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Abstract
Influenza usually breaks out seasonally in temperate regions, especially in winter,
infection rates and mortality rates of influenza increase significantly, which means
that dry air and cold temperatures accelerate the spread of influenza viruses. However,
the meteorological factors that lead to seasonal influenza outbreaks and how these
meteorological factors play a decisive role in influenza transmission remain unclear.
During the epidemic of infectious diseases, the neglect of unreported cases leads to
an underestimation of infection rates and basic reproduction number. In this paper,
we propose a new non-autonomous periodic differential equation model with mete-
orological factors including unreported cases. First, the basic reproduction number
is obtained and the global asymptotic stability of the disease-free periodic solution is
proved. Furthermore, the existence of periodic solutions and the uniformly persistence
of the model are demonstrated. Second, the best-fit parameter values in our model
are identified by the MCMC algorithm on the basis of the influenza data in Gansu
province, China. We also estimate that the basic reproduction number is 1.2288 (95%
CI:(1.2287, 1.2289)). Then, to determine the key parameters of the model, uncertainty
and sensitivity analysis are explored. Finally, our results show that influenza is more
likely to spread in low temperature, low humidity and low precipitation environments.
Temperature is a more important factor than relative humidity and precipitation dur-
ing the influenza epidemic. In addition, our results also show that there are far more
unreported cases than reported cases.

Keywords Influenza · Meteorological factor · Unreported cases · Mathematical
model · Parameter estimation

B Hai-Feng Huo
hfhuo@lut.edu.cn

1 Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou 730050, Gansu,
People’s Republic of China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11538-020-00747-6&domain=pdf
http://orcid.org/0000-0002-9563-1483


73 Page 2 of 36 S.-L. Jing et al.

1 Introduction

Influenza is an acute respiratory infection caused by an influenza virus. Influenza is a
highly contagious and rapidly spreading disease that spreads mainly through droplets
in the air, human to human contact, and contact between people and contaminated
objects. Typical clinical symptoms are systemic fever, generalized weakness, and res-
piratory infections. Influenza viruses causewidespreadmorbidity andmortality among
human populations worldwide: In China alone, there were 153 deaths and 765,186
infections in 2018 (National Health Commission of the People’s Republic of China
2019). In particular, due to the relatively backward medical and health conditions,
influenza is particularly serious in Gansu Province, China. In temperate regions like
China, the effects of influenza occur mainly in the winter (Lowen et al. 2007; Mourt-
zoukou and Falagas 2007); that is, influenza outbreaks are highly predictable seasonal
patterns. In the northern hemisphere, influenza viruses are prevalent from November
toMarch (Viboud et al. 2006). Influenza is highly contagious and spreads rapidly. This
feature is the root cause of the significant morbidity and economic burden of health
care.

Several factors are thought to be responsible for the seasonal outbreak of influenza,
including temperature, humidity, rainfall, pH, salinity, indoor crowding, and sunlight
(Eccles 2002;Kudo et al. 2019; Lowen andSteel 2014; Sooryanarain andElankumaran
2015; Tamerius et al. 2010). A study that analyzed data from more than 30 years in
the USA found that absolute humidity decline (depending on relative humidity and
temperature) is closely related to the number of influenza-related deaths (Shaman
et al. 2010). The seasonality of the flu depends to a large extent on temperature and
humidity. Cool and dry conditions can improve the survival rate and transmission rate
of influenza virus in temperate regions (Sooryanarain and Elankumaran 2015).

There are many studies on the effects of meteorological factors such as temperature
and humidity on influenza viruses (Foxman et al. 2015; Kudo et al. 2019; Loosli et al.
1943; Lowen and Steel 2014; Lowen et al. 2007; Mäkinen et al. 2009; Pyankov et al.
2018; Tamerius et al. 2013). As early as, Loosli et al. (1943) showed that influenza
viruses were more susceptible to inactivation in high humidity atmospheres. Lowen
et al. (2007) allowed hundreds of guinea pigs to contact the same human influenza
virus at different temperatures and humidity. The team found that at room temperature,
the spread of influenza peaked at relatively low humidity (20–35%). Influenza is less
likely to spread when the humidity is around 50%, and does not spread at all when the
humidity exceeds 80%. The study also found that temperature was a more important
factor than humidity. Under certain conditions of humidity, the guinea pigs would get
the flu at a temperature of 5 ◦C, and the flu viruswould not invadewhen the temperature
is high. Shaman et al. (2010) showed that the absolute humidity alone was sufficient to
produce the seasonality of influenza. This finding provides epidemiological support for
the hypothesis that absolute humidity drives seasonal changes in influenza in temperate
regions. Mäkinen et al. (2009) showed that low temperature and low humidity were
associated with increased respiratory infections. Lowen and Steel (2014) showed that
the spread of influenza viruswas strongly regulated by temperature and humidity. They
revealed a strong correlation between flu incidence in temperate regions and local
humidity and temperature conditions. Kudo et al. (2019) found that exposure of mice
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to low humidity and low temperatures made them more susceptible to influenza. They
showed that dry air combined with cold temperature could achieve viral transmission.

There are relatively fewstudies on the transmissionmodel of the correlationbetween
influenza and weather factors such as temperature and humidity (Handel et al. 2013;
Xing et al. 2017). Handel et al. (2013) showed that the temperature decay rate of
influenza virus in the environment was described as δ(T ) = αeγ T , where T was
the temperature, α and γ were constants. Xing et al. (2017) used the temperature
dependent decay function of the influenza virus studied by Handel et al. (2013) to
evaluate the cause of recurrence of H7N9 avian influenza in China. Other studying
the effects of temperature, humidity, or other factors on infectious diseases or other
social epidemics; please see Bao and Li (2020), Bao et al. (2020), Guo et al. (2019),
Huo et al. (2018, 2019a, b), Ma (2019), Meng and Wu (2018), Tang et al. (2018),
Wang et al. (2016a), Xiang et al. (2019), Zhao et al. (2019), Zhang et al. (2019) and
references cited therein.

The reported cases usually are only a small fraction of the total number of cases
during the outbreak of infectious diseases. Unreported cases are the majority of the
total number of cases. Recently, many scholars have studied unreported cases during
the outbreak of epidemics (Ducrot et al. 2019; Gamado et al. 2014, 2017; Grubaugh
et al. 2019; Magal and Webb 2018). The neglect of unreported cases often leads to an
underestimation of infection rates and basic reproduction number in epidemic model
(Gamado et al. 2017), whichwill have a serious impact on the control spread of disease.
Gamado et al. (2014) showed that epidemiological and socioeconomic factors were
the main causes of underreporting. Magal and Webb (2018) analyzed the relationship
between unreported cases and reported cases. They showed that the proportion of
unreported cases to reported cases was very high, which was of great significance in
implementing measures to control the epidemic. Grubaugh et al. (2019) discovered an
unreported outbreak of Zika virus in Cuba through the detection of tourism data and
genomics.

Motivated by the above (Handel et al. 2013; Sooryanarain and Elankumaran 2015;
Wang et al. 2016b; Xing et al. 2017), we propose a new non-autonomous differential
equationmodelwithmeteorological factors in this paper. Since the poor publicmedical
conditions in Gansu Province, the reported cases are only a part, and most of the
influenza patients are not treated or treated with family therapy, we also introduce
unreported compartment in the model. We derive the basic reproduction number and
study stability of disease-free periodic solution. We also demonstrate the existence
of positive periodic solutions and the uniformly persistence of the model. Further,
we identify the best-fit parameter values in our model by the MCMC algorithm on
the basis of the influenza data in Gansu province, China. We also estimate that the
basic reproduction number is 1.2288 (95% CI:(1.2287, 1.2289)). Then, we explore
uncertainty and sensitivity analysis to determine the key parameters of the model.

The organization of this paper is as follows: In Sect. 2, we propose a new non-
autonomous differential equation influenza model with meteorological factors, and
we get the invariant set of the model and the basic reproduction number R0. The
global asymptotic stability of the disease-free periodic solution of the model is also
demonstrated. The uniformly persistence of model and the existence of a positive
T -periodic solution have also been proved. In Sect. 3, we use the MCMC algorithm
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Fig. 1 Flowchart of the influenza model (1) (Color figure online)

to estimate the unknown parameters and initial values of the model. The basic repro-
duction number R0 of the model and its confidence interval are solved by numerical
methods. In Sect. 4, The effects of several meteorological factors on the number of
influenza cases are studied. At the same time, we use the LHS (Latin hypercube sam-
pling) method and the PRCC (partial rank correlation coefficient) method to obtain
the uncertainty and sensitivity of the unknown parameters of the model. In Sect. 5, we
give some discussions and conclusions.

2 Model Derivation

2.1 SystemDescription

The total population is divided into five compartments: S(t), E(t), IN (t), IC (t)
and R(t). S(t) represents the number of susceptible individuals; E(t) denotes the
number of exposed individuals; IN (t) represents the unreported cases by the CDC
in Gansu Province, including asymptomatic infected individuals and some symp-
tomatic infected individuals; IC (t) represents the reported cases by the CDC in Gansu
Province; R(t) represents the number of refectious individuals. Let V (t) be the density
of influenza virus in a polluted environment, including droplets in the air, contaminated
items, etc. The total number of population at time t is given by

N (t) = S(t) + E(t) + IN (t) + IC (t) + R(t).

The population flow among those compartments is shown in the following diagram
(see Fig. 1).

Human infection can be divided into two categories: One is the transmission rate
of direct contact between susceptible individuals and infected individuals, which is
expressed in β(t); the other is the transmission rate of indirect contact between sus-
ceptible individuals and influenza viruses in the environment, which is expressed in
ρ(t). As we mentioned in Introduction, the viability of influenza viruses is affected by
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Table 1 The parameters description of model (1)

Parameters Description (units)

Λ The recruitment rate of the susceptible individuals (month−1)

d The natural mortality rate of the population (month−1)

θ The modification factor in transmission coefficient of the reported infected individuals (none)

δ The proportion of infected individuals notified by CDC in Gansu Province (none)

1/σ The mean incubation period of the infected individuals (month)

q The progression rate of the recovered individuals (month−1)

γ1 The recovery rate of reported infected individuals (month−1)

γ2 The recovery rate of unreported infected individuals (month−1)

α The virus shedding rate from infected individuals (month−1)

κ The treatment rate of unreported infected individuals (month−1)

μ(t) The clearance rate of influenza virus (month−1)

β(t) The direct transmission rate between susceptible individuals and infected individuals (none)

ρ(t) The indirect transmission rate between susceptible individuals and infected individuals (none)

meteorological factors. Therefore, the clearance rate of influenza virus is a function
of time, which is expressed by μ(t). All the parameters and periodic functions with
period of T are assumed to be positive and detailed definitions are given in Table 1.

We establish a non-autonomous differential equation as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
= Λ + qR − β(t)S(θ IC + IN ) − ρ(t)SV − dS,

dE

dt
= β(t)S(θ IC + IN ) + ρ(t)SV − σ E − dE,

dIN
dt

= (1 − δ)σ E − γ2 IN − d IN − κ IN ,

dIC
dt

= δσ E − γ1 IC − d IC + κ IN ,

dR

dt
= γ1 IC + γ2 IN − qR − dR,

dV

dt
= α(IC + IN ) − μ(t)V .

(1)

2.2 Positively Invariant Set

Lemma 2.2.1 Define

Ω =
{
(S, E, IN , IC , R, V ) ∈ R

6+ : 0 ≤ S, E, IN , IC , R, N = S + E + IN + IC + R

≤ Λ

d
, 0 ≤ V ≤ 2αΛ

dU

}
.
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The trajectories of the model (1) are bounded, and the set Ω is a positive invariant
set. In particular, (S(t), E(t), IN (t), IC (t), R(t), V (t)) is positive for all t > 0 if the
initial values S(0) > 0, E(0) > 0, IN (0) > 0, IC (0) > 0, R(0) > 0 and V (0) > 0 at
t = 0.

Proof First, we prove the nonnegativity of the solution ofmodel (1). By the continuous
dependence of solutions with respect to initial values, we only need to prove that when
the initial values S(0) > 0, E(0) > 0, IN (0) > 0, IC (0) > 0, R(0) > 0 and V (0) > 0,
(S(t), E(t), IN (t), IC (t), R(t), V (t)) is positive for all t > 0. Let

W (t) = min
{
S(t), E(t), IN (t), IC (t), R(t), V (t)

}
, for all t > 0.

It is clear that W (0) > 0. Assuming that there exists a t1 > 0 such that W (t1) = 0
and W (t) > 0, for all t ∈ [0, t1).

If W (t1) = S(t1), then IN (t) ≥ 0, IN (t) ≥ 0, R(t) ≥ 0 and V (t) ≥ 0 for all
t ∈ [0, t1]. From the first equation of model (1), we can obtain

dS

dt
≥ −β(t)S(θ IC + IN ) − ρ(t)SV − dS, for all t ∈ [0, t1].

Thus, we have

0 = S(t1) ≥ S(0)e− ∫ t1
0 [β(ζ )(θ IC+IN )+ρ(ζ )V+d]dζ > 0,

which leads to a contradiction. Thus, S(t) > 0 for all t ≥ 0.
Similarly, we can also prove that E(t) > 0, IN (t) > 0, IN (t) > 0, R(t) > 0 and

V (t) > 0 for all t ≥ 0.
Second, we prove that the solution of model (1) is uniformly and ultimately

bounded. Frommodel (1), we know that the total population N (t) satisfies the follow-
ing equation:

dN

dt
= dS

dt
+ dE

dt
+ dIN

dt
+ dIC

dt
+ dR

dt
= Λ − dN .

This implies

N (t) = Λ

d
+ (

N (0) − Λ

d

)
e−dt ,

where N (0) represents the total population at time t = 0.
Then it follows that limt→∞ sup N (t) ≤ Λ

d .
Through the last equation of model (1), we obtain

dV

dt
= α(IC + IN ) − μ(t)V ≤ 2Λα

d
− μ(t)V .
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Since μ(t) is a continuous, positive periodic function, it is easy to get μ(t) to be
bounded. Let us assume that U = min{μ(t)}, for ∀t ≥ 0. Therefore, we get the
following inequality:

dV

dt
= 2Λα

d
− μ(t)V ≤ 2Λα

d
−UV

This implies

V (t) ≤ 2Λα

dU
+

(

V (0) − 2Λα

dU

)

e−Ut ,

where V (0) indicates the number of viruses at time t = 0.
Then it follows that limt→∞ sup V (t) ≤ 2Λα

dU . Therefore, we obtain the positive
invariant set of model (1) as

Ω =
{
(S, E, IN , IC , R, V ) ∈ R

6+ : 0 ≤ S, E, IN , IC , R, N = S + E + IN + IC + R

≤ Λ

d
, 0 ≤ V ≤ 2αΛ

dU

}
. (2)

	


2.3 The Basic Reproduction Number for the Periodic System

Taking into account the cyclical changes in the influenza, we can examine the basic
reproduction number of the periodic model (1). It is easy to see that model (1) always
has a disease-free periodic solution P0 = (Λ

d , 0, 0, 0, 0, 0). Thenwe can use the theory
proposed by Wang and Zhao (2008) to define basic reproduction number of model
(1). Let x = (E, IN , IC , R, V , S)T , model (1) can be written as

dx(t)

dt
= F(t, x) − V(t, x),

where

F(t, x) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

β(t)S(IN + θ IC ) + ρ(t)SV
0
0
0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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and

V(t, x) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

(σ + d)E
−(1 − δ)σ E + (γ2 + d + κ)IN

−δσ E + (γ1 + d)IC − κ IN
−γ2 IN − γ1 IC + (q + d)R

−α(IN + IC ) + μ(t)V
−Λ − qR + β(t)S(IN + θ IC ) + ρ(t)SV + dS

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

It is very clear that the conditions (A1)–(A5) of the theory proposed by Wang and
Zhao (2008) are satisfied. Let f (t, x(t)) = F(t, x) − V(t, x), and we define

M(t) :=
(∂ f6(t, x0(t))

∂x6

)
, (3)

where x0(t) = (0, 0, 0, 0, 0, Λ
d ) is the disease-free periodic solution.

Let ΦM (t) be the monodromy matrix of the linear T -periodic system dz
dt = M(t)z.

Therefore, we obtain ΦM (t) = e−dt , which implies the spectral radius ρ(ΦM (T )) of
ΦM (T ) is less than unity. It is very clear that the condition (A6) of the theory proposed
by Wang and Zhao (2008) is also satisfied.

In order to verify that condition (A7) is established, we define F(t) =(
∂Fi (t,x0(t))

∂x j

)

1≤i, j≤5
and V (t) =

(
∂Vi (t,x0(t))

∂x j

)

1≤i, j≤5
, where Fi (t, x) and Vi (t, x)

are the i-th component of F(t, x) and V(t, x), respectively. Then, we obtain

F(t) =

⎡

⎢
⎢
⎢
⎢
⎣

0 β(t)Λ
d

β(t)Λθ
d 0 ρ(t)Λ

d
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

, (4)

and

V (t) =

⎡

⎢
⎢
⎢
⎢
⎣

σ + d 0 0 0 0
−(1 − δ)σ γ2 + d + κ 0 0 0

−δσ −κ γ1 + d 0 0
0 −γ2 −γ1 q + d 0
0 −α −α 0 μ(t)

⎤

⎥
⎥
⎥
⎥
⎦

. (5)

It is very clear that F(t) is nonnegative and −V (t) is cooperative in the sense that the
off-diagonal elements of −V (t) are nonnegative.

Let Y (t, s), t ≥ s, be the evolution operator of the linear T -periodic system

dy

dt
= −V (t)y. (6)
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That is, for each s ∈ R, the 5 × 5 matrix Y (t, s) satisfies

dY (t, s)

dt
= −V (t)Y (t, s), ∀t ≥ s, Y (s, s) = I , (7)

where I is the 5 × 5 identity matrix.

Let Φ−V (t) be the monodromy matrix of the linear T -periodic system dy
dt =

−V (t)y, and it is clear that

ρ(Φ−V (T )) = max
{
e−(σ+d)T , e−(γ2+d+κ)T , e−(γ1+d)T , e−(q+d)T , e−μ(T )T }

< 1.

Therefore, the condition (A7) of the theory proposed byWang and Zhao (2008) is also
satisfied.

According to the method in Wang and Zhao (2008), we assume that φ(s) is the
initial distribution of infectious individuals, and φ(s) is T -periodic in s. Therefore,
F(s)φ(s) is the distribution of new individuals generated by infected individuals at
time s. Y (t, s)F(s)φ(s) gives the distribution of infected individuals who are newly
infected by φ(s) and remain in the infected compartment at time s, when t ≥ s. Then
we define

ψ(t) :=
∫ t

−∞
Y (t, s)F(s)φ(s)ds =

∫ ∞

0
Y (t, t − a)F(t − a)φ(t − a)da, (8)

where ψ(t) represents the distribution of accumulated newly infected individuals
produced by all infected individuals φ(s) introduced at previous time to t .

Let CT be the ordered Banach space of all T -periodic functions from R to R5 with
the maximum norm ‖ · ‖ and the positive coneC+

T := {φ ∈ CT : φ(t) ≥ 0, ∀t ∈ R}.
According to the method in Wang and Zhao (2008), we can define a linear operator
L : CT → CT as follows

(Lφ)(t) =
∫ ∞

0
Y (t, t − a)F(t − a)φ(t − a)da, ∀t ∈ R, φ ∈ CT . (9)

L is called the next-generation infection operator and the spectral radius of L is defined
as the basic reproduction number R0. Therefore, the basic reproduction number R0 of
model (1) can be expressed as follows

R0 := ρ(L). (10)

Lemma 2.3.1 [see Theorem 2.2 in Wang and Zhao (2008)]. The following statements
are valid:

(1) R0 = 1 if and only if ρ(ΦF−V (T )) = 1.
(2) R0 > 1 if and only if ρ(ΦF−V (T )) > 1.
(3) R0 < 1 if and only if ρ(ΦF−V (T )) < 1.

Therefore, the disease-free periodic solution ρ0 of model (1) is locally asymptotically
stable if R0 < 1 and unstable if R0 > 1.
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In order to calculate the basic reproduction number R0 of model (1), according to
Theorem 2.1 in Wang and Zhao (2008), we introduce the linear T -periodic system as
follows

dω

dt
=

[
− V (t) + F(t)

λ

]
ω, t ∈ R, (11)

where parameter λ ∈ (0,∞). Then, let the evolution operator of system (11) on R
5

be W (t, s, λ), t ≥ s, s ∈ R. It is clear that ΦF−V (t) = W (t, 0, 1), t ≥ 0 can be
obtained. Hence, we derive

ΦF/λ−V (t) = W (t, 0, λ), t ≥ 0,

where

−V (t) + F(t)

λ
=

⎡

⎢
⎢
⎢
⎢
⎣

−(σ + d)
β(t)Λ

λd
β(t)Λθ

λd 0 ρ(t)Λ
λd

(1 − δ)σ −(γ2 + d + κ) 0 0 0
δσ κ −(γ1 + d) 0 0
0 γ2 γ1 −(q + d) 0
0 α α 0 −μ(t)

⎤

⎥
⎥
⎥
⎥
⎦

.

Lemma 2.3.2 [see Theorem 2.1 in Wang and Zhao (2008)]. The following statements
are valid:

(1) If ρ(W (T , 0, λ)) = 1 has a positive solution λ0, then λ0 is an eigenvalue of L,
and hence R0 > 0.

(2) If R0 > 0, then λ = R0 is the unique solution of ρ(W (T , 0, λ)) = 1.
(3) R0 = 0 if and only if ρ(W (T , 0, λ)) < 1 for all λ > 0.

Therefore, we can use the numerical algorithm to calculate the basic reproduction
number according to (2) in Lemma 2.3.2.

2.4 Extinction of the Disease

Let (Rn,Rn+) be the standard n-dimensional Euclidean space. For u, v ∈ R
n , if u−v ∈

R
n+, then u ≥ v; if u − v ∈ R

n+\{0}, then u > v; if u − v ∈ I nt(Rn+), then u � v.
Let A(t) be a continuous, cooperative and irreducible n × n matrix function of the

T -period, and ΦA(t) is the fundamental solution matrix of the following system

dx(t)

dt
= A(t)x(t).

Let ρ(ΦA(T )) be the spectral radius of ΦA(T ). Thus each element of matrix ΦA(T )

is positive at T > 0 (Aronsson and Kellogg 1978; Hirsch 1985). Through Perron-
Frobenius theorem (Smith and Waltman 1995), ρ(ΦA(T )) is the principal eigenvalue
of ΦA(T ) in the sense that it is simple and admits an eigenvector v∗ � 0. Therefore,
we have a conclusion as follows
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Lemma 2.4.1 [see Zhang andZhao (2007)]. Let p = 1
T ln ρ(ΦA(T )). Then there exists

a positive, T -periodic function v(t) such that eptv(t) is a solution of dx(t)dt = A(t)x(t).

Theorem 2.4.1 Disease-free periodic solution P0 = (Λ
d , 0, 0, 0, 0, 0) of the model (1)

is globally asymptotically stable if R0 < 1 in Ω .

Proof By Lemma 2.3.1, we obtain that the disease-free periodic solution P0 =
(Λ
d , 0, 0, 0, 0, 0) is locally asymptotically stable for R0 < 1, and the disease-free

periodic solution P0 = (Λ
d , 0, 0, 0, 0, 0) is unstable for R0 > 1. Therefore, we only

need to prove that the disease-free periodic solution P0 = (Λ
d , 0, 0, 0, 0, 0) is globally

attractive for R0 < 1.
From model (1) and lemma (2.2.1), we have

d(S(t) + E(t) + IN (t) + IC (t) + R(t))

dt
= Λ − d(S(t) + E(t) + IN (t) + IC (t) + R(t)),

which implies that

lim
t→∞ sup(S(t) + E(t) + IN (t) + IC (t) + R(t)) ≤ Λ

d
.

Because E(t) ≥ 0, IN (t) ≥ 0, IC (t) ≥ 0 and R(t) ≥ 0 for all t ≥ 0, it follows that

lim
t→∞ sup S(t) ≤ Λ

d
.

Thus, for ∀η > 0, there exists t̄ > 0 such that S(t) ≤ Λ
d + η for t > t̄ . We consider

the following comparison system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dÊ

dt
= β(t)(

Λ

d
+ η)(θ ÎC + ˆIN ) + ρ(t)(

Λ

d
+ η)V̂ − σ Ê − d Ê,

d ˆIN
dt

= (1 − δ)σ Ê − γ2 ˆIN − d ˆIN − κ ˆIN ,

d ÎC
dt

= δσ Ê − γ1 ÎC − d ÎC + κ ˆIN ,

dR̂

dt
= γ1 ÎC + γ2 ˆIN − q R̂ − d R̂,

dV̂

dt
= α( ÎC + ˆIN ) − μ(t)V̂ .

(12)

Let x = (Ê, ˆIN , ÎC , R̂, V̂ )T, system (12) is equivalent to the following equation

x
′ = (

F(t) − V (t) + ηm(t)
)
x,
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where

m(t) =

⎡

⎢
⎢
⎢
⎢
⎣

0 β(t) β(t)θ 0 ρ(t)
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

.

According to Lemma 2.4.1, we know that there is a positive T -periodic function v(t)
such that eptv(t) is a solution of system (12), where v(t) = (v1(t), v2(t), v3(t), v4(t),
v5(t)) and p = 1

T ln ρ(ΦF−V+ηm(T )). Next, we choose t̃ > t̄ and all small τ > 0 to
make the inequality as follows

Ê(t̃) ≤ τv1(0), ˆIN (t̃) ≤ τv2(0), ÎC (t̃) ≤ τv3(0), R̂(t̃) ≤ τv4(0), V̂ (t̃) ≤ τv5(0),

then, we get

Ê(t) ≤ τep(t−t̃)v1(t − t̃), ˆIN (t) ≤ τep(t−t̃)v2(t − t̃), ÎC (t) ≤ τep(t−t̃)v3(t − t̃),

R̂(t) ≤ τep(t−t̃)v4(t − t̃), V̂ (t) ≤ τep(t−t̃)v5(t − t̃), t ≥ t̃ .

According to the standard comparison principle, we obtain the inequality as follows

E(t) ≤ Ê(t) ≤ τep(t−t̃)v1(t − t̃), IN (t) ≤ ˆIN (t) ≤ τep(t−t̃)v2(t − t̃),

IC (t) ≤ ÎC (t) ≤ τep(t−t̃)v3(t − t̃), R(t) ≤ R̂(t) ≤ τep(t−t̃)v4(t − t̃),

V (t) ≤ V̂ (t) ≤ τep(t−t̃)v5(t − t̃), t ≥ t̃ .

From Lemma 2.3.1, we know that if R0 < 1 if and only if ρ(ΦF−V (T )) < 1. Since
ρ(ΦF−V+ηm(T )) is continuous for all small η, we can choose all small η > 0 such that
ρ(ΦF−V+ηm(T )) < 1. Therefore, we obtain p < 0. This means that the following
limits are true.

lim
t→∞E(t) = 0, lim

t→∞IN (t) = 0, lim
t→∞IC (t) = 0, lim

t→∞R(t) = 0, lim
t→∞V (t) = 0.

For the first equation of model (1), it is easy to prove that limt→∞S(t) = Λ
d holds.

Therefore, the disease-free periodic solution P0 = (Λ
d , 0, 0, 0, 0, 0) of model (1) is

globally asymptotically stable.
A numerical simulation of the global asymptotic stability of the disease-free peri-

odic solution P0 of model (1) is given in “Appendix A,” as shown in Fig. 14. 	


2.5 Uniform Persistence of the Disease

In this section, we demonstrate the uniform persistence of model (1) by using uniform
persistence theory of the periodic epidemic model in Zhao (2017). First, we give the
following symbols:
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Let X be a metric space, f : X → X be a continuous map, and X0 ⊂ X be an
open set. Define

∂X0 := X\X0, M∂ :=
{
x ∈ ∂X0 : f n(x) ∈ ∂X0, n ≥ 0

}
.

Assume that A∂ is a maximal compact invariant set of f in ∂X0, that is, A∂ is
compact, invariant, possibly empty, and contains every compact invariant subset of
∂X0. Then a finite sequence M1, . . . , Mk of disjoint, compact, and invariant subsets
of ∂X0, each of which is isolated in ∂X0.

Lemma 2.5.1 [see Theorem 1.3.1 in Zhao (2017)] Assume that

(C1) f (X0) ⊂ X0 and f has a global attractor A;
(C2) The maximal compact invariant set A∂ = A ∩ M∂ of f in ∂X0, possibly empty,

admits a Morse decomposition M1, . . . , Mk with the following properties:

(a) Mi is isolated in X.
(b) Ws(Mi ) ∩ X0 = ∅ for each 1 ≤ i ≤ k.

Then there exists δ > 0 such that for any compact internally chain transitive set L with
L �⊂ Mi for all 1 ≤ i ≤ k, we have inf x∈L d(x, ∂X0) > δ, that is to say f : X → X
is uniformly persistent with respect to (X0, ∂X0).

Theorem 2.5.1 If R0 > 1, then there is at least one positive periodic solution
for model (1), and there is a positive constant ε > 0 such that the solution
(S(t), E(t), IN (t), IC (t), R(t), V (t))with initial value condition (S(0), E(0), IN (0),
IC (0), R(0), V (0)) ∈ R+ × I nt(R5+) for each of model (1) satisfies

lim
t→∞ inf(E(t), IN (t), IC (t), R(t), V (t)) ≥ (ε, ε, ε, ε, ε).

Proof Define X = {(S, E, IN , IC , R, V ) ∈ R
6+}, X0 = {(S, E, IN , IC , R, V ) ∈

R+ × I nt(R5+)}, and ∂X0 = X\X0. Let u(t, x0) be the unique solution of model
(1) with an initial value of x0 := (S0, E0, IN 0, IC 0, R0, V0). Let f : X → X be the
Poincaré map associated with model (1); that is,

f (x0) = u(T , x0), ∀x0 ∈ X , (13)

where T represents the period, and u(T , x0) is the only solution of model (1) that
satisfies u(0, x0) = x0.

Obviously, by Lemma 2.2.1, we know that the solution of model (1) is uniformly
bounded, which means that f is the point dissipative on X . And, f : X → X is
compact. From the conclusion of Theorem 1.1.3 in Zhao (2017), we can see that f
has a global attractor A.

Below we let

M∂ =
{
(S0, E0, IN 0, IC 0, R0, V0) ∈ ∂X0 : f n(S0, E0, IN 0, IC 0, R0, V0) ∈ ∂X0, ∀n ≥ 0

}
.
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Next, we prove that M∂ = {(S, 0, 0, 0, 0, 0) : S ≥ 0} holds. Obviously, we can get
(S, 0, 0, 0, 0, 0) ∈ M∂ for S ≥ 0. Assume that at least one of E , IN , IC , R and V is
positive for the initial value (S, E, IN , IC , R, V ) = M∂ . Then the following inequality
is established.

E(t) = e−(σ+d)t
[
E0 +

∫ t

0
S(τ )

(
β(τ)(θ IC (τ ) + IN (τ )) + ρ(τ)V (τ )

)
e(σ+d)τdτ

]
> 0,∀t ≥ 0,

IN (t) = e−(γ2+d+κ)t
[
IN 0 +

∫ t

0
(1 − δ)σ E(τ )e(γ2+d+κ)τdτ

]
> 0,∀t ≥ 0,

IC (t) = e−(γ1+d)t
[
IC 0 +

∫ t

0

(
δσ E(τ ) + κ IN (τ )

)
e(γ1+d)τdτ

]
> 0,∀t ≥ 0,

R(t) = e−(q+d)t
[
R0 +

∫ t

0

(
γ1 IC (τ ) + γ2 IN (τ )

)
e(q+d)τdτ

]
> 0,∀t ≥ 0,

V (t) ≥ e−Ut
[
V0 +

∫ t

0
α
(
IC (τ ) + IN (τ )

)
eUτdτ

]
> 0,∀t ≥ 0,

where U = min
{
μ(t),∀t ≥ 0

}
. Therefore, there is (S(t), E(t), IN (t), IC (t), R(t),

V (t)) /∈ ∂X0 for a sufficiently small t > 0, we get (S(t), E(t), IN (t), IC (t), R(t),
V (t)) /∈ M∂ . This means that (S0, E0, IN 0, IC 0, R0, V0) /∈ ∂X0, (S0, E0, IN 0,

IC 0, R0, V0) /∈ M∂ . Consequently, we can get M∂ = {(S, 0, 0, 0, 0, 0) : S ≥ 0}
by the above proof.

By Theorem 2.4.1, we know that P0 = (Λ
d , 0, 0, 0, 0, 0) is globally asymptotically

stable in setM∂ . Therefore, A∂ = {(Λ
d , 0, 0, 0, 0, 0)} is themaximal compact invariant

set of f in ∂X0. It is obvious that A∂ can be acyclic and isolated in set ∂X0.
In the following, we prove that Ws(A∂ ) ∩ X0 = ∅ and A∂ is isolated in set X .

For convenience, we denote x0 = (S0, E0, IN 0, IC 0, R0, V0) ∈ X0. It is known from
the continuous dependence of solutions with respect to initial values that there exists
� > 0 such that for all (S0, E0, IN 0, IC 0, R0, V0) ∈ X0 with ‖x0 − P0‖ ≤ �. Further,
we have

‖u(t, x0) − u(t, P0)‖ ≤ ε, ∀ε > 0, ∀t ∈ [0, T ].

We now claim that

lim sup
n→∞

d( f n(x0), P0) ≥ �,

where d(x, y) represents the distance between x and y. Using the counter-evidence
method, we assume that the following formula holds.

lim sup
n→∞

d( f n(x0), P0) < �, for some x0 ∈ X0.

Without loss of generality, we assume that d( f n(x0), P0) < � for any n > 0. By
the continuous dependence of solutions with respect to initial values, it is known that
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d(u(t, f n(x0)), u(t, P0)) < ε for any t ∈ [0, T ]. By continuous and calculation by
steps, we obtain

d(u(t, x0), u(t, P0)) = d(u(t
′
, f n(x0)), u(t

′
, P0)) < ε, ∀t ≥ 0,

where t = t
′ +NT , t

′ ∈ [0, T ] and N = [ t
T ]. Thus, this means that there exists T

′
> 0

such that Λ
d − ε ≤ S(t) ≤ Λ

d + ε, 0 ≤ E(t) ≤ ε, 0 ≤ IN (t) ≤ ε, 0 ≤ IC (t) ≤ ε,

0 ≤ R(t) ≤ ε and 0 ≤ V (t) ≤ ε for t > T
′
. And, we also obtain

dE

dt
≥ β(t)

(
Λ

d
− ε

)

(θ IC + IN ) + ρ(t)

(
Λ

d
− ε

)

V − σ E − dE .

The following comparison system is considered.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dẼ

dt
= β(t)

(
Λ

d
− ε

)

(θ ĨC + ˜IN ) + ρ(t)

(
Λ

d
− ε

)

Ṽ − σ Ẽ − d Ẽ,

d ˜IN
dt

= (1 − δ)σ Ẽ − γ2 ˜IN − d ˜IN − κ ˜IN ,

d ĨC
dt

= δσ Ẽ − γ1 ĨC − d ĨC + κ ˜IN ,

dR̃

dt
= γ1 ĨC + γ2 ˜IN − q R̃ − d R̃,

dṼ

dt
= α( ĨC + ˜IN ) − μ(t)Ṽ .

(14)

We can represent system (14) as follows

x
′ = (

F(t) − V (t) − εm(t)
)
x,

where x = (Ẽ, ˜IN , ĨC , R̃, Ṽ )T and

m(t) =

⎡

⎢
⎢
⎢
⎢
⎣

0 β(t) β(t)θ 0 ρ(t)
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

.

According to Lemma 2.4.1, we know that there is a positive T -periodic func-
tion v∗(t) such that ep

∗tv∗(t) is a solution of system (14), where v∗(t) =
(v∗

1(t), v
∗
2(t), v

∗
3(t), v

∗
4(t), v

∗
5(t)) and p∗ = 1

T ln ρ(ΦF−V−εm(T )). Note that
ρ(ΦF−V−εm(T )) > 1. Therefore, according to the comparison principle, we obtain
limt→∞(E(t), IN (t), IC (t), R(t), V (t)) = (∞,∞,∞,∞,∞), which is contradic-
tory to 0 ≤ E(t) ≤ ε, 0 ≤ IN (t) ≤ ε, 0 ≤ IC (t) ≤ ε, 0 ≤ R(t) ≤ ε and
0 ≤ V (t) ≤ ε. Therefore, Ws(A∂ ) ∩ X0 = ∅ is proved, and A∂ is isolated in X . By
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Lemma 2.5.1, f is uniformly persistent with respect to (X0, ∂X0). Thus, the solution
of model (1) is uniformly persistent.

Next, we prove the existence of a positive T -period solution of model (1), that is,
f has a fixed point. We consider (S∗(0), E∗(0), I ∗

N (0), I ∗
C (0), R∗(0), V ∗(0)) ∈ X0,

it is easy to see that S∗(0) ≥ 0, E∗(0) > 0, I ∗
N (0) > 0, I ∗

C (0) > 0, R∗(0) > 0
and V ∗(0) > 0. We now prove that S∗(0) > 0. Using the counter-evidence method,
assuming S∗(0) = 0, the first equation of model (1) is expressed as follows

dS∗(t)
dt

≥ Λ − (β(t)(θ IC + IN ) + ρ(t)V + d)S = Λ − (a(t) + d)S,

where a(t) = β(t)(θ IC + IN ) + ρ(t)V . We can get

S∗(t) ≥ e
∫ t
0 −(d+a(τ1))dτ1

[

S∗(0) +
∫ t

0
Λe

∫ τ2
0 (d+a(τ1))dτ1dτ2

]

= e
∫ t
0 −(d+a(τ1))dτ1

∫ t

0
Λe

∫ τ2
0 (d+a(τ1))dτ1dτ2, ∀t ≥ 0.

Therefore, the following inequality can be obtained.

S∗(nT ) ≥ e
∫ nT
0 −(d+a(τ1))dτ1

∫ nT

0
Λe

∫ τ2
0 (d+a(τ1))dτ1dτ2 > 0.

From the periodicity of S∗(t), we know that S∗(0) = S∗(nT ) = 0, n = 1, 2, 3 . . .,
which is inconsistent with S∗(nT ) > 0. Thus, we obtain S∗(0) > 0.

From the aboveproof,weobtain thatu(t, (S∗(0), E∗(0), I ∗
N (0), I ∗

C (0), R∗(0), V ∗(0))) ∈
I nt(R6+), and (S∗(t), E∗(t), I ∗

N (t), I ∗
C (t), R∗(t), V ∗(t)) is the positive T -period solu-

tion of model (1).
A numerical simulation of the positive T -period solution for model (1) is given in

“Appendix A,” as shown in Fig. 15. 	


3 A Case Study

In this section, we estimate the unknown parameters of model (1) on the basis of the
influenza data in Gansu Province of China from January 2012 to May 2019 by using
MCMC algorithm. By estimating the unknown parameters, we estimate the mean and
confidence interval of the basic reproduction number R0. In addition, we also estimate
unreported cases.

3.1 Data Sources

The influenza case data come from the Gansu Provincial Center for Disease Control
and Prevention (2019), which is a public health agency in Gansu Province. The data
include the number of influenza treatedmonthly between January 2012 andMay 2019,
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(a) (b)

(c) (d)

Fig. 2 The number of influenza cases and meteorological factors data. The red histogram indicates the
number of influenza cases in Gansu Province from January 2012 to May 2019. The gray area indicates
December, January, and February each year. a The purple line indicates the monthly average temperature
in Gansu Province from January 2012 to December 2018; b The blue line indicates the monthly average
relative humidity in Gaolan County, Gansu Province, from January 2012 to December 2018; c The green
line indicates the monthly total precipitation in Gansu Province from January 2012 to December 2018;
d The deep red line indicates the monthly total sunshine time in Gansu Province from January 2012 to
December 2018 (For an explanation of the reference to color in this illustration,the reader is referred to the
Web version of this article) (Color figure online)

as indicated by the red histogram in Fig. 2. It can be seen from Fig. 2 that December,
January and February are the high incidence of influenza.

The monthly average temperature (MAT), monthly total precipitation (MTP), and
monthly total sunshine time (MTST) can be obtained from the Gansu Provincial
Bureau of Statistics (2019), as shown in Fig. 2a, c and d. From the National Bureau
of Statistics of China (2019b), we can obtain the monthly average relative humidity
(MARH) in Gaolan County, Gansu Province , as shown in Fig. 2b.

3.2 Data Analysis and Fitting

In order to study the correlation between several sets of data, we can use the Spear-
man correlation coefficient to study the correlation between several sets of data from
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Fig. 3 a Significance of correlation coefficient different from zero: ∗∗ represents p < 0.01, ∗ represents
p < 0.05; b The fitting plot of monthly average temperature; c The fitting plot of monthly average relative
humidity; d The fitting plot of monthly total precipitation. The red curve represents the fitting value (For
an explanation of the reference to color in this illustration, the reader is referred to the Web version of this
article) (Color figure online)

January 2012 to December 2018. We use Python software to calculate the correlation
between the four sets of data, as shown in Fig. 3a. The conclusion reveals a significant
correlation between influenza and meteorological factors in Gansu Province. All four
meteorological factors are negatively correlatedwith the number of influenza cases, the
correlation between monthly average temperature and the number of influenza cases
is the strongest (r = −0.9, p < 0.01), and the correlation between monthly total sun-
shine time and the number of influenza cases is the weakest (r = −0.31, p < 0.01).
In particular, we find a high correlation between monthly total precipitation and
the number of influenza cases (r = −0.86, p < 0.01), and a moderate correla-
tion between monthly average relative humidity and the number of influenza cases
(r = −0.41, p < 0.01). Figure 3a shows that the monthly total sunshine time is
weakly correlated with the number of influenza cases; therefore, the effects of monthly
total sunshine time are not considered in our model. Next, we use the sine function
and the cosine function to fit the other three types of meteorological factors. In order
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to unify the measurement units of several types of meteorological factors, we unitize
the data of meteorological factors. Next, we use the least squares method to fit the
meteorological factors, as shown in Fig. 3b–d.

Figure 3b shows the fitting effect of monthly average temperature; the fitting func-
tion is expressed as follows

T (t) = 0.6050 sin
(π

6
t − 2.0364

)
+ 0.3950. (15)

Figure 3c shows the fitting effect of monthly average relative humidity; the fitting
function is expressed as follows

H(t) = 0.2600 cos
(π

6
t + 1.5138

)
+ 0.7400. (16)

Figure 3d shows the fitting effect of monthly total precipitation; the fitting function is
expressed as follows

P(t) = 0.3089 sin
(π

6
t + 16.7236

)
+ 0.3119. (17)

where π/6 represents 2π/12 in Eqs. (15)–(17), that is, the period is 12months.

3.3 Parameter Estimation andModel Fitting

Wedon’t have reliable data on the rate of transmission and the influenza virus, and here
we only consider the rate of influenza transmission and the rate of flu virus clearance.
The key is to reasonably choose the functions β(t), ρ(t) and μ(t). According to the
periodic characteristics of influenza in Gansu Province, we define the periodic direct
transmission rate between susceptible individuals and infected individuals as follows

β(t) = β0 + β1 sin
(π

6
t + φ

)
,

whereπ/6means 2π/12, that is, the period is 12months,β0 andβ1 indicate coefficient
of direct transmission rate between susceptible individuals and infected individuals,
φ indicates the phase of the T -periodic function. Periodic indirect transmission rates
between susceptible individuals and infected individuals are defined as follows

ρ(t) = ρ0 + ρ1 sin
(π

6
t + φ

)
,

whereπ/6means 2π/12, that is, the period is 12months, ρ0 and ρ1 indicate coefficient
of indirect transmission rate between susceptible individuals and infected individuals,
φ indicates the phase of the T -periodic function. As we said in Introduction, cool and
dry conditions can improve the survival rate and transmission rate of influenza virus in
temperate regions (Sooryanarain and Elankumaran 2015), and the temperature decay
rate of influenza virus in the environment is described as δ(T ) = αeγ T (Handel et al.
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2013), where T is the temperature and α and γ are constants. Therefore, we define
the periodic clearance rate of influenza virus as follows

μ(t) = μ0e
α1T (t)+α2H(t)+α3P(t),

where T (t), H(t) and P(t) are both periodic functions,μ0 indicates the basic clearance
rate of influenza virus, α1 indicates the trade-off factor of temperature affecting virus
clearance rate, α2 indicates the trade-off factor of relative humidity affecting virus
clearance rate,α3 indicates the trade-off factor of precipitation affectingvirus clearance
rate.

In order to simulate the number of new cases of influenza in Gansu Province,
the rationality of the model is verified by the number of cases actually monitored.
Therefore, we mainly focus on cumulative infections and new infections every month
in Gansu Province. Cumulative infection cases can be expressed as follows

dCC

dt
= δσ E + κ IN ,

dCN

dt
= (1 − δ)σ E − κ IN ,

where CC (t) indicates the number of cumulative infections of reported infected
individuals, and CN (t) indicates the number of cumulative infections of unreported
infected individuals.

As for the newly infected cases, it can be expressed as follows

PC = CC (t) − CC (t − 1), (18)

PN = CN (t) − CN (t − 1), (19)

where PC and PN represent the number of new cases of reported infected individuals
and the number of new cases of unreported infected individuals, respectively, and t
is regarded as month in the simulations. In what follows, we use Eq. (18) to fit the
number of new cases of reported infected individuals in Gansu Province.

In the past seven years or so, many people have been infected with influenza in
Gansu Province (see Fig. 4 for more accurate statistical results). In order to calculate
the basic reproduction number R0 of influenza in Gansu Province and predict changes
in the next few years, it is necessary to estimate the unknown parameters of model (1)
since several parameters and initial values of model (1) are assigned values based on
existing data and experience (see Table 2). Next, we estimate all the parameters and
initial values of model (1) in detail:

(i) the recruitment rate of susceptible (i.e.,Λ):We obtain that the birth rate in Gansu
Province at the end of 2011 is 12.08 per thousand by looking up the relevant data of
the Gansu Provincial Bureau of Statistics (2019); at the same time, we also get the
total population of Gansu Province at the end of 2011 is 25.813 million. Therefore,
we can get a simple calculation that the monthly birth population of Gansu Province
is about 25813;

(ii) the natural mortality rate of the population (i.e., d): According to the statistics
of the National Bureau of Statistics of China (2019a), we conclude that the monthly
natural mortality rate of the population in Gansu Province in 2012 is approximately
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Fig. 4 a The fitting results of the number of new cases reported from January 2012 to May 2019. The solid
black line represents the fitted data, and the red dots represent the actual data. The areas from the darkest
to the lightest correspond to the 50%, 90%, 95% and 99% posterior limits of the model uncertainty. b The
fitting result of the number of new cases not reported from January 2012 to May 2019. The blue curve
represents the clearance rate μ(t), and the pink area represents 95% confidence interval. The gray area
indicates December, January and February each year (For an explanation of the reference to color in this
illustration, the reader is referred to the Web version of this article) (Color figure online)

d = 1/(73× 12), where the constant 73 represents the average life expectancy of the
population of Gansu Province;

(iii) the recovery rate of reported infected individuals (i.e., γ1): We assume that the
average recovery time of reported influenza patients is 7 days (Massad et al. 2007;
Xing et al. 2017), then the recovery rate is 30/7;

(iv) the recovery rate of unreported infected individuals (i.e., γ2): We assume that
the average recovery time of unreported influenza patients is 10 days (Massad et al.
2007; Xing et al. 2017), then the recovery rate is 30/10;

(v) the mean incubation period (i.e., 1/σ ): The incubation period for influenza
varies in different books, from a few hours to four days, the most common being three
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Table 2 The parameters values and initial values of the model (1)

Parameters Mean value Std 95% CI Reference

Λ 25813 – – (i)

d 1/(73 × 12) – – (ii)

γ1 30/7 – – (iii)

γ2 30/10 – – (iv)

σ 30/4 – – (v)

q 0.9 – – (vi)

β0 1.7004 × 10−7 1.5328 × 10−9 [1.6995 × 10−7, 1.7014 × 10−7] MCMC

β1 3.7439 × 10−8 3.9166 × 10−9 [3.7195 × 10−8, 3.7682 × 10−8] MCMC

ρ0 7.2955 × 10−9 6.6911 × 10−10 [7.2540 × 10−9, 7.3371 × 10−9] MCMC

ρ1 9.7260 × 10−10 1.0705 × 10−9 [9.0617 × 10−10, 1.0390 × 10−9] MCMC

φ 2.6882 0.1051 [2.6817, 2.6947] MCMC

θ 0.3184 0.03324 [0.3163, 0.3205] MCMC

δ 0.04211 3.8964 × 10−3 [0.04186, 0.04235] MCMC

α 259.4835 47.1153 [256.5598, 262.4072] MCMC

μ0 32.7373 2.8047 [32.5633, 32.9114] MCMC

α1 7.6908 0.6667 [7.6494, 7.7321] MCMC

α2 4.2128 0.3497 [4.1911, 4.2345] MCMC

α3 5.4728 0.2831 [5.4552, 5.4903] MCMC

κ 0.09102 0.003304 [0.09081, 0.09123] MCMC

S(0) 18,295,942 1,586,759 [18,197,594, 18,394,290] MCMC

E(0) 579 63 [575, 583] MCMC

IN (0) 1083 31 [1081, 1085] MCMC

IC (0) 562 – – (vii)

R(0) 2706 404 [2681, 2731] MCMC

V (0) 2,643,292 2,146,411 [2,510,256, 2,776,328] MCMC

to four days (Lancet 1918). In this paper, we assume that the average incubation time
is 4 days; thenmonthly, the average incubation period 1/σ can be determined by 4/30;

(vi) the progression rate of the recovered individuals (i.e., q): In this paper, we
assume that the progression rate of the recovered individuals is q = 0.9;

(vii) the initial value of the reported influenza cases (i.e., IC (0)): According to
the relevant data reported by the Gansu Provincial Center for Disease Control and
Prevention (2019), we obtain the initial value of IC (t) as 562;

(viii) The other parameters and initial values of model (1) are estimated by the
MCMC algorithm, as shown in Table 2.

We use MATLAB 2016b software to fit the unknown parameters and initial values
of model (1). In this article, we use an adaptive combination Delayed rejection and
Adaptive Metropolis (DRAM) algorithm to carry out the Markov chain Monte Carlo
(MCMC) procedure (Haario et al. 2001, 2006). Here, the MCMC toolbox is provided
by a website (Laine 2019). The algorithm runs 10,000 iterations and uses the Geweke
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Fig. 5 a The Markov chain of the last 1000 samples of R0. The purple dot represents the size of the R0
value. b The frequency distribution of R0. The red curve is the probability density function curve of R0
(For an explanation of the reference to color in this illustration, the reader is referred to the Web version of
this article) (Color figure online)

convergence diagnostic method to evaluate chain convergence (Haario et al. 2006).
We can estimate the convergence of the Markov chain by the closeness of the Geweke
value to 1. The mean, standard deviation and 95% confidence interval of the estimated
parameters are shown in Table 2, and the fitting result can be seen in Fig. 4a.

It can be seen from Fig. 4a that our fitting effect is good. According to the two
fitting curves of Fig. 4, it can be seen that influenza in Gansu Province is on an annual
upward trend. In addition, we also obtain that the number of unreported influenza
cases is much higher than the number of reported influenza cases. According to the
parameters in Table 2, we can use the theory developed by Wang and Zhao (2008)
to calculate the basic reproduction number with the periodic model (1). The basic
reproduction number R0 can be calculated by Lemma 2.3.2(2), and R0 is estimated to
be 1.2288 (95% CI:(1.2287, 1.2289)), as shown in Fig. 5. This means that influenza
in Gansu Province is impossible to ignore. It can be seen from Fig. 5b that the basic
reproduction number R0 is normally distributed. Therefore, we can easily get the
confidence interval and mean of R0. Furthermore, it follows from Fig. 4b that the
number of influenza cases peaks when the rate of influenza virus clearance is lowest;
this means that meteorological factors are the dominant factor in the seasonal outbreak
of influenza.

4 Uncertainty and Sensitivity Analysis

Aswe discussed in Introduction, the periodicity of influenza inGansu Provincemay be
related to factors such as temperature, relative humidity, and precipitation. However, it
is unclear which one is internal and the main factor. Now let us observe the respective
effects of each meteorological factor.
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Fig. 6 The goodness of fit and prediction of the dynamic trend of influenza infection with temperature
as an intervention. a The trend of announced influenza cases affected by the change of monthly average
temperature. b The trend of unannounced influenza cases affected by the change of monthly average
temperature (For an explanation of the reference to color in this illustration, the reader is referred to the
Web version of this article) (Color figure online)

Table 3 The number of new cases has changed due to changes in monthly average temperature (MAT)

Meteorological factors variation MAT-0.50 MAT-0.25 MAT MAT+0.25 MAT+0.50

Forecasting the number of new cases
in December 2019

66,552 46,124 32,310 23,007 16,653

Increased by a rate 105.98% 42.75% 0% −28.79% −48.46%

Forecasting the number of new cases
in January 2020

89,233 61,386 42,651 30,132 21,641

Increased by a rate 109.22% 43.92% 0% −29.35% −49.26%

Forecasting the number of new cases
in February 2020

109,150 73,718 50,252 34,905 24,645

Increased by a rate 117.21% 46.70% 0% −30.54% −50.96%

4.1 Sensitivity of MAT to Influenza Cases and Basic Reproduction Number

According to the parameters estimated in Table 2, the number of influenza cases will
decrease by 48.46% and 28.79% as the monthly average temperature (MAT) increases
by 0.5◦C and 0.25 ◦C in December 2019, respectively. At the same time, the number
of influenza cases will increase by 105.98% and 42.75% as the monthly average
temperature (MAT) decreases by 0.5◦C and 0.25◦C in December 2019, respectively,
as shown in Fig. 6 and Table 3. More predictions of the impact of warming measures
on influenza cases in January 2020 and February 2020 are summarized in Table 3.
The variation of R0 with temperature was studied by simulation. Obviously, as the
monthly average temperature (MAT) increases, R0 gradually decreases, as shown in
Fig. 9.
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Fig. 7 The goodness of fit and prediction of the dynamic trend of influenza infection with relative humidity
as an intervention. a The trend of announced influenza cases affected by the change of monthly average
relative humidity. b The trend of unannounced influenza cases affected by the change of monthly average
relative humidity (For an explanation of the reference to color in this illustration, the reader is referred to
the Web version of this article) (Color figure online)

Table 4 The number of new cases has changed due to changes in monthly average relative humidity
(MARH)

Meteorological factors variation MARH-0.50 MARH-0.25 MARH MARH+0.25 MARH+0.50

Forecasting the number of new
cases in December 2019

36,236 34,221 32,310 30,564 28,875

Increased by a rate 12.15% 5.91% 0% −5.40% −10.63%

Forecasting the number of new
cases in January 2020

47,961 4.5238 42,651 40,292 38,015

Increased by a rate 12.45% 6.06% 0% −5.53% −10.87%

Forecasting the number of new
cases in February 2020

56,884 53,469 50,252 47,355 44,546

Increased by a rate 13.20% 6.40% 0% −5.76% −11.35%

4.2 Sensitivity of MARH to Influenza Cases and Basic Reproduction Number

In comparison, our simulations also shows that the number of influenza cases will
decrease by 10.63% and 5.40% as the monthly average relative humidity (MARH)
increases by 0.5% and 0.25% in December 2019, respectively. At the same time, the
number of influenza cases will increase by 12.15% and 5.91% as the monthly average
relative humidity (MARH) decreases by 0.5% and 0.25% in December 2019, respec-
tively, as shown in Fig. 7 and Table 4. More predictions of the impact of changing
relative humidity on influenza cases in January 2020 and February 2020 are summa-
rized in Table 4. The change of the basic reproduction number R0 with the monthly
average relative humidity (MARH) is shown in Fig. 9. We can see that R0 gradually
decreases with increasing monthly average relative humidity (MARH).
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Fig. 8 The goodness of fit and prediction of the dynamic trend of influenza infection with precipitation as an
intervention. a The trend of announced influenza cases affected by the change of monthly total precipitation.
b The trend of unannounced influenza cases affected by the change of monthly total precipitation (For an
explanation of the reference to color in this illustration, the reader is referred to the Web version of this
article) (Color figure online)

Table 5 The number of new cases has changed due to changes in monthly total precipitation (MTP)

Meteorological factors variation MTP-0.50 MTP-0.25 MTP MTP+0.25 MTP+0.50

Forecasting the number of new
cases in December 2019

36, 263 34, 158 32, 310 30, 539 28, 867

Increased by a rate 12.23% 5.72% 0% −5.48% −10.66%

Forecasting the number of new
cases in January 2020

47, 994 45, 156 42, 651 40, 346 38, 006

Increased by a rate 12.53% 5.87% 0% −5.40% −10.89%

Forecasting the number of new
cases in February 2020

56, 923 53, 401 50, 252 47, 309 44, 540

Increased by a rate 13.28% 6.27% 0% −5.85% −11.37%

4.3 Sensitivity of MTP to Influenza Cases and Basic Reproduction Number

In order to investigate effect of monthly total precipitation (MTP) on the number of
influenza cases, we find that the number of influenza cases will decrease by 10.66%
and 5.45% as the monthly total precipitation (MTP) increases by 0.5mm and 0.25mm
in December 2019, respectively. At the same time, the number of influenza cases will
increase by 12.23% and 5.72% as the monthly total precipitation (MTP) decreases by
0.5mm and 0.25mm in December 2019, respectively, as shown in Fig. 8 and Table 5.
More predictions of the impact of changing precipitation on influenza cases in January
2020 and February 2020 are summarized in Table 5. In addition, we also find that R0
decreases with increasing monthly total precipitation (MTP), as shown in Fig. 9.

Figures 6, 7 and 8 show the number of predicted influenza individuals. It shows that
an increase in the value of meteorological factors leads to a reduction in influenza indi-
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Fig. 9 The influence of
meteorological factors on R0,
the green curve represents the
measure to change the
temperature, the red curve
represents the measure to change
the relative humidity, the blue
curve represents the measure to
change the precipitation, and the
purple curve represents the
measure of the simultaneous
change of the three
meteorological factors (For an
explanation of the reference to
color in this illustration, the
reader is referred to the Web
version of this article) (Color
figure online)
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viduals and then reduces the severity of influenza. This means that increasing indoor
temperature and air humidity during the high season of influenza plays an important
role in reducing the number of infected individuals and promoting effective disease
control. For example, it is necessary to install air conditioners and air humidifiers
indoors in winter. This is consistent with the findings of Kudo et al. (2019). In particu-
lar, as can be seen from Figs. 7 and 8, we can obtain that the twometeorological factors
of precipitation and relative humidity have almost the same effect on influenza, which
is consistent with our experience. By comparing the data in Tables 3, 4 and 5, we
obtain that temperature has a greater impact on influenza than relative humidity and
precipitation, so the seasonal change in temperature is a major factor in the seasonal
outbreak of influenza in Gansu Province, which is consistent with the conclusions in
Lowen et al. (2007). At the same time, the effects of relative humidity and precipita-
tion cannot be ignored. Then, we also note that R0 changes most significantly under
the combined action of three meteorological factors. This means that air conditioners
and air humidifiers should be used simultaneously during periods of high influenza.
In addition, we obtain that temperature is the main influencing factor of influenza, and
the relative humidity and precipitation have almost the same effect on R0, which is
consistent with the above conclusion.

4.4 Sensitivity ofˇ(t),�(t) and�(t) to Influenza Cases and Basic Reproduction
Number

In order to study the effects of human-to-human contact transmission rate, human-
to-pollutant contact transmission rate and influenza virus clearance rate on influenza,
we investigate the changes of new cases and basic reproduction number with β(t),
ρ(t), and μ(t). Figure 10a–d shows the number of predicted new cases of individuals
and basic reproduction number. It shows that a decrease in transmission rate or an
increase in clearance rate leads to a decrease in new infections and then a reduction
in the severity of influenza. This means that health precautions and environmental
cleansing play an important role in reducing the number of infected individuals and
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Fig. 10 a The effect of changes in direct transmission rate β(t) on the number of new cases. b The effect of
changes in the indirect transmission rate ρ(t) on the number of new cases. c The effect of pathogen clearance
rate μ(t) on the number of new cases. d The trend chart of basic reproduction number R0 varies with β(t),
ρ(t) and μ(t) (For an explanation of the reference to color in this illustration, the reader is referred to the
Web version of this article) (Color figure online)

promoting effective disease control. For example, influenza patients should pay atten-
tion to personal hygiene and other public health measures. In particular, as can be seen
from Fig. 10c, we can obtain the impact of the environment on influenza, that is, the
polluted environment greatly contributes to new infections and increases the risk of
disease transmission. By comparing the blue and green curves in Fig. 10a, d with b,
we obtain that the direct transmission rate has a greater impact on new cases and basic
reproduction number than the indirect transmission rate. This means that the direct
transmission rate has a significant impact on influenza outbreaks and transmission.
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4.5 Sensitivity of Other Parameters to Influenza Cases and Basic Reproduction
Number

In what follows, we use the Latin hypercube sampling (LHS) and the partial rank
correlation coefficient (PRCC) to study the global uncertainty and sensitivity of the
other parameters of the model (1) (Marino et al. 2008). According to the estimation
results of the parameters in Table 2, we select a normal distribution for all input
parameters, where the mean and standard deviation are given in Table 2. The values
of PRCCs are calculated for multiple time points and plotted against time. This allows
us to assess the importance of the parameters over the entire time period. A positive
(or negative) PRCC value indicates a positive (or negative) correlation between the
input parameter and the output variable. The absolute value of PRCC between 0 and
0.2 indicates that there is no significant correlation between the input parameters
and the output variables. The absolute value of PRCC between 0.2 and 0.4 indicates
the moderate correlation between the input parameters and the output variables. The
absolute value of PRCC between 0.4 and 1 indicates the high correlation between the
input parameters and the output variables.

Figure 11a and b shows 5000 sample fits of the model (1) output variables PC and
PN from January 2012 toMay 2019.We can see that the 5000 simulations of the output
variables PC and PN are periodic, which reflects the periodicity of influenza in Gansu
Province. From Fig. 11c and d, it can be seen that the changes in several parameters
over timehave an impact on reported newcases and unreported newcases. In particular,
there is strong negative correlation between the basic clearance rateμ0 and the number
of new cases. This means that the public health department should strengthen the
disinfection work. There is also strong negative correlation between the reported rate
δ and the number of newcases. Thismeans that theGansuProvincialCenter forDisease
Control and Prevention can suppress the spread of influenza by increasing the reporting
rate. There is moderate negative correlation between the treatment rate κ of unreported
cases and the number of new cases. This suggests that patients with influenza should
go to the hospital for treatment rather than family treatment, especially in poor areas
like Gansu. Then, parameters α and θ are strongly positively correlated throughout
the time period. This indicates that the self-protection measures of influenza patients
and the therapeutic effects of medical institutions cannot be ignored.

In the case of the above LHS (Latin hypercube sampling) matrix, we evaluate the
sensitivity of the output variable R0 and various input parameters (e.g., β0, β1, δ, θ ,
ρ0, ρ1, α, μ0, κ) by the PRCC. Figure 12a shows the sampling result of R0 by the
LHS (Latin hypercube sampling) method, and Fig. 12b shows the distribution of R0
and the probability density function curve. Figure 12c shows the sensitivity of R0
to each parameter. The goal is to determine the most important parameters affecting
influenza dynamics based on the basic reproduction number. Our results indicate that
the parameters strongly correlated with R0 are the coefficient β0 of direct transmission
rate, the virus shedding rateα, the reporting rate δ, the basic clearance rate of pathogens
μ0, the modification factor θ and the coefficient ρ0 of indirect transmission rate.
Therefore, our results provide possible interventions to reduce influenza infections,
such as reducing out-of-town and exposure during periods of high influenza influenza,
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Fig. 11 Sensitivity analysis. a Plot of the output (5000 runs) of model (1). The ordinate represents variable
PC (t), and the abscissa represents time (months). b Plot of the output (5000 runs) of model (1). The
ordinate represents variable PN (t), and the abscissa represents time (months). c and d The sensitivity of the
parameters changes as the dynamics of model (1) progress. The light gray area represents PRCC values that
are not statistically significant. The dark gray areas represent PRCC values that are moderate correlation
(For an explanation of the reference to color in this illustration, the reader is referred to the Web version of
this article) (Color figure online)

influenza patients and susceptible individuals wearing masks to reduce influenza virus
transmission through droplets, the public health sector Increase coverage of influenza,
and increase the frequency of disinfection in healthcare facilities. In addition, the
parameters κ and R0 are moderately negatively correlated, which suggests that we
should go to hospital for treatment regardless of whether the influenza is serious or
not.

The variation of R0 is studied by simulating the changes of parameters κ and θ ,
as shown in Fig. 13a. It is obvious that R0 is decreasing as the parameter κ increases
and θ decreases. Note that the number of treatments for influenza patients reflects
an increase in parameter κ , while the treatment effect in the health sector reflects a
decrease in parameter θ . The variation charts of R0 with parameters α and μ0 show
that the increase in parameter α and the decrease in parameter μ0 lead to the increase
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Fig. 12 a The number of samples of R0 is obtained by the LHS (Latin hypercube sampling) method. b The
distribution of R0 is obtained by the LHS (Latin hypercube sampling) method. c The PRCC results for the
dependence of R0 on each parameter. The light gray area represents PRCC values that are not statistically
significant. The dark gray areas represent PRCC values that are moderate correlation. ∗ indicates that the
impact of the parameters is significant, where the significance level is 0.05 (For an explanation of the
reference to color in this illustration, the reader is referred to the Web version of this article) (Color figure
online)

in R0, which reflects the effect of pathogen density on R0 in the environment, as shown
in Fig. 13b.

5 Conclusion and Discussion

In this paper, in order to study the dynamic relationship among meteorological fac-
tors, unreported cases and influenza, we propose a new non-autonomous differential
equation model (1) with meteorological factors and unreported cases. The basic repro-
duction number is obtained. The global asymptotic stability of the disease-free periodic
solution is proved. The existence of the periodic solution and the uniformly persistence
of model (1) are also derived. We use the MCMC algorithm to estimate the unknown
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Fig. 13 Plots of R0 for model (1) with κ , θ , α and μ0. a Contour plot of R0 when κ and θ vary. b Contour
plot of R0 when α and μ0 vary (For an explanation of the reference to color in this illustration, the reader
is referred to the Web version of this article) (Color figure online)

parameters and initial values of model (1) on the basis of the influenza data in Gansu
province, China. The uncertainty and sensitivity of all parameters are evaluated by
using the Latin hypercube sampling (LHS) and the partial rank correlation coefficient
(PRCC).

Through the mean and confidence intervals of the parameters in Table 2, we obtain
the basic reproduction number R0 = 1.2288 (95%CI:(1.2287, 1.2289)), which means
that influenza is still pandemic in the crowd. The sensitivity of the parameters provides
a possible intervention to reduce influenza infection. Infected individuals and suscep-
tible individuals should wear masks or reduce their outings to reduce the spread of
influenza viruses through droplets during influenza outbreaks (i.e., reducing the value
of the parameters β(t) and α). Susceptible individuals and recovery individuals should
reduce exposure to contaminated items by wearing gloves (i.e., reducing the value of
the parameter ρ(t)). Public health departments should increase the reporting rate for
influenza patients (i.e., increasing the value of the parameter δ). The therapeutic effect
of medical institutions should be improved (i.e., reducing the value of the parame-
ter θ ). The hospital should disinfect contaminated items during the high season of
influenza (i.e., the more the value of the parameter μ0). In particular, unreported
influenza patients should go to the hospital for treatment rather than staying at home
for treatment (i.e., increasing the value of the parameter κ).

In addition, our results show that influenza is more likely to spread in winter in
Gansu. When relative humidity, temperature and precipitation reduce, the incidence
and mortality of influenza rise. Therefore, we know that relative humidity, tempera-
ture and precipitation are the main factors in the outbreak of influenza in winter in
Gansu. The use of humidifiers and air conditioners in hospital, school or home can
increase humidity and temperature, which means can reduce the risk of transmission
of influenza.

It follows from Fig. 4a that the number of influenza cases is increasing every year
in Gansu. Some reasons may bring this phenomenon, such as air pollution, travel

123



Modeling the Effects of Meteorological Factors and Unreported Cases… Page 33 of 36 73

frequency, and population migration. Then considering the effect of these factors and
exploring the occurrence of increasing influenza cases every year should be interesting,
and we leave these work for future.

Acknowledgements This work is supported by the National Natural Science Foundation of China
(11861044 and 11661050) and the HongLiu first-class disciplines Development Program of Lanzhou Uni-
versity of Technology.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Appendix A

See Figs. 14 and 15.
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Fig. 14 Numerical simulation of the global stability of the disease-free periodic solution P0, where the
values of the parameters are β(t) = 6.4 × 10−8 + 8 × 10−10 sin( π

6 t + 2), θ = 0.3, δ = 0.2, ρ(t) =
6.4 × 10−9 + 9 × 10−10 sin( π

6 t + 2), α = 590, μ(t) = 32 + 20 sin( π
6 t + 2), κ = 0.09, Λ = 25813,

d = 1/(73 × 12), q = 0.9, σ = 30/4, γ1 = 30/7 and γ2 = 30/10. The initial value of model (1) is
(S(0), E(0), IC (0), IN (0), R(0), V (0)) = (22, 000, 000, 500, 500, 1000, 2000, 20, 00, 000). According
to this set of parameters, we get R0 = 0.99127 < 1 (For an explanation of the reference to color in this
illustration, the reader is referred to the Web version of this article)
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Fig. 15 The existence of the positive periodic solution, where the values of the parameters are β(t) =
7 × 10−7 + 8 × 10−8 sin( π

6 t + 2), θ = 0.3, δ = 0.2, ρ(t) = 1 × 10−7 + 9 × 10−8 sin( π
6 t + 2),

α = 590, μ(t) = 32 + 20 sin( π
6 t + 2), κ = 0.09, Λ = 25813, d = 1/(73 × 12), q = 0.9, σ = 30/4,

γ1 = 30/7 and γ2 = 30/10. The initial value of model (1) is (S(0), E(0), IC (0), IN (0), R(0), V (0)) =
(10, 000, 000, 500, 500, 1000, 2000, 20, 00, 000). According to this set of parameters, we get R0 =
15.4955 > 1 (For an explanation of the reference to color in this illustration, the reader is referred to
the Web version of this article) (Colour figure online)
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