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1is paper investigates a distributed coordination control for a class of high-order uncertain multiagent systems. Under the
framework of iterative learning control, a novel fully distributed learning protocol is devised for the coordination problem of
MASs including time-varying parameter uncertainties as well as actuator saturations. Meanwhile, the learning updating laws of
various parameters are proposed. Utilizing Lyapunov theory and combining with Graph theory, the proposed algorithm canmake
each follower track a leader completely over a limited time interval even though each follower is without knowing the dynamics of
the leader. Moreover, the extension to formation control is made. 1e validity and feasibility of the algorithm are verified
conclusively by two examples.

1. Introduction

Coordination of multiagent systems (MASs) draws a lot of
attention because of its wide applications in UAV, biological
systems, sensor networks, and so forth. An important
problem in coordination is to develop the distributed
protocols, which specifies information exchange among
agents, such that the group as a whole can agree on a
common quantity. 1is kind of problem is called consensus
[1–5]. For this consensus realization, a leader-follower
consensus [6, 7] has been extensively studied by many
scholars. Another problem of coordination is formation
control; the fault-tolerant leader-following formation con-
trol and cluster formation control were discussed in [8, 9],
respectively. However, in the real world, the dynamics of
systems are usually uncertain. 1erefore, the consensus or/
and formation control for uncertain MASs become a hot
topic in the field of control.

Generally speaking, an effective scheme to dispose pa-
rameter uncertainties is adaptive control [10–19]. An
adaptive neural network approximation scheme was utilized
to design the control protocols of the first-, second-, and

high-order uncertain MASs in [10–12]. References [13, 14]
used the adaptive idea to design the fully distributed control
protocols by adjusting the protocols gains, so that the global
information dependent on topology matrix can be avoided,
and the promising technique is more and more popular
among researchers for different purposes [15–19], where
adaptive iterative learning control is utilized to handle the
consensus for MASs over a finite time interval [20–24].

It is noteworthy that the abovementioned studies did not
consider actuator saturations in the MASs. Actually, due to
the limited actuator capability, actuator saturations may
exist in most physical systems and cause the system insta-
bility. Consequently, it is useful to take into account actuator
saturations in system analysis. Recently, a large number of
work about MASs with actuator saturations emerge [25–32].
References [25–29] studied consensus algorithms under
one-dimensional system framework when time goes to in-
finity and [30–32] tackled the consensus problem by iterative
learning control (ILC). In [30], authors addressed the neural
network consensus for the second-order MASs subject to
saturation input; authors in [31] proposed the fully dis-
tributed learning scheme and made use of the properties of
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saturation function to solve actuator saturations; the leader-
follower consensus for the first-order MASs with input
saturation was researched in [32]. 1ereinto, the dynamic of
the leader was known to each follower in [31, 32].

Based on the aforementioned observations, we have
successfully combined the fully distributed algorithm ap-
plying ILC over the finite time interval to address the co-
ordination for a class of high-order MASs. 1e major
contributions are highlighted as follows:

(i) Differing from the adaptive consensus ofMASs with
actuator saturations, the learning consensus
researched in this paper can make each follower
track the leader absolutely over, where the pa-
rameter uncertainties are time-varying

(ii) In contrast with the adaptive ILC consensus algo-
rithm available, the algorithm in the paper is more

complicated as well as each follower is without
knowing the dynamic of the leader

(iii) 1e consensus problem is extended to the formation
control for a class of high-order MASs

1e rest is arranged as follows. Some useful preliminary
results and problem formulation are presented in Section 2.
Section 3 is the protocols design and consensus analysis. 1e
extension to formation control is given in Section 4. Two
examples for illustration are taken in Sections 5 and con-
clusion is drawn in Sections 6, respectively.

2. Problem Formulation

Here, the MASs with N followers and one leader are con-
sidered under a repetitive environment. 1e models are

followers : _x
k
i (t) � Ax

k
i + θi(t)ξi x

k
i (t)  + sat u

k
i (t), u

∗
  i � 1, 2, . . . , N,

leader : _x0(t) � Ax0(t) + f x0(t), t( ,
(1)

where xk
i (t) ∈ Rn is the state vector of the i th follower and

uk
i (t) ∈ Rn is the input vector of the i th follower; θi(t) is an

unknown continuous time-varying parameter, which shows
the uncertainty in system models for each follower agent;
ξi(xk

i ) ∈ Rn is a known smooth nonlinear vector valued
function; A ∈ Rn×n; sat(uk

ij, uj
∗) is the saturation function

[31], j � 1, 2, . . . , n, and sat(uk
i , u∗) � [sat(uk

i1, u∗1 ), sat
(uk

i2, u∗2 ), . . . , sat(uk
in, u∗n )]T is a saturation vector function;

x0(t) ∈ Rn is the state vector of the leader, and f(x0(t), t) �

[f01(x0(t), t), f02(x0(t), t), . . . , f0n(x0(t), t)]T ∈ Rn is an
unknown but bounded vector valued nonlinear function.

Assumption 1. It is assumed that |f0j(x0(t))|⩽ηj with ηj

being an unknown positive constant. Denote
η � [η1, η2, . . . , ηn]T.

Remark 1. From the above, it is known that each follower is
without knowing the dynamic of the leader.

For the i th follower, the consensus error is

δk
i � x

k
i − x0. (2)

In this paper, we aim to find suitable protocols
uk

i , i � 1, 2, . . . , N, 0≤ t≤T  and the updating laws of
parametric uncertainties so that all the followers can uni-
formly track the leader over [0, T] as k approaches to in-
finity, that is to say,

lim
k⟶∞

δk
i

�����

����� � lim
k⟶∞

x
k
i − x0(t)

�����

����� � 0, i � 1, 2, . . . , N. (3)

Assumption 2. 1e state vector of each follower and the
leader satisfy xk

i (0) � xk− 1
i (t) and x0(0) � x0(t).

Remark 2. From assumption 2, we have δk
i (0) � δk− 1

i (t).

To design the distributed protocols, the distribute error is

e
k
i (t) � 

N

j�1
aij x

k
j(t) − x

k
i (t)  + bi x0(t) − x

k
i (t) . (4)

1e compact forms are

δk
� x

k
− 1N ⊗ x0,

e
k

� − (L + B) x
k

− 1N ⊗x0  � − H⊗ In( δk
,

(5)

where ek � [(ek
1)

T, (ek
2)

T, . . . , (ek
N)T]T ∈ RNn and δk �

[(δk
1)

T, (δk
2)T, . . . , (δk

N)T]T ∈ RNn; H � L + B is a symmetric
positive definite matrix, and the communication topology of
the paper is the same as that in [31].

3. Learning Control Protocols Design and
Consensus Analysis

1e error dynamic can be calculated as

_δ
k

i � Aδk
i + θi(t)ξk

i + sat u
k
i , u
∗

  − f x0, t( . (6)

1en, the learning protocol is devised as

u
k
i (t) � c

k
i (t)e

k
i − θ

k

i (t)ξi x
k
i  + ϖμk

i (t) + υk
i (t), (7)

where ck
i (t) ∈ R is a time-varying gain; θ

k

i (t) ∈ R is to es-
timate θi(t);ϖ> 0; μk

i (t) is to deal with the saturation term in
(1); and υk

i (t) ∈ Rn is to offset f(x0(t), t).
υk

i (t), the learning adaptive laws of ck
i (t) and μk

i (t), is
devised as

υk
i (t) � ηk

i (t)tanh
e

k
i (t) 

T
Pηk

i (t)

Δk+1

⎛⎜⎝ ⎞⎟⎠, (8)
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_c
k

i (t) � ρi e
k
i (t) 

T
Pe

k
i (t),

c
k
i (0) � c

k− 1
i (T), c

0
i (0) � 0,

⎧⎪⎨

⎪⎩
(9)

and

_μk
i (t) � ϖek

i −
δu

k
 

T
δu

k

2 μk
 

T
IN ⊗P( μk

μk
i (t),

μk
i (0) � μk− 1

i (T),

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(10)

where ηk
i (t) is the estimation of η and P is symmetric

positive definite; ρi > 0; δuk � uk − sat(uk), uk � col
uk
1, uk

1, . . . , uk
N  ∈ RNn, sat(uk) � col sat(uk

1), sat(uk
2), . . . ,

sat(uk
N)} ∈ RNn, and μk � col μk

1, μ
k
2, . . . , μk

N  ∈ RNn.
Furthermore, the learning-based updating law of θi(t) is

devised as

θ
k

i (t) � sat θ
k

i,∗(t) ,

θ
k

i,∗(t) � sat θ
k− 1
i,∗ (t)  − mi ei

k
 

T
Pξk

i ,

θ
− 1
i (t) � sat θ

− 1
i,∗(t)  � 0, t ∈ [0, T],

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(11)

with mi > 0.
Meanwhile,

_η
k

i (t) � Γi Pe
k
i



,

ηk
i (0) � ηk− 1

i (T),

(12)

where ηk
i (t) � [ηk

i1(t), ηk
i2(t), . . . , ηk

in(t)]T; Γi � diag ci1,

ci2, . . . , cin}, cij > 0, i � 1, 2, . . . , N and j � 1, . . . , n;
η0i (0) � [η0i1(0), η0i2(0), . . . , η0in(0)]T, η0ij(0)> 0.

Remark 4. It is obvious that ηk
i (t) is nonnegative, which is

guaranteed from the updating law (12).
1e i th error dynamic becomes

_δ
k

i � Aδk
i + θ

k

i (t)ξk
i + c

k
i e

k
i + ϖμk

i (t) − δu
k
i + υk

i − f x0, t( ,

(13)

where θ
k

i (t) � θi(t) − θ
k

i (t) and δuk
i � uk

i − sat(uk
i ).

1us,

_δ
k

� IN ⊗A( δk
+ Θk

(t)⊗ In ξk
− C

k
(t)H⊗ In δk

+ ϖμk
− δu

k
+ υk

− 1N ⊗f x0, t( ( , (14)

where

Θk
(t) � diag θ

k

1(t), θ
k

2(t), . . . , θ
k

N(t) ,

ξk
� ξk

1 
T
, ξk

2 
T
, . . . , ξk

N 
T

 
T
∈ R

Nn
,

υk
(t) � col υk

1(t) , υk
2(t) , . . . , υk

N(t)   ∈ R
Nn and C

k
(t) � diag c

k
1(t), c

k
2(t), . . . , c

k
N(t) .

(15)

Theorem 1. For the MASs (1), under assumptions 1 and 2,
the protocols (7)-(8) as well as adaptive learning laws (9)-(12)
guarantee that each follower can completely track the leader
over [0, T] along the iteration axis, i.e., lim

k⟶∞
δk

i � 0,

i � 1, . . . , N. At the same time, the boundednesses of signals
involved are obtained.

Proof. 1e proof falls into three parts. At the k th iteration, a
Lyapunov candidate is established as

V
k

� δk
 

T
(H⊗P)δk

+ 
N

i�1

1
mi


t

0
θ

k

i (τ) 
2
dτ + 

N

i�1

1
ρi

c
k
i (t) 

2

+ 
N

i�1
μk

i (t) 
T
Pμk

i (t) + 
N

i�1
ηk

i (t) 
T
Γi

− 1
ηk

i (t),

(16)

where ck
i � ci − ck

i (t) and ηk
i (t) � η − ηk

i (t), i � 1, 2, . . . , N. At first, the difference between Vk and Vk− 1 is
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ΔVk
(t) � V

k
(t) − V

k− 1
(t) � δk

 
T
(H⊗P)δk

− δk− 1
(t) 

T
(H⊗P)δk− 1

(t) + 
N

i�1

1
mi


t

0
θ

k

i 
2

− θ
k− 1
i 

2
 dτ

+ 

N

i�1

1
ρi

c
k
i 

2
− c

k− 1
i 

2
  + 

N

i�1
μk

i (t) 
T
Γi

− 1μk
i (t) − 

N

i�1
μk− 1

i (t) 
T
Γi

− 1μk− 1
i (t) + 

N

i�1
ηi( 

TΓi
− 1

ηk
i − 

N

i�1
ηk− 1

i 
T
Γi

− 1
ηk− 1

i .

(17)

From the error dynamic (14), we have

δk
 

T
(H⊗P)δk

� 2
t

0
δk

 
T
(H⊗P) _δ

k
dτ + δk

(0) 
T
(H⊗P)δk

(0)

� 
t

0
δk

 
T

H⊗ PA + A
T
P  δk

dτ + 2ϖ
t

0
δk

 
T
(H⊗P)μk

dτ − 2
t

0
δk

 
T
(H⊗P)δu

k
dτ

− 2
t

0
δk

 
T

HC
k
(τ)H⊗ In δk

+ 2
t

0
δk

 
T

H Θk
(τ)⊗P ξk

dτ

+ 2
t

0
δk

 
T
(H⊗P)υk

dτ − 2
t

0
δk

 
T
(H⊗P) 1N ⊗f x0( ( dτ

+ δk
(0) 

T
(H⊗P)δk

(0),

(18)

where

− 2
t

0
δk

 
T
(H⊗P)δu

k
dτ ≤ 

t

0
δk

 
T

H
2 ⊗P

2
 δk

dτ + 
t

0
δu

k
 

T
δu

k
dτ, (19)

and



N

i�1

1
mi


t

0
θ

k

i 
2

− θ
k− 1
i 

2
 dτ � 

N

i�1

1
mi


t

0
θ

k− 1
i − θ

k

i  2 θi − θ
k

i  + θ
k

i − θ
k− 1
i  dτ

⩽
N

i�1

2
mi


t

0
θ

k

i
θ

k− 1
i − θ

k

i dτ⩽2
N

i�1


t

0
θ

k

i e
k
i 

T
Pξk

i dτ

� − 2
t

0
δk

 
T

H Θk ⊗P ξk
dτ.

(20)

Simultaneously,



N

i�1

1
ρi

c
k
i 

2
− c

k− 1
i 

2
  � 

N

i�1

2
ρi


t

0
c k

i
_c
k

i dτ + 
N

i�1

1
ρi

c
k
i (0) 

2
− c

k− 1
i (t)

2


� − 2
t

0
δk

 
T
(HCH⊗P)δk

dτ + 2
t

0
δk

 
T

HC
k
(τ)H⊗P δk

dτ + 
N

i�1

1
ρi

c
k
i (0) 

2
− c

k− 1
i (t)

2
 , (21)
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where C � diag c1, c1, . . . , cN . In addition,



N

i�1
μk

i (t) 
T
Pμk

i (t) − 
N

i�1
μk− 1

i (t) 
T
Pμk− 1

i (t) � 2
N

i�1


t

0
μk

i 
T
P _μk

i dτ − 
N

i�1
μk− 1

i (t) 
T
Pμk− 1

i (t) + 
N

i�1
μk

i (0) 
T
Pμk

i (0)

� − 2ϖ
t

0
δk

 
T
(H⊗P)μk

dτ − 
t

0
δu

k
 

T
δu

k
dτ − 

N

i�1
μk− 1

i (t) 
T
Pμk− 1

i (t)

+ 
N

i�1
μk

i (0) 
T
Pμk

i (0),

(22)

and



N

i�1
ηk

i 
T
Γi

− 1
ηk

i − 
N

i�1
ηk− 1

i 
T
Γi

− 1
ηk− 1

i � 2
N

i�1


t

0
ηk

i 
T
Γi

− 1 _ηk

i dτ − 
N

i�1
ηk− 1

i (t) 
T
Γi

− 1
ηk− 1

i (t) + 
N

i�1
ηk

i (0) 
T
Γi

− 1
ηk

i (0)

� − 2
N

i�1


t

0
ηk

i 
T

Pe
k
i



dτ − 
N

i�1
ηk− 1

i (t) 
T
Γi

− 1
ηk− 1

i (t) + 
N

i�1
ηk

i (0) 
T
Γi

− 1
ηk

i (0).

(23)

Substituting (18)–(23) into (17) yields

ΔVk
(t)⩽ 

t

0
δk

 
T

H⊗ PA + A
T
P  − 2HCH⊗P − H

2 ⊗P
2

  δk
dτ + δk

(0) 
T
(H⊗P)δk

(0) − δk− 1
(t) 

T
(H⊗P)δk− 1

(t)

+ 
N

i�1

1
ρi

c
k
i (0) 

2
− c

k− 1
i (t)

2


+ 
N

i�1
μk

i (0) 
T
Pμk

i (0) − 
N

i�1
μk− 1

i (t) 
T
Pμk− 1

i (t) + 
N

i�1
ηk

i (0) 
T
Γi

− 1
ηk

i (0) − 
N

i�1
ηk− 1

i (t) 
T
Γi

− 1
ηk− 1

i (t)

+ 2
t

0
δk

 
T
(H⊗P)υk

dτ − 2
t

0
δk

 
T
(H⊗P) 1N ⊗f x0( ( dτ − 2

N

i�1


t

0
ηk

i 
T

Pe
k
i



dτ.

(24)

Due to (8) and Property 1 in [20],
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2
t

0
δk

 
T
(H⊗P)υk

dτ − 2
t

0
δk

 
T
(H⊗P) 1N ⊗f x0( ( dτ − 2

N

i�1


t

0
ηk

i 
T

Pe
k
i



dτ

� − 2

N

i�1


t

0
e

k
i 

T
Pυk

i dτ + 2

N

i


t

0
e

k
i 

T
Pf x0( dτ − 2

N

i�1


t

0
ηk

i 
T

Pe
k
i



dτ

≤ − 2
N

i�1


t

0
e

k
i 

T
Pυk

i dτ + 2
N

i


t

0
e

k
i 

T
P



ηdτ − 2
N

i�1


t

0
e

k
i 

T
P



η
k
i dτ

� 2
N

i�1


t

0
e

k
i 

T
P



η
k
i − e

k
i 

T
Pηk

i tanh
e

k
i 

T
Pηk

i

Δk+1

⎛⎜⎝ ⎞⎟⎠⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦dτ⩽2NTεΔk+1.

(25)

1erefore,

ΔVk
(t)⩽

t

0
δk

 
T

H⊗ PA + A
T
P  − 2HCH⊗P − H

2 ⊗P
2

  δk
dτ

+ δk
(0) 

T
(H⊗P)δk

(0) − δk− 1
(t) 

T
(H⊗P)δk− 1

(t) + 
N

i�1

1
ρi

c
k
i (0) 

2
− c

k− 1
i (t)

2


+ 
N

i�1
μk

i (0) 
T
Pμk

i (0) − 
N

i�1
μk− 1

i (t) 
T
Pμk− 1

i (t)

+ 
N

i�1
ηk

i (0) 
T
Γi

− 1
ηk

i (0) − 
N

i�1
ηk− 1

i (t) 
T
Γi

− 1
ηk− 1

i (t) + 2NεΔk+1.

(26)

On account of the positiveness of H, C, and P, set δ
k

�

(FT ⊗ In)δk and F is an orthogonal matrix:

ΔVk ≤ 
N

i�1
λi(H) 

t

0
δ

k

i 
T

PA + A
T
P  − 2 cminλmin(H)λmin(P) − λmax2(H)λmax2(P)( I δ

k

i dτ + 2NTεΔk+1

+ δk
(0) 

T
(H⊗P)δk

(0) − δk− 1
(t) 

T
(H⊗P)δk− 1

(t) + 
N

i�1

1
ρi

c
k
i (0) 

2
− c

k− 1
i (t)

2


+ 
N

i�1
μk

i (0) 
T
Pμk

i (0) − 
N

i�1
μk− 1

i (t) 
T
Pμk− 1

i (t) + 
N

i�1
ηk

i (0) 
T
Γi

− 1
ηk

i (0) − 
N

i�1
ηk− 1

i (t) 
T
Γi

− 1
ηk− 1

i (t),

(27)

where λi(H)> 0 shows the eigenvalue of H and
cmin � min

1≤i≤N
ci . For the sufficient large constant cmin > 0, the

inequality PA + ATP − 2(cminλmin(H)λmin(P) − λmax2(H)

λmax2(P))≤ − σI with σ > 0 always holds.
When t � T, it follows that

ΔVk
(T)⩽ − σλmin(H) 

N

i�1


T

0
δk

i 
T
δk

i dτ + 2NTεΔk+1, (28)

which results in

V
k
(T)⩽Vk− 1

(T) + 2NTεΔk+1. (29)
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In the second place, let us prove boundednesses of
signals involved. On the basis of the definition of Vk results,

V
k

� ΔVk
+ V

k− 1⩽ − σλmin(H) 
N

i�1


t

0
δk

i 
T
δk

i dτ + δk
(0) 

T
(H⊗P)δk

(0) − δk− 1
 

T
(H⊗P)δk− 1

+ δk− 1
 

T
(H⊗P)δk− 1

+ 
N

i�1

1
mi


t

0
θ

k− 1
i 

2
dτ + 

N

i�1
μk− 1

i 
T
Pμk− 1

i + 
N

i�1
μk

i (0) 
T
Pμk

i (0) − 
N

i�1
μk− 1

i 
T
Pμk− 1

i

+ 
N

i�1
ηk− 1

i 
T
Γi

− 1
ηk− 1

i + 
N

i�1
ηk

i (0) 
T
Γi

− 1
ηk

i (0) − 
N

i�1
ηk− 1

i 
T
Γi

− 1
ηk− 1

i + 
N

i�1

1
ρi

c
k− 1
i 

2
+ 

N

i�1

1
ρi

c
k
i (0) 

2
− c

k− 1
i 

2
  + 2NTεΔk+1.

(30)

1at is,

V
k⩽Vk− 1

(T) + 2NTεΔk+1. (31)

It can be obtained from (29) and (31) that

V
k⩽Vk− 1

(T) + 2NTεΔk+1

⩽Vk− 2
(T) + 2NTεΔk + 2NTεΔk+1

⋮

⩽V0
(T) + 2NTε 

k+1

l�2
Δl.

(32)

As lim
k⟶∞

2NTεk+1
l�2 Δl⩽4NTεa [20], 2NTεk+1

l�2 Δl is
uniformly bounded, ∀k ∈ Z+. Denote 2NTεk+1

l�2 Δl⩽S with
S> 0. Hence,

V
k⩽V0

(T) + S. (33)

If the finiteness of V0(T) is attained, the uniform
boundedness of Vk(t) is followed. And then, we will show
the finiteness of V0. It obtained that

V
0
(t) � δ0 

T
(H⊗P)δ0 + 

N

i�1
μ0i (t) 

T
Pμ0i + 

N

i�1

1
ρi

c
0
i 

2

+ 
N

i�1

1
mi


t

0
θ
0
i 

2
dτ + 

N

i�1
η0i 

T
Γi

− 1
η0i ,

(34)

and

_V
0⩽ δ0 

T
H⊗ PA + A

T
P  − 2HCH ⊗P − H

2 ⊗P
2

  δ0 + 
N

i�1

1
mi

θ2i (t)

+ 2 δ0 
T
(H⊗P)υ0 − 2 δ0 

T
(H⊗P) 1N ⊗f x0( (  − 2

N

i�1
η0i 

T
Pe

0
i


,

(35)

where

2 δ0 
T
(H⊗P)υ0 − 2 δ0 

T
(H⊗P) 1N ⊗f x0( ( − 2

N

i�1
η0i 

T
Pe

0
i


dτ

⩽2

N

i�1
e
0
i 

T
P



η
0
i − e

0
i 

T
Pη0i tanh

e
0
i 

T
Pη0i
Δ1

⎛⎝ ⎞⎠⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦⩽2Nεa.

(36)

1us,
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_V
0⩽ − σλmin(H) 

N

i�1
δ0i 

T
δ0i + 

N

i�1

1
mi

θ2i (t) + 2Nεa⩽
N

i�1

1
mi

θ2i (t) + 2Nεa. (37)

Since θi(t) is continuous, the boundedness of it obtained
[0, T]. 1en,

_V
0
(t)⩽M0′, (38)

where M0′ � 1/mmin max
t∈[0,T]

1≤ i≤N

θ2i (t)  + 2Nεa and qmin � min
1≤i≤N

qi , mmin � min
1≤i≤N

mi . Meanwhile,

V
0

� V
0
(0)


 + 

t

0
_V
0

dτ⩽ δ0(0) 
T
(H⊗P)δ0(0) + 

N

i�1

1
ρi

c
2
i + 

N

i�1
μ0i (0) 

T
Pμ0i (0) + 

N

i�1
ηTΓi

− 1η + TM0′ <∞. (39)

V0(t) is finite; it is followed that V0(T) is bounded.
1erefore, the uniformly boundedness of Vk(t) is obtained
over [0, T], ∀k ∈ Z+. Furthermore, it is inspired by the
definition of Vk; it obtained the uniform boundednesses of
δk(t), μk

i (t), ck
i (t), and ηk

i (t). 1e updating law (11) indicates

that θ
k

i (t) is bounded. From (7), we can calculate the uni-
form boundedness of uk

i (t). So, the boundednesses of signals
involved are gained.

At last, we prove the property of learning consensus. As
we know,

V
k
(T) � V

0
(T) + 

k

l�1
ΔVl

(T). (40)

From (28), it can yield

V
k
(T)⩽V0

(T) − σλmin(H) 

k

l�1


N

i�1


T

0
δl

i 
T
δl

idτ + 2NTε 
k+1

l�2
Δl.

(41)

Since Vk(T) is positive, V0(T) is bounded, and the series
2NTεk+1

l�2 Δl is convergent, and the series 
k
l�1 

N
i�1


t

0 (δl
i)
Tδl

idτ is convergent. Consequently, lim
k⟶∞


N
i�1


t

0 (δk
i )Tδk

i dτ � 0. It is easy to achieve lim
k⟶∞


T

0 (δk
i )T

δk
i dτ � 0, i � 1, 2, . . . , N. From (13), _δ

k

i (t) is bounded on
[0, T]. At last, from Barbalat-like Lemma, lim

k⟶∞
δk

i (t) � 0

holds uniformly over [0, T], i.e., lim
k⟶∞

(xk
i (t) − x0(t)) � 0. In

other words, each follower can completely track the leader
over [0, T]. □

Remark 5. 1e condition PA + ATP − 2(cminλmin(H)

λmin(P) − λmax2(H)λmax2(P))I≤ − σI with σ > 0 is only for
the analysis purpose; as a matter of fact, it is not utilized
in the design of protocols. Accordingly, the distributed
learning control protocols are fully distributed and
the consensus for the MASs is solved faultlessly even if
each follower is without knowing the dynamic of the
leader.

4. Formation Control of the MASs

1e formation control of theMASs (1) is concerned here. If the
followers and leader form a formation at a certain distance over
[0, T], we can say that the formation control is achieved.

Let us define

x
k
i1 � x

k
i1 − Δi, (42)

where Δi is the expected formation vector for the i th fol-
lower relative to the leader.

1e formation error is

δk
i1(t) � x

k
i1(t) − x01(t). (43)

And, δk
il(t) is the same as δk

il(t) defined in (2),
l � 2, 3, . . . , n.

Like that, the problem of formation can be reformulated
as the consensus problem, i.e., lim

k⟶∞
‖δk

i ‖ � 0.
Simultaneously, the neighborhood formation errors are

e
k
i1 � 

N

j�1
aij x

k
j1 − x

k
i1  + bi x01 − x

k
i1 ,

e
k
il � 

N

j�1
aij x

k
jl − x

k
il  + bi x0l − x

k
il , l � 2, 3, . . . , n.

(44)

Assumption 3. For each follower, xk
i1(0) � xk− 1

i1 (T), xk
il(0) �

xk− 1
il (T), i � 1, 2, . . . , N and l � 2, 3, . . . , n; for the leader,

x0(0) � x0(T). 1en, it follows that δk
i (0) � δk− 1

i (T).

Theorem 2. For the MASs with graph G, under assumptions
1 and 3, N followers represented by (1) under the protocols
(7)-(8) with learning-based updating laws (9)-(12) with the
local neighborhood formation errors (44) can make the fol-
lowers form the desired formation in the iteration domain on
t ∈ [0, T]. <e variables involved are bounded.

5. Simulation

In this part, two examples are provided to validate the
validity and practicability for the fully distributed learning
protocol of this paper. As mentioned in [33], the LC
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oscillator system can be considered as a MASs. 1erefore,
here, let us consider the MASs consisting of six followers as
well as one leader. Figure 1 shows the communication graph.

1en, we have

L �

3 − 1 − 1 0 − 1 0

− 1 2 0 0 0 − 1

− 1 0 2 − 1 0 0

0 0 − 1 1 0 0

− 1 0 0 0 1 0

0 − 1 0 0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

B �

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(45)

Example 1. Consider the MASs (1) with A � [0, 1; − 1, 0],
θi(t) � cos(2πit), ξi

k(t) � [(0.01 sin xk
i1)

3, (0.01 sin
(xk

i2)
3)]T, i � 1, 2, 3, 4, 5, 6. x0(t) � [sin(t), cos(t)]T. In

simulations, we choose a � 1 × 104, T � 2π; [− 25, 25] is the
lower and upper bounds of the saturation function.

Case 1. Consensus of the MASs
1e designed parameters are chosen as ϖ � 2:

q1 � 0.2,

q2 � 0.3,

q3 � 0.1,

q4 � 0.3,

q5 � 0.5,

q6 � 0.1;

m1 � 0.1,

m2 � 0.3,

m3 � 0.1,

m4 � 0.1,

m5 � 0.1,

m6 � 0.2,

ρ1 � ρ2 � ρ3 � ρ4 � ρ5 � ρ6 � 0.1,

Γ1 � diag 0.2, 0.3{ },

Γ2 � diag 0.2, 0.4{ },

0

2 1 3

6 5 4

Figure 1: Topology graph (0 indicates the leader).
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Figure 2: Consensus trajectories of six followers for Case 1 at 30th iteration.
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Figure 3: Consensus errors of six followers for Case 1.
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Figure 4: Responses of six followers for Case 1.

Complexity 11



Γ3 � diag 0.3, 0.2{ },

Γ4 � diag 0.3, 0.2{ },

Γ5 � diag 0.4, 0.2{ },

Γ6 � diag 0.5, 0.3{ },

P � diag 1, 1{ },

c � 3,

x1(0) � [1, 2]
T
, x2(0) � [1, 1.5]

T
, x3(0) � [3, 1]

T
, x4(0) � [1.5, 2]

T
, x5(0) � [1, 1]

T
, x6(0) � [2, 3]

T
,

η01(0) � [1, 2]
T
, η02(0) � [2, 1]

T
, η03(0) � [1, 1]

T
, η04(0) � [1.5, 2]

T
, η05(0) � [2, 1]

T
, η06(0) � [1, 1.5]

T
,

μ01(0) � [1, 2]
T
, μ02(0) � [2, 1]

T
, μ03(0) � [1, 1]

T
, μ04(0) � [1.5, 2]

T
, μ05(0) � [2, 1]

T
, μ06(0) � [1, 1.5]

T
.

(46)

After 30 cycles, Figures 2–4 show the simulation results.
Even if the dynamic of the leader is unknown to each fol-
lower and there exit actuator saturations in the dynamic of
system, it can be seen from Figures 2 and 3 that six followers
can perfectly track the leader, and in Figure 4, it is evident
the signals involved are bounded. 1e results fit into 1e-
orem 1.

Case 2. Formation control of the MASs.
Select Δ1 � − 0.1,Δ2 � − 0.2,Δ3 � − 0.3,Δ4 � − 0.4,

Δ5 � − 0.5,Δ6 � − 0.6. Other values involved are the same as
in Case 1.

Figures 5–7 depict the results of formation control for
the MASs (1). From Figure 5, we know that the agents form

the desired formation. Figure 6 shows that the errors
converge to zero over [0, 2π], and Figure 7 illustrates that the
signals involved in the closed-loop system are bounded. 1e
results obtained align with 1eorem 2.

Example 2. In the LC oscillator system [33] with six follower
oscillators and one leader oscillator, each LC oscillator is
governed by

dvi(t)

dt
�
1
C

ci(t),

dci(t)

dt
� −

1
L

vi(t),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(47)
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x62
x02

Figure 5: Formation trajectories of agents for Case 2 at 50th iteration.
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where L, C, ci(t), and vi(t) denote the inductance, ca-
pacitor, current, and voltage; i � 1, 2, . . . , 6. Under the
repetitive environment, we study the fully distributed
adaptive ILC for the LC oscillator system (47); hence, the
input is applied to each oscillator (47) and affected by
actuator saturations. Furthermore, assume that that the
disturbances are time-varying linearly parameterized
uncertainties θi(t)ξi(xk

i ). Under these circumstances,
system (47) is rewritten as

_x
k
i � Ax

k
i + θi(t)ξi x

k
i , t  + sat u

k
i (t) , (48)

where A �
0 1/C

− 1/L 0 , xk
i (t) �

x
k
i1(t)

x
k
i2(t)

  �
v

k
i (t)

c
k
i (t)

 ,

ξi
k(xk

i , t) �
5x

k
i2 cos(x

k
i1)

3x
k
i1 cos(x

k
i2)

 , θi(t) � 0.1 sin(2πit), and k is

the iteration index. In addition, x0(t) � [sin(πt), cos(πt)]T.
Select a � 8 × 106, T � 2, C � 1/2, and L � 1/4; the

bounds of saturation functions are [− 35, 35]. 1e designed
parameters are chosen as ϖ � 1.3:

q1 � q2 � q3 � q4 � q5 � q6 � 1,

m1 � m2 � m3 � m4 � m5 � m6 � 2,

ρ1 � ρ2 � ρ3 � ρ4 � ρ5 � ρ6 � 1.5,

Γ1 � Γ2 � Γ3 � Γ4 � Γ5 � Γ6 � diag 1, 0.2{ },

P � diag 4, 5{ },

c � 3,

x1(0) � x2(0) � x3(0) � x4(0) � x5(0) � x6(0) � [− 1, − 1.5]
T
,

η01(0) � η02(0) � η03(0) � η04(0) � η05(0) � η06(0) � [2, 3]
T
,

μ01(0) � [1, 2]
T
,

μ02(0) � [2, 1]
T
,
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Figure 6: Formation errors of six followers for Case 2.
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Figure 7: Responses of six followers for Case 2.
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Figure 8: Consensus trajectories of six follower oscillators at 60th iteration.
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Figure 9: Consensus errors of six follower oscillators.
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Figure 10: Responses of six follower oscillators.
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μ03(0) � [1, 1]
T
,

μ04(0) � [1.5, 2]
T
,

μ05(0) � [2, 1]
T
,

μ06(0) � [1, 1.5]
T
.

(49)

Figures 8–10 demonstrate the results of consensus control
for 60 iterations, respectively. We can see that six follower
oscillators can perfectly track the leader oscillator from
Figures 8 and 9, even if each follower oscillator is without
knowing the dynamic of the leader oscillator, and the signals
involved are bounded. 1e results fit into 1eorem 1.

6. Conclusions

We have solved the fully distributed learning coordination
problem of a class of high-order nonlinear MASs by adaptive
ILC in this study. With the help of algebraic graph theory,
Barlat-like lemma, and Lyapunov theory, the perfect con-
sensus tracking as well as the formation control problem has
been resolved over [0, T]. At last, two examples testify the
effectiveness and efficiency of the algorithm devised in the
paper.
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