制造业自动化

测与监控

- 种基于BUBBLE小波的焊缝检测技术

A weld detection technology based on the BUBBLE wavelet

刘重阳¹,徐毅华¹,张 磊²

LIU Chong-yang¹, XU Yi-hua¹, ZHANG Lai²

(1. 兰州石化职业技术学院 电子电气工程系,兰州 730060;2. 兰州理工大学 电气工程与信息工程学院,兰州 730050) 摘 要:本文研究了采用小波算法的实时焊缝图像检测技术。先把二维图像信号转换为一维信号,然 后通过小波边沿检测原理与BUBBLE小波函数,运用马莱特算法对原始信号进行检测,减少 处理的复杂度与时间。同时对不同尺度下小波检测的结果对比分析,找到适合的小波分解尺 度。仿真结果验证了算法的有效性和正确性,使该技术具有一定的实用价值。

关键词: 小波检测;焊缝图像;BUBLLE函数

中图分类号:TH122 文献标识码:A Doi: 10.3969/j.issn.1009-0134.2012.8(下).13

0 引言

随着焊接技术的快速发展,它在生产建设中 日趋广泛的应用,到目前已经成为一种重要的加 工手段。焊缝自动跟踪是现代焊接技术的一个重 要方面。尽管近年来焊缝跟踪技术得到了很大的 发展,但由于焊接是一个非常复杂的过程,焊接 过程中的工件的加工误差、电磁干扰、热变形等 各种干扰因素的影响,是焊缝跟踪技术的研究成 果的实用化进程非常缓慢,到目前为止,现场焊 接生产中焊缝自动跟踪问题尚未得到满意的解决。 精确的焊缝跟踪是保证焊接质量的首要条件,而 准确地获取焊缝信息是精确的焊缝跟踪的前提。

目前提取焊缝信息的常用传感器有电弧式、 机械式、温度式和光电式等传感器^[1],其中由于 视觉传感器可以远离强光和强热区,采集的信息 量大,受到人们的青睐。但由于焊接过程中弧光、 飞溅和烟尘等因素,使视觉传感器 CCD 摄像机采 集到的焊缝图像信息有噪声干扰,如何去消除这 些噪声干扰从而得到有用清晰的焊缝信息是保证 精确的焊缝跟踪的关键。随着机器视觉、图像处 理技术的发展,以及小波分析技术的出现和完善, 为我们解决此类问题提出了一种新的方法。本文采 用具有对孤立噪声有很强抑制的 BUBBLE 小波^[2] 对采集的原始焊缝信息进行边沿检测分析,并把 文章编号:1009-0134(2012)08(下)-0041-05

二维的焊缝信息转换为一维的焊缝信号,以求得 到更好的处理结果。

1 小波边缘检测技术

小波变换是时间(空间)频率的局部分析,它 通过伸缩平移运算对信号(函数)逐步进行多尺度 细化,最终达到高频处时间细分,低频处频率细 分,能够自动适应时频信号分析的要求,从而可聚 集到信号的任意细节。

1.1 小波边沿检测原理

$$\Psi_{a,b}(t) = |a|^{-\frac{1}{2}} (\frac{x-b}{a}) \qquad \boxtimes R , a \boxtimes R - \{0\} (1)$$

叫分析小波,Ψ叫基本小波。Ψ⊠L¹⊠L²且 满足:

$$G_{\psi} = \int_{R} \frac{|\Psi(\omega)|^2}{|\Psi|} dw < \qquad (2)$$

则Ψ叫做允许小波,式(2)称为允许条件。

式中 : $\Psi(\omega)$ 为 $\Psi(x)$ 的傅立叶变换, x 可以是 时间也可以使空间变量。

在一般情况下,常选择具有紧子集或近似紧 子集的并且具有正则性的函数作为小波母函数。 紧子集意味着时域的局部性,而正则性意味着频

基金项目:甘肃省教育厅科研项目(1015B-03)

作者简介:刘重阳(1959-),男,山西人,高级实验室,研究方向为电力系统分析与控制。

第34卷 第8期 2012-8(下) 【41】

收稿日期:2011-10-14

域的局部性。

由可容性条件可知, $\Psi(0) = 0$, 所以小波母 函数的直流分量为零, 它呈现为正负交替的形状。 尺度 a 的小波函数为 $\Psi a = \frac{1}{a} \Psi(\frac{x}{a})$ 。根据马莱 塔的定义, 任意 f (x) $\boxtimes L^2(R)$, 以 $\Psi_a(x)$ 作为小波 时的小波为 f(x) 和 $\Psi_a(x)$ 的卷积。

WTf (x, a) = f (x) ×
$$\Psi_a(x) = \frac{1}{a} \int_{-\infty}^{+\infty} f(t)(\frac{x-\tau}{a}) dt$$
 (3)

卷积在物理上的表现为滤波器对信号 f (x) 的 滤波,滤波器的脉冲响应为 $\Psi_a(x)$ 。

设θ(x)为一具有低通平滑作用的滤波函数:

 $\int_{-\infty}^{+\infty} \Theta(\mathbf{x}) \, d\mathbf{x} = 1 , \qquad \lim_{|\mathbf{x}| \to \infty} \Theta(\mathbf{x}) = 0 \quad (4)$

假设 $\theta(x)$ 具有一阶,可用 $\xi(x)$ 表示,则:

$$\xi(x) = \frac{d\theta(x)}{dx}$$
 (5)

容易推知, $\xi(x)$ 满足可容性条件,所以 $\xi(x)$ 可作为小波母函数。用 $\xi_a(x)$ 和对 f(x) 坐小波变换,则有:

$$WTf_{\xi}(x, a) = \frac{1}{a} \xrightarrow{+\infty}{-\infty} f(t)\xi(\frac{x-\tau}{a}) dt = a\frac{d}{dx}[f(x) \times \theta_{a}(x)]$$
(6)

式中: $\theta_a = \frac{1}{a} \theta(\frac{x}{a}), \xi_a(x) = \frac{1}{a} \xi(\frac{x}{a}), a \in \mathcal{R}$ 反度因子。

由式 (6) 可知, WTf_ξ(x, a) 是 f(x) 与 $\theta_a(x)$ 的 卷积,也就是 f(x) 通过 $\theta_a(x)$ 滤波,再求其微分。 由于 $\theta_a(x)$ 是一个平滑滤波函数,所以 f (x) 经过 θ_a (x) 滤波后,f(x) 的噪声得到了抑制;而微分运算, 反映了 f (x) 的变化率很大,当 f (x) 中存在边沿时, 即突变点,它的变化率就很大,达到模极大值, 所以 WTf_ξ(x, a) 取极值点的地方就是 f (x) 的边沿 位置,这就是基于小波变换模极大值进行边沿检 测的基本原理^[3]。

1.2 BUBBLE小波函数

一维 BUBBLE 小波函数为:

$$\alpha(x) = \frac{1}{\sqrt{2\pi}\sigma^3} (1 - \frac{x^2}{\sigma^2}) \exp(-\frac{x^2}{2\sigma^2})$$
 (7)

其傅立叶变换为:

$$\widetilde{a}(w) = \frac{1}{\sigma} w^2 \exp\left(-\frac{w^2 \sigma^2}{2}\right) \qquad (8)$$

【42】 第34卷 第8期 2012-8(下)

由式(8)可知 $\tilde{\alpha}$ (0) = 0。因此,式(7)给出 的 BUBBLE 函数(图 1(a))不仅是基本小波,而 且是允许小波,存在着以巴布函数为小波基的小 波变换和逆变换,且 $\tilde{\alpha}$ (0) = 0 有高阶零点,因而 其正则性较好,对于 BUBBLE 小波还可以写出其 二进制小波变换:

$$a_{2j}(x) = \frac{1}{2j} a(\frac{1}{2j})$$
 (9)

$$W_{2j}f(x) = f(x) \times a_{tj} = \frac{1}{2j} \int_{R} f(x) a(\frac{x-t}{2j}) dt$$
 (10)

由于高斯函数是构成 R 空间 V 的基,为了应 用马莱特快速算法,我们引进高斯函数(图1(b)) 作平滑函数:

$$\beta(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{x^2}{2\sigma^2}), \quad \sigma > 0$$
 (11)

平滑函数的傅利叶变换为:

$$\widetilde{\mathbf{b}}(\mathbf{w}) = \frac{1}{\sigma} \exp\left(-\frac{\mathbf{w}^2 \sigma^2}{2}\right)$$
 (12)

制造业自动化

对于高斯函数有二进二次度方程	:

 $b_{1/2}(x) = \sum_{k} h(k) b(x-k)$ (13)

对上式两边作傅利叶变换:

$$\tilde{\mathbf{b}}(2\mathbf{w}) = \tilde{\mathbf{H}}(\mathbf{w})\tilde{\mathbf{b}}(\mathbf{w})$$
 (14)

由于高斯函数是基,对于 BUBBLE 函数也有:

$$\widetilde{a}(2w) = \widetilde{G}(w) \widetilde{a}(w)$$
 (15)

由式(8)、(14)和(15)可得:

H (w) = exp (
$$-\frac{3}{2}s^2w^2$$
) (16)

G (w) =
$$2s^2w^2 \exp(-\frac{3}{2}s^2w^2)$$
 (17)

则 H(w) 和 G(w) 的傅利叶反变化为:

h (x) =
$$\frac{1}{\sqrt{6\pi\sigma}} \exp(-\frac{x^2}{6\sigma^2})$$
 (18)

$$g(x) = \frac{4}{3} \frac{1}{\sqrt{6\pi\sigma}} (1 - \frac{x^2}{3\sigma^2}) \exp(-\frac{x^2}{6\sigma^2})$$
 (19)

则:

g'(x) =
$$\frac{3}{4} \frac{1}{\sqrt{6\pi\sigma}} (\frac{x^2}{9\sigma^2} - 1) \frac{x}{\sigma^2} \exp(-\frac{x^2}{6\sigma^2}) (20)$$

 $g_{\sigma}(x)$ 和 g` $_{\sigma}(x)$ 的形状如图 2 所示。

一维 BUBBLE 小波函数可以用来检测一维信 号突变点, BUBBLE 小波的尺度参数取不同值, 可以构照具有不同侧仰制性能的小波基。作者取 σ = 0.5,1,1.5,则通过式(19)、(20)可以分别得到 3 组一维离散滤波器系数,见表 1。

n		±4	± 3	±2	± 1	0
σ=0.5	рŋ	0.0000	0.0008	0.0226	0.1672	0.3257
	g'	-0.0003	-0.0167	-0.1849	-0.1051	0.6142
σ=1	gg	0.0160	0.0514	0.1183	0.1950	0.2303
	g'	-0.0925	-0.1370	-0.0526	0.1733	0.3071
σ=1.5	gg	0.0575	0.0966	0.1398	0.1746	0.1881
	g'	-0.0858	-0.0350	0.0620	0.1620	0.2047

表1 BUBBLE小波的一维离散滤波系数

2 焊缝信号的检测方法与仿真结果

2.1 检测方法

CCD 摄像机采集的图像信号会因为现场的弧 光的干扰、受焊的铁块生锈、烟尘等的影响,有

图3 某一帧内焊缝的图像

叠加的强的不规则噪声。图 3(a) 是我们抓拍到的 某一帧 255 灰度级的焊缝图像,图 3(b) 为不同位 置点横截面上的灰度随机曲线。

由于在具体的焊接过程中,焊炬伴随着焊接 机器人的焊接速度每走一步可近似为直线。所以 图 3 中所给出的 CCD 采集到某一帧的焊缝图像, 我们可以根据焊接速度以及矫正间隔时间,可以 等分为若干段小间隔图象信号。从图 3(b)中我们 可以看到,焊缝信号是一个随机过程,这些曲线

第34卷 第8期 2012-8(下) 【43】

制造业自动化

可看成为随机时间的多次取样或者实现。在此随 机事件中的参变量为位置变量。对应每一个位置 点,它的灰度值是一个随机变量,其取值空间为 [0,255],概率分布服从正态分布,因而可以用样 本的均值估计该随机变量的均值,即:

$$x(a) = 255 - \frac{1}{n} \sum_{b=1}^{n} f(a, b)$$
 (21)

其中:f(a, b)为(a, b)位置的图像灰度值;a为 垂直于焊缝方向的坐标;b为平行于焊缝方向的坐标;n为一帧内平行于焊缝方向的像素点数;x(a) 为响应的一维信号。这样我们根据上述分析把图 3(a)所显示的焊接中某一帧焊缝的原始图像分为近 似的四段,把一幅二维的图象转为四个一维信号, 通过转换为对一维信号的分析进行焊缝的边缘检 测。如图4所示为四个一维的焊缝信号形状。

2.2 仿真结果

图4显示焊缝经一维转换处理后表现为 "屋 脊"形,表现为由一个上升沿和另一个下降沿构成 ^[4]。上升沿经过小波变换后,表现为极大值;下 降沿经过小波变换后,表现为极小值;则焊缝位 置就是取极大值与极小值之间。由式(7),对一维 焊缝信号 x(n)的小波变换,可以用离散的 a(n) 与 x(n)进行数字卷积来代替。但是为了避免信号卷 积运算带来的信号边界的延拓问题,有必要对原 始信号数据进行延拓。延拓部分数据长度直接与 滤波器长度有关如滤波器长度为 N,则需要延拓 (N/2) 点数据。

具体的需延拓长度表达式为: 如 N 为偶数,则延拓长度 d=N/2; 如 N 为奇数,则延托长度为 d=(N-1)/2。 本文采取线形延拓^[5],因其方法产生的误差

【44】 第34卷 第8期 2012-8(下)

较小。信号延拓部分的数据通过对信号延拓端数 据线形拟合得到。原始信号 x(m) 经过延拓后成为:

..., x(-2), x(-1), |x(0), x(1), ..., x(M-1), |x(M), x(M+1), ...

x(-1)=2x(0)-x(1), x(M)=2x(M-1)-x(M-2)

x(-2)=2x(-1)-x(0), x(M+1)=2x(M)-x(M-1)

更一般得表达式,如果信号断点数据为 x(a), x(a+1), 对信号左端进行延拓,其值为:

x(a-1) = 2x(a) - x(a+1)

对信号右端进行延拓,其值为:

x(a+2) = 2x(a+1) - x(a)

设 x(m) 为有限信号,长度为 M,经线形原拓 后为信号 X(m)。X(m) 经过长度为 N 的滤波器滤 波后,输出:

$$Y(m) = \sum_{-\infty}^{+\infty} X(m)g_s(n) \qquad (22)$$

取 Y(m) 信号的主值 y(m), m ⊠ [0, M-1], 作 为 x(m) 滤波后的输出。

图 5 所示为连续几帧焊缝图像的仿真结果。

图 5.a 为小波变换前的焊缝一位平均 原始信号,从图中可以看到焊缝的 "屋脊"特性比较明显,其它位置的 噪声得到一定程度的抑制。事实上, 对采样值求平均也是一种低通滤波 算法。图 5(b)、(c)、(d)为图 5(a)信 号在不同尺度 σ下的小波变换结果。 从图 5 中可以看出,在 σ=1.5 时,得

到的小波变换效果最好;在 σ=0.5 时,噪声未有 得到抑制却有点加强;σ=1 时,虽然噪声得到抑 制,滤波效果已经较好,但有时会出现大的起伏, 对于真正的极值点的检测造成影响。表 2 分别给 出了检测的结果,位置点是用像素数(pixel)表示, 并且列出了与实际测量之间的误差大小。

3 结束语

采用基于 BUBBLE 小波变换检测技术能够有 效地抑制噪声的影响,提高了检测的准确度。并 且采用把二维的焊缝原始图像信号通过平均值的 转化为一维的信号,即起到了很好的滤波的效果, 也有降低了计算量以及程序的处理速度。同时通 过对不同尺度 σ 的分析,从仿真的结果中得出在

表2 不同尺度σ下检测点与误差

尺度σ		First		Second		Third		Fourth		Error	
0.5	min	max	157	167	156	158	155	164	155	163	1 2500
	mid		16	62 157		159.5		159		1.5566	
1.0	min	max	157	167	156	165	155	164	154	163	0.5244
	mid		16	52	160.5		159.5		158.5		0.5544
1.5	min	max	157	167	156	165	155	163	154	162	0 4394
	mid		16	162 16		0.5	159.5		158		0.4364

尺度 o=1.5 是效果最好的;并且使用线性延托法 有效地去除了卷积过程带来的信号伪边缘的影响。

参考文献:

- [1] 侯晓峰. 焊缝自动识别与跟踪. 哈尔滨工程大学硕士论 文[D]. 2004.
- [2] 朱宏擎,林良明,等.基于BUBBLE小波的结肠镜图像暗 区中心点估计的研究.中国生物医学工程学报[J]. 2002, 10(5): 437-442.
- [3] 屈稳太, 诸静. 基于Gauss小波的焊缝检测技术[J]. 焊接 学报, 2002, 8(23): 64-68.
- [4] 杨恒, 杨方海, 梁德群. 多尺度边缘检测中的有效尺度研 究[J]. 电子与信息学报, 2001, 23(1): 1-8.
- [5] 袁礼海, 宋建社. 小波变换中德信号边界延拓方法研究[J]. 计算机应用研究, 2006, 23(3): 25-27.

【上接第40页】

对组织的影响程度 V)

(2)风险事件造成的损失赋值可以参考事件发 生可能性的取值范围等级列表。

3)风险综合值运算

(1)风险综合值运算属于第五层评判;范式:

风险综合值 H=R(风险事件发生可能性L, 风险事件造成的损失F);

H = R (T (T1, T2, 6-T3, T4), 6-V2, 6-S), F (I, V (T (T1, T2, 6-T3, T4), V1)));

计算包含了第一层到第四层的评判要素。

(2)风险综合赋值也可以参考事件发生可能性 的取值范围等级列表。

4)风险值计算的方法

可以采用相乘法、模糊评判矩阵、神经元网 络等相应的评估计算方法建立 R(L,F) F(I,V) 等运算函数模型,计算获得各级风险值。

4 结束语

本文在现有信息安全风险计算模型的基础之

上进行了改进,提出了一种多层次结构和多维度 运算的信息安全风险评估量化和计算模型,该模 型细化了评判要素,调整了风险评判关系;采用 此模型,对部分OA信息系统和不同中小企业信息 系统安全风险评估的结果来看,较为合理的反映 了信息系统安全风险状况和安全措施的现实作用, 提高了评估的准确性,同时,也检验了此模型适 应不同应用重点的信息系统安全风险评估,能够 利用来合理的管理和控制安全风险。

参考文献:

- [1] 张恒双. 信息安全评估算法研究[J]. 计算机与现代化, 2011, (04).
- [2] 张鑫, 顾庆, 陈道蓄. 面向对比评估的软件系统安全度量研究[J]. 计算机科学, 2009, (09).
- [3] 张涛, 胡铭曾, 云晓春, 张永铮. 计算机网络安全性分析 建模研究[J]. 通信学报, 2005, (12).