ
q ¼ v ið Þ

q
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improved in Medium II, but almost unchanged in both

Medium I and III; (iv) the responses of temperature, dis-

placement or compressive stress abruptly jump to a higher

value at the interfaces. It is known that the surface coating

at the two adjacent layers of the viscoelastic nanoplates is

always designed to avoid larger heat energy and thermal

induced stresses at the interfaces. This is very important for

the safe working of viscoelastic laminated sandwich

nanocomposites subjected to time-varying symmetric

thermal shock loadings. From Figs. 3 and 4, it is clear that

Fig. 3 continued
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Fig. 4 Dimensionless results for

different combinations of v ið Þ
q
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Fig. 4 continued
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Fig. 5 Dimensionless results for

e0a
Ið Þ ¼ e0a

IIð Þ ¼ e0a
IIIð Þ ¼ e0a

ið Þ
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Fig. 5 continued
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the case of v Ið Þ
q

.
v IIð Þ
q [ 1:00 is beneficial to the heat and

harmful thermal-induced stress isolation.

4.2 The effect of elastic nonlocal parameter
e0a

(iÞ

Figures 5 and 6 present the structural dynamic responses

for different selections of elastic nonlocal parameter when

Fig. 6 Dimensionless results for

different combinations of e0a
ið Þ

1156 Microsystem Technologies (2022) 28:1143–1165

123



v ið Þ
q ¼ 0. In the case of e0a

Ið Þe0a IIð Þ ¼ 1, one can observed

that: (i) the temperature response for e0a
ið Þ ¼ 0:10 or

e0a
ið Þ ¼ 0:20 agrees well with that for e0a

ið Þ ¼ 0:00. This

suggests that e0a
ið Þ has no effect on the distribution of

temperature; (ii) the Medium I and III will deform smaller,

and the distribution of displacement becomes even

smoother; (iii) the compressive stress �r0zz is lower in

Medium I and III, but higher in Medium II; (iv) the com-

pressive stress �r0xx (�r
0
yy) is improved in Medium I, II and III;

(v) the displacement is reduced at z ¼ �0:50, but the

compressive stress �r0xx (�r0yy) will become larger. Figure 6

displayed dimensionless results under different combina-

tions of e0a
ið Þ. If e0a

Ið Þe0a IIð Þ [ 1:00, it can be concluded

that: (i) the absolute values of displacement in Medium I, II

and III will be decreased, even at z ¼ �0:50; (ii) the

compressive stress �r0zz will be greatly reduced in Medium I

and III, but not changed in Medium II; (iii) the compressive

stress �r0xx (�r0yy) increases in Medium I and III, whilst it

suddenly jumps from a higher value to a lower one at

z ¼ �0:50. If e0a
Ið Þe0a IIð Þ\1:00, the distribution of dis-

placement is almost unchanged in Medium I and III, but

Medium II will deform larger. On the other hand, the

compressive stress �r0zz or �r0xx (�r0yy) is not changed in

Medium I and III, but it abruptly jumps to a higher value at

z ¼ �0:50, whilst the magnitudes of compressive stress

become larger in Medium II. The results may be useful for

practical applications: if the ratio of e0a
Ið Þe0a IIð Þ\1:00 is

taken, the ability of stress isolation will be improved.

4.2.1 The effects of material constants ratios

This subsection mainly contributes to analyze and discuss

the effects of material constants ratios on the structural

thermo-viscoelastic responses if following conditions are

always satisfied: v ið Þ
q ¼0:10, e0a

ið Þ ¼ 0:10.

4.2.2 The effect of relaxation function ratio

Figure 7 is displayed for the dynamic responses under

different combinations of relaxation function. If the

relaxation function in Medium I or III is larger than that in

Medium II, i.e. R Ið ÞR IIð Þ [ 1:00, one can observe that: (i)

the temperature response is not changed in Medium I and

III, but it becomes larger in Medium II; (ii) the Medium II

will deform smaller; (iii) the compressive stress �r0zz
decreases in Medium I, II and III; (iv) the compressive

stress �r0xx (�r0yy) is improved in Medium I and III, but

reduced in Medium II; (v) the temperature or compressive

stress will abruptly jump to a lower value at z ¼ �0:50. If

the ratio of R Ið ÞR IIð Þ\1:00 is adopted, Fig. 7 shows that

the responses of temperature, displacement and compres-

sive stresses increase in Medium II. Clearly, the absolute

values of temperature and compressive stresses will be

suddenly improved to higher values at z ¼ �0:50. It can be

concluded that the abilities of heat and harmful stresses

isolation can be efficiently lifted in the case of

R Ið ÞR IIð Þ [ 1:00.

Fig. 6 continued
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4.2.3 The effect of bulk modulus ratio

As illustrated in Fig. 8, the effect of bulk modulus ratio on

the responses is evaluated and discussed. Firstly, the tem-

perature response is not changed in the case of

b Ið Þ
.
b IIð Þ [ 1:00, b Ið Þ

.
b IIð Þ ¼ 1:00 or b Ið Þ

.
b IIð Þ\1:00.

This indicates that the bulk modulus ratio has no effect on

the distribution of temperature response. Secondly, if

b Ið Þ
.
b IIð Þ [ 1:00, it is clearly observed that: (i) the dis-

placement response is not changed in Medium II, while

Medium I and III will deform smaller, even at z ¼ �0:50;

(ii) the compressive stresses �r0zz and �r0xx (�r
0
yy) become lower

in Medium I and III, but almost unchanged in Medium II;

Fig. 7 Dimensionless results for

different relaxation function

ratio
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(iii) the compressive stress �r0zz or �r0xx (�r0yy) will suddenly

jump form a higher response to a lower one at z ¼ �0:50.

Thirdly, if b Ið Þ
.
b IIð Þ\1:00, it is seen that: (i) the distri-

bution of displacement is not changed in Medium I or III,

whereas Medium II deforms smaller; (ii) the compressive

stresses �r0zz or �r
0
xx (�r

0
yy) increases in Medium II, and it will

be greatly improved to a higher value at z ¼ �0:50.

Clearly, the compressive stresses are significantly reduced,

which suggests that stress isolation will be greatly

improved.

4.2.4 The effect of thermal conductivity ratio

Shown in Fig. 9, the dimensionless results of structural

dynamic responses are graphically illustrated for different

Fig. 7 continued
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ratios of thermal conductivity. From Fig. 9, it is indicated

that all the responses for j Ið Þj IIð Þ [ 1:00 and

j Ið Þj IIð Þ\1:00 match well with those for

j Ið Þj IIð Þ ¼ 1:00. This suggests that the distribution of

temperature, displacement and compressive stresses will

not be affected by the ratio of j Ið Þj IIð Þ. If j Ið Þj IIð Þ [ 1:00,

the temperature in Medium II will increase, whilst the

absolute value of displacement becomes larger. In such a

case, the compressive stresses �r0zz and �r0xx (�r0yy) increase.

Additionally, the temperature or compressive stress

abruptly jumps from a lower value to a higher one at

Fig. 8 Dimensionless results for

different bulk modulus ratio
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Fig. 9 Dimensionless results for

different thermal conductivity

ratio
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Fig. 9 continued
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z ¼ �0:50. If j Ið Þj IIð Þ\1:00, the temperature decreases in

Medium II, and the displacement is accordingly reduced.

Consequently, the compressive stress �r0zz or �r0xx (�r0yy)

decreases. The sharp jumps of temperature and compres-

sive stress at z ¼ �0:50 will be lowered. From above

discussion, it can be deduced that the heat and stress iso-

lation at the surface coatings of the structure will be

improved in the case of j Ið Þj IIð Þ\1:00.

5 Concluding remarks

A complete nonlocal thermo-viscoelasticity model (Li

et al. 2021a) has been developed to fully consider the size

effects of elastic deformation and heat transfer, which

paves a new important branch in this research field.

However, in view of current studies, there are no works

have contributed on structural dynamic responses of layer-

by-layer viscoelastic sandwich nanocomposites subjected

to time-varying symmetric thermal shock loadings based

on this theory. Following the theory (Li et al. 2021a), this

work aims to deal with this problem by developing an

analytical model and obtain the time-domain solutions by a

semi-analytical technique via Laplace transformation. The

numerical results show that:

(i). The increase of thermal nonlocal parameter will

reduce heat and stress isolation for the surface

coatings at the interfaces.

(ii). The increase of elastic nonlocal parameter will

improve the absolute value of compressive

stresses, while the sandwich nanoplates will

deform smaller and the distribution of displace-

ment becomes even smoother.

(iii). Different combinations of thermal and elastic

nonlocal parameters can improve the ability of

heat and stress isolation to some extent.

(iv). Properly selecting material constants ratios will

remarkably affect the structural dynamic thermo-

viscoelastic responses and lift the heat and stress

isolation

This paper is expected to provide a thorough and com-

prehensive understanding on nonlocal thermo-viscoelastic

responses of layer-by-layer viscoelastic sandwich

nanocomposites. The strategy and achieved results in pre-

sent work will present some basic guidelines for its

strength design and vibration control.
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