筒体纵缝超声波检测的定位计算

何飞'刘涛'杨浩。张登克'王雄飞'何汇。

(1. 河南安特检测有限公司,郑州 475004;2. 江苏省镇江船厂,江苏镇江 212000;
 3. 兰州理工大学,兰州 730050;4. 青岛新达检测服务有限公司,山东青岛 266108;

5. 南京英派克检测有限责任公司,南京 210048;6. 中石化第四建设有限公司,天津 300270)

摘 要:从选择适用于简体纵缝超声检测的探头入射角,到凭着回波信号在屏幕显示的视在深度,从检测 坐标转换到定位数据,给出全部的计算、视读算图和电算 Excel 表。介绍检测人员现场操作的方法及实际经验。 关键词:简体纵缝;入射角选择;视在深度;定位计算;现场操作

中图分类号: TG115.28 文献标志码:A 文章编号:1671-4423(2018)05-8-11

DOI:10.13689/j.cnki.cn21-1230/th.2018.05.002

1 问题的提出

从 JB4730-1994《压力容器无损检测》开始执 行,同时废除 JB1152-1981《锅炉和钢制压力容器 对接焊缝超声波探伤》使用起,关于简体纵缝超声检 测声程(深度)修正的相关内容也随即在承压设备检 测范围被删除。但是简体纵缝超声检测的计算还存 在,很多人还是选择沿用着 JB1152-1981 附录 2 推 荐的声程修正方法,还要用心算做定位计算。国内 的一些设备已经有了曲面检测的计算功能设置,但 在试块上的校准和现场使用的效果,差强人意。

CB/T 3559-2011《船舶钢焊缝超声波检测工 艺和质量分级》附录 B 有筒体纵缝超声检测的声程 修正系数的内容,标准还给出了 β_{max} 的计算公式。按 照管径分为 $D_0 \ge 500$ mm 和 $D_0 < 500$ mm 的两类筒 体纵缝检测处理方式。 $D_0 \ge 500$ mm 的筒体纵缝检 测根据 β 和工件的r/R比来确定声程修正系数 μ ,再 对时基线进行修正。通过仪器显示的缺陷声程,再结 合三角函数计算缺陷的位置; $D_0 < 500$ mm 的筒体 纵缝检测,要求修磨探头斜锲与被检工件曲面吻合, 并且重新测定修磨后探头的入射点和折射角,时基 线和灵敏度的调节在曲面对比试块上进行,根据缺 陷在检测面的弧长,再结合三角函数计算缺陷的位 置。

NB/T 47013 - 2015《承压设备无损检测》也有 关于简体纵缝超声检测特别规定的内容。按照承压 设备类别分为锅炉、压力容器纵缝和压力管道纵缝, 标准按照管径分为 $D_0 \ge 500$ mm 和 $D_0 < 500$ mm 的 筒体纵缝检测。 $D_0 \ge 500$ mm的筒体纵缝检测要求 仅在 6.3.3.3 中有试块要求的表述;筒体纵缝检测 按照附录 J要求进行。

上述两个标准关于筒体纵缝超声检测的规定, 大同小异,定位计算都是根据缺陷在工件中的声程, 结合三角函数计算出缺陷的位置,这也是目前现场 手工A型超声检测(以下称超声检测)的手脑并用 最典型的状态。这种检测过程的繁琐计算,降低了 检测效率。

本文将依据标准给出的资料,结合筒体纵缝超声检 测现场的定位计算,展开讨论,逐步说明定位计算的过 程,介绍笔者在实践中积累的改善计算的方法和经验。

2 探头入射角的选择

应用于简体纵缝检测的探头, 声束主轴必须到 达内壁。而声束主轴到达内壁的最低条件是主轴线 与内壁相切, 见图 1。当探头钢中入射角(以下简称 入射角)大于入射角的上限 β_{max} 时, 声束达不到内 壁, 发生漏检。

图 1 简体规格与探头入射角最大值的容限

令:筒体外直径为 D_0 ,壁厚为T时, 则有:选用探头的入射角的上限最大值 β_{max} , $\beta_{max} = \sin^{-1}(r/R)$ (1) 式中 R— 筒体外半径, $R = D_0/2$; r— 内半径, $r = R - T_0$

可在图 $2^{[1]}$ 中以 $\beta' = 90°$ 的横线与探头钢中入 射角 β 线的交点,查知筒体规格与探头入射角最大 值的容限。

图 2 内壁入射角 β' 和探头钢中入射角 β 、 工件规格 T/D 的关系

在实际检测中,工件规格结合焊缝形状,还 限制着探头入射角的下限最小值 β_{min}。在平直 工件上关于探头不发生根部漏检的入射角条 件,是要求声束要到达探头对侧的根部热影响 区,见图 3。

图 3 平直工件焊缝对探头入射角最小值的限制

探头 K 值要满足:

 $K \geqslant \frac{a+b+c+L_0}{T}$

那么,对筒体纵缝的曲面超声检测,同样也有入 射角最小限制值 β_{min} 需要考虑。在这方面,目前还 未见任何资料有所涉及。

考虑到焊缝声束能全覆盖焊缝的条件,应是探 头声束主轴能入射到焊缝对侧根部的热影响区,见 图 4。

依图 4,可有探头入射角的最小值 β_{\min} 对应的中 心角 ϕ_{\min} 为:

图 4 简体规格、焊缝宽度与探头入射角最小值的容限

$$\boldsymbol{\phi}_{\min} = \boldsymbol{\phi}_1 + \boldsymbol{\phi}_2 \tag{2}$$

$$\phi_1 = (b+c) \times 360/2\pi r \tag{3}$$

式中 b— 焊缝在内壁的下半宽;

c── 根部热影响区宽度; *r*── 工件内半径。

$$\phi_2 = (a + L_0) \times 360/2\pi R \tag{4}$$

式中 a- 焊缝在外壁的上半宽;

L₀一探头前沿长度;

R一工件外半径。

在图4中有:

$$\tan\beta_{\min} = (r \times \sin\phi_{\min})/(R - r \times \cos\phi_{\min})$$
(5)
则探头最小入射角 β_{\min} 为:

 $\beta_{\min} = \tan^{-1}((r \times \sin \phi_{\min})/(R - r \times \cos \phi_{\min})) \quad (6)$

当选定的探头的入射角 β 小于 β_{min} 时,同样会造 成焊缝根部漏检。这样 β 的取值范围会很小。工艺设 计如果允许放宽条件到声束主轴线达到焊中线位 置,则以 ϕ_2 替换公式(6)中的 ϕ_{min} 计算 β_{min} 即可。

适用于简体纵缝检测的探头,其入射角 β 的限制条件为:

$$\beta_{\max} > \beta \quad \beta_{\min}$$
 (7)

只有当选定的探头入射角 β 满足公式(7)时,才 可以使用,否则应予更换。

3 一次波程内缺陷定位计算的基本表达

满足公式(7)的探头,在平直工件上扫查,由于 相对于探头入射点的检测坐标和相对于工件入射点 的定位坐标一致,见图 5。

图 5 探头的检测坐标和平直工件的定位坐标一致

所以,在屏幕上读出显示深度 H_p,即可得到定 位坐标的数据:缺陷埋藏深度 H 和探头缺陷距离 L 如下:

$$H = H_{p} \tag{8}$$

 $L = K \cdot H_p \tag{9}$

式中 K— 探头计算参数, $K = \tan\beta$ 。

满足式(7)的探头,在筒形工件上扫查,屏幕上 的显示深度 H, 在一次波程时,声束截面图见图 6。 图中声束在筒形工件的周向上入射,相对于探头入 射点的检测坐标和相对于工件入射点的定位坐标是 不一致的。

图 6 筒形工件一次声程上的定位坐标和检测坐标数 据的计算关系

图 6 中缺陷 F 相对于探头的检测坐标的反射 深度,是从屏幕上读出的显示深度 H_p。但屏幕上读 出的显示深度(以下称视在深度)H_p不是缺陷 F 在 筒形工件上的缺陷的埋藏深度 H。缺陷的埋藏深度 H 不能由检测坐标的式(8)给出,它是反射点 F 相 对于筒形工件弧形外表面的沿径距离(图 6)。而探 头缺陷距离也同样不能由检测坐标的式(9)给出,而 是反射点 F 在筒形工件外表面的投影点距声束在 工件入射点的弧线长度。在筒形工件周向上的超声 检测,探头的检测坐标和工件的定位坐标完全分离, 成为两个计算系统。

在检测中,屏幕上读出的视在深度 H_p,是检测 坐标给出的已知条件。依此数据,将反射点转换到筒 形工件上的定位坐标中,给出缺陷在工件截面上的 定位参数:埋藏深度 H 和探头缺陷弧面距离L,计 算如下:

令与一次声程上的读出的视在深度 H_p,所对应 的F点对工件圆心的中心角为 ∮,则 F点所对应筒体 外壁的探头缺陷弧面距离 L 为:

$$L = 2\pi R \cdot \phi/360 \tag{10}$$

$$\phi = \tan^{-1}((K \cdot H_p)/(R - H_p))$$
 (11)

式中 K— 探头参数, $K = \tan\beta$;

R-工件外半径;

 $H_{\rm p}$ — F 点的屏幕视在深度。

F 点到筒形工件外壁的距离,即埋藏深度 *H* 为:

$$H = R - r' \tag{12}$$

式中 r'-图 6 中 F 点到筒形工件上圆心的即时 半径。

$$r' = (R - H_{\rm p})/\cos\phi \tag{13}$$

亦可是
$$r' = (K \cdot H_p) / \sin \phi$$
 (14)

由于筒体纵缝超声检测在屏幕上显示(以下称 屏显)的视在深度 H_P和工件上的埋藏深度 H 不一 致,所以,在屏幕上任何一处出现的回波,都存在着 一个"读屏、修正计算、给出埋藏深度真值"的停点。 在一次波程的任意一点上,都有声程(深度)修正的 存在,视在深度越大修正量也越大。由于现场不能用 心算执行上述包括三角函数在内的运算,在没有电 算程序的条件下,检测前先把视在深度 H_P和埋藏 深度 H 之间的差异做成一个修正系数,以便对检测 的缺陷定位做一个统一的简单的修正计算。

对选定探头和被检工件匹配后,取在一次波的 最大声程上的误差修正为准,给出修正系数,以此控 制检测计算的一次波程的屏显视在深度 H_P和实际 埋藏深度 H 之间的计算误差。

4 一次波程标记点的基本计算

修正系数的确定是以声束入射在筒形工件的内 壁,即一次波程标记点为典型位置取图计算的。

作为一种了解筒体超声检测计算的基础,以内 壁反射点作为典型的位置,进行各参数之间关系的 表达的推导。

令 F 点位于内壁入射点时,与工件的壁厚 T 的 渐增组合为固定模式。该处给出的已知条件有工件 壁厚 T、外直径 D 与探头K 值。反射波位于屏幕上一 次标记点 H_1 ,但这时的一次标记点的视在深度 H_p = H_1 是未知量。在检测现场可以在工件上实测 H_1 ,由一次板厚 T 的最大回波位置,在仪器屏幕上 直读得到 H_1 。没有实测条件,就要按图 7 中的几 何关系计算。资料给出的修正系数是计算值,而非 实测值。

图 7 一次声程在内壁入射点上的定位

图 7 中,一次波在内壁入射点处,缺陷在工件上的埋藏深度 *H* 即为筒体壁厚。

即:
$$H = T$$
 (15)
使用的探头有参数 K ,定义

 $K = \tan\beta \tag{16}$

需要通过计算求知的则是对应一次板厚 T 的 屏显视在深度 $H_{p,o}$ 该处视在深度 $H_{p} = H_{1,0}$ 百定 义 H_{1} 为屏幕上第一标记点的示数。采用计算法 时,在图 7 中可以有下述数学关系:

$$r^{2} = (R - H_{1})^{2} + (K \cdot H_{1})^{2}$$
(17)

$$\mathbf{h}_{1}(17) \mathbf{h}_{2}(17) \mathbf{h}_{2}(17)$$

$$H_1 = \frac{R + \sqrt{R^2 - (R^2 - r^2)(K^2 + 1)}}{K^2 + 1}$$
(18)

将式(1)和式(2)代入式(18)时,一次波程的屏 显标记点视在深度 H_1 又可写为:

$$H_1 = \frac{D + \sqrt{D^2 - 4(T \cdot D - T^2)(K^2 + 1)}}{2(K^2 + 1)} \quad (19)$$

计算 *H*₁ 的工艺意义在于,当在屏幕上的 *H*₁ 标 记点位置见到回波时,就可以确定这是内壁的反射点 位置了。一次波程标记点的屏显视在深度 *H*₁ 至关重 要,是在选定探头后第一个要确定的基本值,这是因 为内壁的反射是在缺陷认定时必须充分注意的一个 位置,是在屏幕上分析认定缺陷必不可少的位置数 据。有 1mm 的位置识别错误,就有可能导致误判。

对于缺陷定位,还有一个筒体外壁的探头缺陷距 离的弧长 *L* 不可或缺。直接应用式(10)和式(11),可 以得到一次波对应的探头缺陷距离的弧长 *L*₁ 为:

$$L_{1} = 2 \pi R \cdot \phi/360$$
(20)

$$\phi = \tan^{-1}((K \cdot H_{1})/(R - H_{1}))$$
(21)

5 一次波程标记点的修正系数及相关算图

令一声程标记点位置的声程修正系数(深度修 正系数)为 μ,则 μ 的定义式为:

$$\mu = H_1/T$$

式中 H₁—F 点在一次波标记点的屏显视在深度; T—F 点在一次标记点的埋藏深度,即工 件壁厚。

相关的检测标准,都有关于声程(深度)修正系 数的技术性附录给予说明。

下面以国内最早出现修正系数 μ 的 JB1152-1981 附录 2 为例,进行说明。

JB1152-1981 附录 2 对修正系数 μ 的定义和 图线的制图依据做出了说明,见图 8。

图 8 一次波声程的声束截面图示 (JB1152-1981 附录 2 的插图)

图 8 中定义一次波的最大声程对应的声称修正 系数 μ 为:

 $\mu = AC/AG = AF/AB \tag{23}$

式(22)与式(23)等价。

依式(23)定义式转化给出的修正系数 μ 的计算 式是:

$$\mu = (1 - (r/R \cdot \cos\phi))/(1 - r/R)$$
(24)

式(24)中要依据给定的探头折射角 β 计算求出 的中心角 ϕ ,计算式见式(21)。图 9 中的图线是依上 式求出 μ ,进行逐点给值制图。

图 9 JB1152-1981 附录 2 的《不同 K 值探头修正系数 μ 随 r/R 变化的曲线》

(22)

在参考文献[1]中有曲面定位坐标数据和(平直面)检测坐标数据的定量比较,从而得出修正系数n和 $m_{o}n$ = 探头检测坐标的视在深度 H_{p} / 筒件定位坐标的埋藏深度H,n系数即同国内的 μ 系数,图 9和图 10 的表达等价。m系数稍后文中再叙。

图 10 曲面/平面跨距点处声程(或深度)的修正系数 n

6 修正系数 μ 的算图的用法

通常在现场没有实测内壁入射点的视在深度 H₁的条件。声程的修正需要在检测前做好准备。 在没有适用于现场的电算手段时,检测中的曲面定 位深度的数据修正,已经由标准的附录形式给出,不 需要每次都要实测或计算,只需要用相关的算图(如 JB1152-1981 的附录 2 的插图和 CB/T 3359-2011 附录 B 的插图)来查找修正系数即可。

图 9 的图线涉及到工件参数外半径 R 和内半径 r(r = R - T)、探头参数 K、声程(深度) 修正系数 μ , 共 4 个参数。知道其中任意三个数据,另一个即可查 知。例如,最经常的用法是:

① $\mu \leq 1.1$ 时可以把筒形曲面工件当做平面工 件计算定位。这是最经典的使用方法。对给定的工件 参数外半径 R 和内半径 r、探头参数 K,在图中查找 对应的 μ 值,当 $\mu \leq 1.1$ 时,就可以对该曲面工件的 定位计算当做平直工件计算。其原因是: $\mu \leq 1.1$,采 用平板计算时的定位计算的偏差,与仪器合格验收 标准的时基线允许误差 2%和累加仪器调整造成的 定位误差兼容。在 JB1152-1981 附录 2 里规定按 平面入射计算的界限见图 11。

② $\mu > 1.1$ 时对屏幕一次波标记点进行修正。 若 $\mu > 1.1$,则检测时壁厚 T一次波回波位置就不是 T,而明显大于 T,如果还要当做平板计算定位,其 误差很大。这时要在屏幕上对一次波的回波位置重 新进行标记。 本标准规定用声程校正系数 μ =1.1时对应的 $\frac{r}{R}$ 值作为曲面试块修正的界线,例如K=1, $\frac{r}{R}$ <86% 时;K=2, $\frac{r}{R}$ <96%时;K=2.5, $\frac{r}{R}$ <97.5%时需用曲 面试块进行修正。其他K值探头修正范围可按上 述方法自行推定。

```
图 11 JB1152-1981 附录 2 对应用修正系数 μ 的限制
```

因为在一次标记点 μ 的定义式为:

 $\mu = H_1 / T \tag{25}$

式中 H_1 — 一次波屏显一次标记点的视在深度; T— 一次波的工件壁厚。

修正后的标记点为:

 $H_1 = \mu \bullet T \tag{26}$

式(26)的工艺意义在于:依据在图 9 中查到 μ 值,从而计算出一次波壁厚 *T* 在屏幕上的视在深度 $H_p = H_1$,并在屏幕上作出 H_1 标记点。并顺次标记 全跨距的第二标记点 H_2 ,且有:

 $H_2 = 2H_1 \tag{27}$

③计算一次波全程任意处的缺陷埋藏深度 H: 在完成一次标记点的修正以后,在一次声程上任何 一处都可以依 μ 值凭着下式计算得出屏幕上回波显 示的视在深度 H_p,得到缺陷埋藏深度 H 近似值。

 $H = H_{p}/\mu$ (28) 式中 H_{p} — 一次波程上反射点的视在深度;

μ— 图 9 查得的深度修正系数。

鉴于现场检测总是从屏幕的视在深度 H_p 来计 算缺陷在工件上的埋藏深度 H,所以,如果没有算 图可以直读的话,建议使用的声程修正系数 μ[']改为 乘法心算。

$$\mu' = 1/\mu = T/H_1 \tag{29}$$

④具体工件的缺陷埋藏深度 H 的直读:图 9 的 转化应用。结合具体的工件规格和探头 K 值,把每 一个 r/R 对应的 T 值认为是缺陷埋藏深度 H 的值, 依据图中探头 K 线上同一点给出的 $(r/R,\mu)$ 坐标 值,转化图 9 中坐标轴的比值成具体数据 (H, H_P) 。 即:使用每个即时位置的 μ 值,做成针对具体工件各 个不同深度给值的检测定位的专用图表。例如针对 外径 500mm 的筒形工件,数据转化如下:

已知:工件规格为外径 500mm、壁厚 60mm。 先做横坐标数据转化: 因为: $t = R - r = R \cdot (1 - r/R)$ 、且 R = D/2 (30) 所以:

 $t = 250(1 - r/R) \tag{31}$

按上式计算,并逐行填写表 1 坐标横轴(t可用 Excel 表自动计算给出)。

使用 45°探头,取图中 K = 1 线的坐标点,确定 该点坐标的 r/R 值和 μ 值,填写在表格的同一行里, 可有坐标纵轴数据($\mu \times t$ 可用 Excel 表自动计算给 出),见表 1。

表 1 依据不同深度的声程修正系数 μ 换算出的定位深度 和水平曲面长度

坐标横轴		坐标纵轴		备注	
转换前	转换后	转换前	转换后		
工件规格	埋藏深度	修正系数	视在深度		
原数据 <i>r/R</i>	具体 数据 <i>t</i> (H) (mm)	在 <i>K</i> = 1 线上的对 应坐标点 的 μ 值	直读数据 $\mu \times t$ (mm)		
0.75	62.5	1.3	81.25		
0.76	60	1.28	76.8	本行纵横坐标 均为插入值	
0.77	57.5	1.25	71.88	本行纵横坐标 均为插入值	
0.79	52.5	1.2	63.0	本行横坐标为插入值	
0.8	50.0	1.18	59.0	本行纵坐标为插入值	
0.82	45.0	1.15	51.75	本行纵横坐标 均为插入值	
0.85	37.5	1.1	41.25		
0.9	25.0	1.05	25.25	本行纵坐标为插入值	
0.95	12.5	1.025	12.7	本行纵坐标为插入值	
1.0	0	0	0		

图 12 的本质是把 μ 值分解为两条轴的函数关 系,即把即时位置上的屏显视在深度和埋藏深度真 值用图中曲线的两个坐标值分置。

编辑"功能,作以下修改。

(1) 抹去 *K*2.0、*K*2.5 的曲线,只保留与实用探 头 K 值一致的一条曲线。

(2) 替换横轴坐标数据:横轴右端" r/R' 字样 改为" H"。并对每一个标示的 r/R 数据,以表1 中的 同一行第二列的计算值替换。不在现有数据竖线位 置的,以插值法找到相应位置,把数据标上。

(3)对横坐标轴上插值的数据位置,向上做 y 线 到 K1 曲线上。

(4)对横坐标轴上所有具有向上 y线到K1曲线 上数据位置,均从 K1曲线上的交点做横线到 Y 轴。

(5)替换纵轴坐标数据:纵轴上端"μ"字样替换 为"(H_p)"。并对每一个标示的μ数据的位置,以上 表中的同一行第四列的计算值(μT 即 H_p的数据) 替换"μ"数据。不在现有数据横线位置的,以插值 法找到相应位置,把数据标上。

不能电脑处理的,复印图 9,手工操作。

修正系数 μ 图线的应用如上。(3)、(4)两项采 用图 10 的图线更方便。

虽然修正系数 μ 是定义在一次标记点处做出的 数学描述,这只是为了叙述方便,在一次波程上的任 意一处修正系数 μ 都可以扩展为以该处缺陷的即时 的视在深度和埋藏深度的关系来定义。这在(4)中, 已经明确。这一点将在电算数据 E 表中看得更清 楚。

7 关于曲面上探头缺陷距离定位的计算

对于缺陷定位来说,仅有一个缺陷埋藏深度还 不够,还必须确定反射点在工件检测曲面上的投影 位置,也就是要有探头一缺陷距离,才能说是对缺陷 定位完毕。国内的标准和其他资料上只给出了声程 (深度)修正系数 µ,并没有关于筒形工件上外壁曲 面的探头一缺陷距离的修正计算系数的资料。

当 $\mu \leq 1.1$ 时,既然可以把筒形曲面工件当做 平面工件计算定位,那么,筒形工件曲面的探头缺陷 距离弧长L的计算也就对应的使用平直工件的计算 方法:

$$L = K \bullet H \tag{32}$$

式中 K— 探头 K 值, $K = tan\beta$;

H- 缺陷埋藏深度。

当 μ > 1.1 时,不能把筒形曲面工件当做平面 工件计算定位,只有一句"要使用曲面试块修正" 和'结合三角函数计算缺陷的位置',这是国内资料 的不足。也是现场使用感到困难的地方。在第3节一 次波程内缺陷定位的基本计算'中,已经列出探头 缺陷距离弧长L的计算式。这是一个对一次声程和 二次声程都适用的普适计算式。

在参考文献[1]中,比较了相同厚度的平面一个 跨距 *PR*['] 直线长和筒形工件上的曲面一个跨距 *PR* 弧线长的差异,见图 13,并且同时给出了相应的修 正系数 *m*,见图 14。

图 13 跨距点的变化

图 14 曲面/平面跨距点处探头缺陷一距离的修正系数 m

在该相应资料的译本中,对图中 *m* 修正系数的 工艺意义定义为:

m = 曲面跨距点处探头缺陷一距离/平面跨距 点处探头缺陷一距离 (33)

并且给出一次标记点处的计算公式:

$$Y_{\rm L} = t \cdot \tan\theta \cdot m \tag{34}$$

式中 Y_{L} 一半跨距弧长(即本文的 L_{1});

t-工件壁厚;

- θ 探头折射角(即本文的钢中入射角);
- m一探头缺陷距离修正系数。

对于修正系数图表的使用,该资料明确指出"从 这些图可以看出,对于折射角 θ,在 t/D 的极限值附 近,探头缺陷距离和声程显著变大,这一点必须注 意。"

探头缺陷距离弧长的修正系数 m,也可以在一

次波程上的任意一处扩展为该处探头缺陷距离的即 时修正系数 m 的关系。也可以参考第6节′修正系数 μ 的算图的用法 的第(4)条的做法,把图 14 做一张 实际应用的转化图,方便现场检测时使用。

8 实用的整合坐标算图的制作和应用

现场检测的定位计算,就是要把这个检测坐标 系中的反射点的位置,映射到工件的空间里,并且, 在以工件上的入射点为参考的定位坐标里,给出它 的位置参数,来描述它的存在。本文所有涉及的计 算,就是进行坐标转换的计算。反射点的这个坐标 转换,由于计算复杂,又涉及三角函数,不能以心算 完成,所以时常造成定位误差大到导致缺陷分析失 误的程度。如何把这个计算过程处理得能以心算进 行,又能保证精度,是现场检测人员致力解决的问 题。

下面介绍一个简单的现场实测作图方法来完成 这个坐标转换的计算。这个方法也是第6节"修正 系数 µ 的算图的用法"中(3)的扩展。关键之处就 是把探头的检测坐标系和工件空间的定位坐标系进 行整合,做成一个新的综合坐标系。将实测的特征 数据做成一个以直读代替检测计算的算图,提供方 便的算图直读。见图 15。

图 15 一次波程上的简易算图

(1)在方格计算纸上建立右旋系直角坐标 XOY 坐标系。在方格计算纸上1:1 作图,这是以后应用 算图可以直接视读数据的关键。图 15 只是示意坐 标和算图的建立说明,并不能直接应用。现场应用 的算图必须在方格计算纸上1:1 作图。

(2)把检测时工件定位坐标的曲线 X 轴,转化 成直线 X 轴坐标。这是按照检测时的直观思考图 像建立的探头一缺陷距离参数 L 轴。依形象思考 习惯,纵轴 Y 轴以向下为数据正方向设置,把入射 点的法线(筒体半径)重合于坐标的 OY 纵轴坐标 线,为定位坐标的缺陷埋藏深度 H 参数轴。同时,Y 轴也可抽象的看作是仪器的时基线的表达,在Y轴 上显示缺陷埋藏深度 H 的同时,给出检测坐标的屏 幕视在深度 H。数据的关联显示。

(3)在实测的工件上,找到周向的棱边(比如开 孔的边缘),打出它的一次棱边波,在屏幕上取得最 大波高时,屏幕上做第一标记点记号,也就是壁厚 *T* 的视在深度 *H*_p 的数值 *H*₁。并在工件上测量与这时 对应的探头 – 棱边距离 *L*₁(即是半跨距的弧长)。必 要时对二次波声程执行同样的测量,取得实测的 *H*₂ 和 *L*₂ 数据,这在二次波声程制图时要用到。

(4)把步骤(3)实测到的一次波程的曲面探头一 棱边距离 L_1 (即是半跨距的弧长),在(1)项建立的 综合坐标的 X 轴上的数据位置标示 C 点(L_1)。从 X 轴上的 L_1 点向下引 Y 轴平行线 $x = L_1$ (点虚线),作 为一次波的界点坐标 y 线。

(5)在一次波的界点坐标 $x = L_1$ 线上的相应的 T 数值位置,标示壁厚 T,令其为 B 点,并将此点与 坐标零点 O 连接。在线的端部 B 点外标示" 埋藏深 度 H。

(6)在一次波的界点坐标 $x = L_1$ 线上的相应的 H_1 数值位置,标示视在深度 H_1 ,令其为 A 点,并将此 点与坐标零点 O 连接。在线的端部 A 点外标示'视在 深度 H_p "。(需要时,在综合坐标的 Y 轴上的数据位置 标示 H_1 。从 Y 轴上的 H_1 点向右引 X 轴平行线 y = H_1 ,作为一次波的界点坐标的提示 x 线。)

(7) *OB*、*OA*、这两条线虽然看上去的数学意义 即为L = f(H)关系线和 $L = f(H_p)$ 关系线,在算 图的应用中却并不涉及这个关系。直接应用的是每 一条因屏幕读出的视在深度 H_p 而建立的 y线。

(8)在现场没有条件实测时,可以按本文"4、一次波程标记点的基本计算"的办法代替步骤(3)的实测。由于计算的误差和声束的强弱变化,数学计算 值和实测值会有差异。在现场要注意修正 *H*₁点。

算图的应用:在图 15 算图中,可以按比例用插值 法处理其中的各个深度的反射点定位。例如:在屏幕 上读出缺陷 F 点的视在深度 H_p 值后,在 OA 直线上 找到相应的 $y = H_p$ 值点,向上引 y线,该 y线与 OB 直 线的交点的 y 值即为与视在深度 H_p 对应的缺陷埋藏 深度 H_y 该 y线与 X 轴交点的 x 值即为与视在深度 H_p 对应的探头 — 缺陷距离的弧面长度 L_s

算图误差分析:因为修正系数 μ 是个与工件 r/R 值有关的变数(图 12)。以一次波标记点的 μ 值 用来做一次波全程修正定位,肯定有误差。在返修磨 除缺陷时,会后于算图的给值见到缺陷。精准的定位 不能以一个直线的恒定比例覆盖全声程,现场应用 时还要对算图的视读数据按接近零点的程度,而有 一个正增量的经验性修正,以使修磨深度准确。埋藏 深度 H 修正的趋势可以在表 1 中看出来, 也可以在 图 2 中看出来。由于这个整合坐标是建立在现场实 测值的基础上做出的定位计算的简易的处理,即使 有误差,也在可以接受的范围。所以常用来作为现场 救急的方法。比如下现场检查时,按照图 15 的制作 步骤 3 找到实测的工件上的周向的棱边,打出它的 一次波,取得最大波高时,测量与这时对应的探头-棱边距离 L_1 (即是半跨距的弧长)。记录作为一次埋 藏深度 H(即是壁厚 T) 的视在深度的数值 H_1 ,并 在屏幕上做标记点记号。"从而用心算利用图 15 对 各个位置按比例换算出定位计算,进行数据复查。

图 15 的优势在于数据来自现场实测,并且同时 测量到了屏幕视在深度 H_p、定位参数埋藏深度 H 和探头缺陷距离L,数据齐全,是准确值,所以可以 放心的对内表面位置的反射波进行可靠地分析,对 焊缝根部是否存在开口缺陷进行认定和排除。

图 12 是精准数据的修正应用图线,但是数据是 计算值,且没有关于探头缺陷弧面距离的表达,这是 图 12 比图 15 的不足之处。图 15 以实测为基础,但 应用一个修正系数处理全程会在一声程前半部位产 生误差,则是图 15 比图 12 的不足之处。

9 二次波程的定位计算和算图延伸

截止到目前资料上能见到的所有的计算,都是 在一次波程上计算。µ修正系数仅仅适用于在半跨 距点和全跨距点的描述。没有见到资料上给出的关 于简形工件上的二次波程上的定位计算和相应图 示,并不是不存在二次波程上的定位计算。现场检 测用到二声程的定位计算的时候颇多。

筒形工件二次波程与一次波程的关系,和平直 工件的二次波程与一次波程的关系相同,都是反转 对称的关系,见图 16。在图 16 中左侧的中心角 ↓ 对应的声程图像,表示的是图中最右侧的真实的二 次声程的图像向左旋转 2↓ 角度的一个虚像。或者 说,左侧的中心角 ↓ 对应的声程图像,也可以看成是 图中部的中心角 ↓ 对应的一次波声程图像的翻转以 后关于 Y 轴的镜像对称图像。做上述图形的转化, 是为了方便理解二次波程上的定位计算的依据。有 条件时,把图 16 画在方格坐标纸上,定位数据的计 算关系一目了然。

图 16 简形工件二次波程与一次波程的对称性

在屏幕上显示的深度 H_p 超过一次波最大深度 H_1 时,即:

 $H_{
m p}>H_{
m 1}$

反射点位于跨距的后半部分,涉及的定位计算, 只能先利用二次波虚像相对于一次波的镜像对称 性,以一个跨距的后端点置于入射点为参考点计算 埋藏深度 H,然后再按照二次波相对于一次波的旋 转对称性,推回到原位以探头入射点为零点的定位 坐标中定位计算探头缺陷距离 L,这是二次波定位 计算的要点。这一点和平直工件相同。

二次波程的计算如下:

以图 16 为例,在全跨距上有:

$$H_2 = 2H_1 \tag{36}$$

$$L_2 = 2L_1 \tag{37}$$

反射点 F 在仪器屏幕上位于一次标记点和二 次标记点之间的反射波,即是图中视在深度 H_p 位 于二次波声程上。

已知:

$$H_1 < H_p \leqslant H_2 \tag{38}$$

在仪器屏幕上,当以 H_2 标记点为参考时,令屏 幕视在深度 H_p 有反转视在深度 H_p' ,反转的图示 见图 16 的左侧,即:

 $H_{\rm p}{}' = (H_2 - H_{\rm p}) \tag{39}$

则缺陷埋藏深度 *H* 可在反转图像中按一次波的入射处理计算,即为:

$$H = H_{\rm p}{'}/\mu \tag{40}$$

则二次声程上的反转视在深度 H_{p} 所对应的中心角 ϕ' 为:

$$\phi' = \tan^{-}1 \left((K \cdot H_{\rm p}') / (R - H_{\rm p}') \right)$$
(41)

按同样的反转图形计算 F 点距虚像原点(左旋 2\$ 角的第二标记点)的探头缺陷距离的弧长。

令相对于筒形工件上的二次波全跨距点 L_2 点的探头参考点距离为 L',则:

$$L' = 2\pi R \cdot \phi'/360 \tag{42}$$

于是有反射点 F 在筒体外壁投影点距探头入 射点的探头缺陷弧面距离 *L* 为:

$$L = L_2 - L' \tag{43}$$

如果不愿意使用修正系数 μ 按(39)式计算埋藏 深度 H,可做如下计算:

反射点 F 的埋藏深度 H 为:

 $H = R - r' \tag{44}$

式中反射点 F 的即时半径 r' 为: $r' = (R - H_{p'})/\cos\phi'$ (45)

或是:

(35)

$$r' = (K \bullet H_{\rm p}')/\sin\phi' \tag{46}$$

显然,在检测现场,进行上述计算,如果没有电 算程序的话,人工计算的难度太大。

对图 15 一次波程的算图,按照上述计算关系转 化为几何图形,追加二次波程的算图,就成为全跨距 的算图,对二声程上的缺陷的定位计算,算图的应用 更显其优势。见图 17。作图步骤可由一次声程算 图作图方法演变,叙述略。

图 17 包括二次波程的全跨距算图

图中直读的探头缺陷距离的弧长 *L* 不是利用 反转图形计算探头缺陷距离的弧长,是直接延长给 出的。

在图 17 中可以看到,二次波程的缺陷 F 点的 视在深度 H_p 及与其相应的埋藏深度 H 和探头缺陷 距离 L,都在图上一目了然。有条件时,建议二声 程的算图制作仍然是以实测数据为依据,而不采用 计算数据。原因是声束入射在筒形工件的内壁反射 时的情况很复杂,声束发生的向前滑移难以计算,所 以一次声程和二次声程的对称性,并不完全符合数 学计算关系的对称,会发生二次声程略长于一次声程的情况。如果勉强认定一次声程和二次声程的等 长度对称,会发生一次标记点的后移,甚至会因此造 成对内壁反射回波的误判。

如果按照一般的数学的视图习惯,把先知的自 变量置于 X 轴,因变量函数置于 Y 轴。图 17 还可 以左旋转化为以下图 18 的形式。这时的 X 轴,将 和仪器的时基线有着思考习惯上的对应关系。

图 18 包括二次波程的左旋系坐标的全跨距算图

10 相关的电算程序

电脑装有 Excel 应用程序时,可以方便的利用 函数功能,逐格赋值工件外直径 D、壁厚 T、固定探 头入射角 A、即时输入屏幕深度读数 H,逐格用公式 分步依次编程写出中间过程量、变量调用、表格自动 计算、输出,按预定项给出计算结果。这样,在现场 立刻就可以看到完美给出最终的两个定位参数结 果。这需要能带着装有 Excel 工作表的简装设备下 现场。

用 Excel 表做编程计算,也可以不是临场即时

性计算,而是事先将所有的数据计算完毕,在现场的 应用就是查找和屏显 H_p等值的行,直接在该行查 看埋藏深度和探头缺陷距离弧长定位数据,见表 2。

表 2 数据表的制作原理,是以当量圆为基础,以 简体外半径 R 为当量圆数据单位,以当量圆的本征 量圆心角 A(即中心角 ϕ)为自变量,以工件入射点 法线置零,循环 A = 0TOA_{max}、步长 1°,对于设定的 探头入射角 β 的 K 线,计算其在扇角扫过时与 K 线 相交点的圆坐标(A,r),进而得出工件的定位坐标 (H,L)。数学模型见表 2 的当量计算式。应用 Excel 工作表的函数、编程、调用、计算功能,可有一次波程 上定位数据的 R 当量数据。对 R 赋值计算,就能得到 所有的真值数据。表 2 只是个引用 Excel 表的变量 说明,真正可以付诸于使用的大量的数据表格和子 表模板,保存在焊接焊检无损检测群的群文件,以满 足读者随时调用的需要。

由于工件的厚度不同,导致声束入射到内壁时 对应的中心角也不同,所以,二声程发生反射折回的 起始中心角不是一个定值。使用上述 Exclude 表 时,要输入具体的工件厚度 T、R 值,才可以自行从 G 列设置计算G = T/R - C,来判断声束入射对内 壁的接近程度:G > 0 为一次波声程;G = 0 为在内 壁;G < 0 为二次波声程。当G < 0 时,才进行 H 列 的计算:H = T/R + G 即在二声程上折回(图 17)计 算的埋藏深度。二声程的探头缺陷距离弧长在 D 列里因 ϕ 的增量继续自动给出,不需另行计算。

需要有 IF…. Then(或 GO)…. 条件转移设置, 就可以自动设置循环到 A_{max} ,对埋藏深度转 G 列和 H 列做另式计算。

入射角 β		探头 K 值(tanβ)		一声程中心角 $A_{\max}(=90-\beta)$		最大 $T/R(=1-\sin\beta)$	
А	В		С		D	Е	F
中心角	当量视在深度 $H_{\rm p}/R$		当量埋藏深度 H/R		当量探头缺陷弧长 <i>L/R</i>	深度修正系数 $\mu = H_{ m p}/H$	水平修正系数 $\lambda = L/H_{ m p}$
Α	B =	$S = 1/(1 + K / \tan A) C = 1 - C$		$K \times B/\sinA$	$D = A \times 2 \times \pi/360$	E = B/C	F = D/B
0							
1							
2							
$A_{ m max}$							
$2A_{\max}$							

表 2 在 R 及当量圆中筒体纵缝外壁入射的定位数据的电算表格

从表 2 里还清楚地看到,无论是埋藏深度,还是 探头缺陷距离的弧长,都是直接给出数据,不再需要 修正系数的参与。在具体工件上检测使用表格的时 候,就直接输入工件规格数据,把表格的 B、C、D 三 列数据转化成具体的直读数据,带表格下现场。这 就是应用电算程序的优势,给现场计算带来极大的 方便。

表 2 中的深度修正系数 μ 就是式(24) 的 μ ,表 2 中的水平修正系数 λ 没有采用式(34) 的水平修正系 数 m,而是模仿平板定位计算方法给出的一个等效 K 值,出于书面表达的一致性,表中写为水平修正系 数 λ 。等效 K 值由本文首次提出,并给出定义式:

如果想深入研究修正系数,或想做某些相关图 线表达,就在表格里直接取值。电算程序数据图线, 可以编程交由电脑的作图程序画出,在此不叙。

11 综述

曲面检测不同于平面检测,要在检测前充分做 好检测准备,才能在检测过程中较快的对屏幕显示 的回波进行判断,从而提高检测的效率和准确率。 筒形工件的定位数据和返修时修磨看到的缺陷数据 经常不一致,产生最终定位误差的原因除了上述计 算的原因,还有以下4点:

(1) 探头底面与检测面接触的稳定性:由于检 测面为曲面,不同于平面接触,探头在检测面入射点

(上接第7页)

参考文献:

- [1] Boulavinov A. Sampling phased array a new technique for signal processing and ultrasonic imaging [R]. 7th ECNDT, Berlin, 2006.
- [2]Jobst M, Connolly G. Demonstration of the Application of the Total Focusing Method to the Inspections of Steel Welds [R]. Moscow, 9th ECNDT, June 2010.
- [3]李衍. ASME 标准新版中有关相控阵超声成像检测的要 点评析 第一部分:两种方法要求[J]. 无损检测,2015,37 [7]:6-9.
- [4]ASTM E2491 Guide for Evaluating Performance Characteristics of Phased-Array Ultrasonic Testing Instruments and Systems [S].
- [5] Wolfram A. High Resolution Phased Array Imaging U-

的位置会随着接触不稳定,导致β的变化。要求操 作者必须手法娴熟,夹持探头感觉稳定,这样才能保 证入射点和工件的良好接触。

(2)采用计算法输入的屏幕深度读数 H_p,会由 于工件与试块的材质差异产生误差。

(3)在检测曲率较大的工件时,修磨探头底靴 导致探头入射点和折射角发生变化,导致屏幕定位 调整有误差时,产生系统视读数据误差。

(4) 检测人员在缺陷定位时的测量误差。

筒体纵缝的超声检测,在现场不但要用手,更要 用脑。在进入超声检测的起步阶段时,把现场不能 心算的用脑的工作在准备阶段尽量做完美,才能避 免现场检测时思路卡壳造成分析混乱。有了对定位 的判断正确,才能在现场重复的操作中尽快的对检 测步骤熟悉熟练,举一反三的得到适用于现场操作 的经验积累。再经过后续的在应用中的去粗取精, 尽快的整理形成自己的处理思路,最终形成一个自 己特有的简洁的稳定的定位计算系统。

手工 A 型超声检测的现场执行,一旦熟悉到一 定的境界,依靠的就不是仪器的性能了,而是个人的 技术熟练和心中有数的判断,以及对误差分析认知 修正的能力。这是检测 II 级人员提升自己操作水 平的必然状态。

参考文献:

[1]马羽宽,译.超声探伤.吉林:吉林科学技术出版社,1985.

sing the Total Focusing Method [R]. 19th WCNDT, Munich, 14-18 June 2016.

- [6]Michael Berke, Stefan Koralewski . Practical Application of Total Focusing for Sizing of Imperfections in Welded Joints [R]. 19th WCNDT, Munich, 14-18 June 2016.
- [7] Choon-su, Jin kyu, Wonjae Choi, et al. Ultrasound Phased Array Imaging on Curved Surface for Weld Inspection of Elbow Pipe as a Replacement for Radiographic Inspection [R]. 19th WCNDT, 14-18 June 2016.
- [8]Bird C R. Ultrasonic Phased Array Inspection Technology for Evaluation of Friction Stir Welds [J]. Insight, 2004, 46 (1).