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Abstract: Activated sludge models (ASMs) are often used in the simulation of the wastewater
treatment process to evaluate whether the effluent quality parameters of a wastewater treatment
plant meet the standards. The premise of successful simulation is to choose appropriate dynamic
parameters for the model. A niche based adaptive invasive weed optimization (NAIWO) algorithm
is proposed in this paper to find the appropriate kinetic parameters of activated sludge model 1
(ASM1). The niche idea is used to improve the possibility of convergence to the global optimal
solution. In addition, the adaptive mechanism and periodic operator are introduced to improve the
convergence speed and accuracy of the algorithm. Finally, NAIWO is used to optimize the parameters
of ASM1. Comparison with other intelligent algorithms such as invasive weed optimization (IWO),
genetic algorithm (GA), and bat algorithm (BA) showed the higher convergence accuracy and faster
convergence speed of NAIWO. The results showed that the ASM1 model results agreed with measured
data with smaller errors.

Keywords: activated sludge model 1 (ASM1); intelligent algorithm; invasive weed optimization
(IWO); parameter estimation; wastewater treatment

1. Introduction

Activated sludge process is a complex biochemical reaction process, which mainly uses the
metabolism of microorganisms present in the activated sludge to remove the organic pollutants that are
present in the wastewater. Therefore, it will be affected by external conditions such as the environment
and the temperature of the wastewater. Activated sludge process is one of the most commonly
used wastewater treatment methods, especially for large-scale urban wastewater treatment plants.
Activated sludge model 1 (ASM1) was proposed by the International Water Association (IWA) in
1987. The ASM1 is a complex mathematical model with 65 differential equations and 19 kinetic or
stoichiometric parameters [1]. ASM1 is the most commonly used and most researched simulation
model in the field of activated sludge process [2–5]. However, in actual wastewater treatment plant
applications, due to changes in operating conditions and differences in the external environments,
the dynamics or stoichiometric parameters of ASM1 will have to be determined. If the reference
parameters provided by IWA are used, they will cause a serious deviation between the model output
and the actual results. Therefore, correcting the parameter values of ASM1 for practical applications is
the key to the success of the application of the model [6].
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In the early days, the methods of parameter identification of environmental models in
environmental engineering mainly included trial and error techniques [7], optimization methods
based on gradient descent [8], and statistical methods based on random sampling [9–11]. However,
these methods are inadequate in improving parameter accuracy or convergence speed and it is difficult
to obtain satisfactory results with minimum time and effort. Gradient-based optimization methods
rely too much on the selection of initial values and tend to converge to a local optimum. The search
mechanism of statistical methods is random. When the number of parameters increases, the number
of calculation steps will increase exponentially, becoming inefficient in solving complex problems.
With the extensive application of genetic algorithms (GA) in various fields [12], meta-heuristic search
algorithms are gradually introduced into parameter estimation of the activated sludge process models.
Compared with the above methods, a meta-heuristic search algorithm can converge to the global
optimal solution with higher probability at a faster speed [13,14]. Kim et al. [15] used GA to estimate
the sensitive parameters in ASM1. The results showed that using the optimized parameters to
run ASM1 can reduce the error between the predicted and the actual values, and confirms the
applicability of a meta-heuristic optimization algorithm in parameter optimization of a nonlinear
system model. Du et al. [16] introduced the adaptive step control algorithm to improve the cuckoo
search (CS), targeting the shortcomings of the optimization mechanism of the CS algorithm and the
slow convergence speed in the later stages. Outcomes show that the improved CS is more effective in
the parameter estimation of ASM1.

Invasive weed optimization (IWO) algorithm, proposed by Mehrabian et al. [17] in 2006, is a new
type of meta-heuristic optimization algorithm. IWO mimics the strong colonial dominance power
of wild grasses by imitating the growth, reproduction, diffusion, and competition of field weeds.
It has been widely used in engineering optimization [18,19], fault diagnosis [20], and hybrid algorithm
optimization [21]. In the IWO algorithm, as the number of iterations increases, the spatial distribution
of the next generation of seeds will gradually narrow, which can ensure that the algorithm has a strong
global search ability in the early stages and a strong local search ability in the later stages. However,
it also leads to the lack of local search ability in the early stages and the lack of population diversity
in the later stages. In order to get better optimization results, it is necessary to improve and fuse
the IWO algorithm. Cuevas et al. [21] proposed a hybrid evolutionary method, which combines the
search ability of IWO and probability model of an estimated distribution algorithm, making a hybrid
method with higher accuracy, efficiency, and robustness. Liu et al. [19] introduced simplified quadratic
approximation into the IWO algorithm and the application in the directional pattern synthesis of array
antennas showed the effectiveness of the improved IWO algorithm.

In response to the above problems, the niche idea and adaptive mechanism are introduced into
the IWO algorithm in this paper and a niche-based adaptive invasive weed optimization (NAIWO)
algorithm is proposed. Niche is used to increase the population diversity of the algorithm. Then,
a periodic operator and adaptive algorithm are introduced into the adaptive mechanism, so that the
standard deviation of the spatial diffusion of individual weeds not only changes with the number
of iterations, but also can dynamically change according to the parameters of the periodic operator
and the fitness value of the individual. Finally, verified through parameter optimization of ASM1,
the effectiveness of the NAIWO algorithm in global convergence ability and convergence speed
is proven.

Figure 1 shows the schematic diagram of the process of ASM1 parameter estimation using the
NAIWO algorithm. The input data of the wastewater treatment plant is taken as the input data of
ASM1. The predicted data of effluent is obtained from the ASM1 model and the error is calculated
by comparing the measured and the predicted data. Then, the error is sent to the NAIWO algorithm
for parameter optimization. Parameter optimization is repeated until the error is minimized to a
desired level.
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Figure 1. Schematic diagram of activated sludge model 1 (ASM1) parameter estimation using the 
niche-based adaptive invasive weed optimization (NAIWO) algorithm. 

2. Materials and Methods 

2.1. Invasive Weeds Optimization (IWO) 

The IWO algorithm imitates the basic process of weed diffusion, growth, propagation, and 
competitive survival in the field. “Weeds” represent a feasible solution to the problem and 
“populations” represent the set of all weeds.  

The basic steps of IWO can be expressed as follows: 

(1) Population initialization. P0 of weeds (feasible solutions) were randomly generated in the solution 
space (D-dimension). Generally, the size of P0 can be adjusted according to the actual situation.  

(2) Growth and reproduction. After seeds grow and bloom, they produce a new generation of seeds 
according to their own fitness. The number of seeds produced by the parents is related to the 
fitness of the parents. The specific relationship is shown in Equation (1): 
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where FN and SN represent the fitness value of the Nth parent and the number of seeds it should 
produce, respectively; Fmax and Fmin represent the maximum and minimum fitness of the parents, 
respectively. Smax and Smin represent the maximum and minimum number of seeds produced by 
individual weeds, respectively. The number of seeds generated is a rounded down number of SN. 

(3) Space diffusion. The generated seeds are normally distributed in the D-dimensional space near 
their parents. The mean value of the normal distribution is 0 and the standard deviation is σiter. 
The variation of the standard deviation with the number of iterations is shown in Equation (2): 
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σinitial is greater than σfinal. 

(4) Competition exclusion. After several generations of reproduction, environmental resources will 
not be able to bear the number of offspring produced. The maximum population size is 
determined as the preset maximum population number Pmax. When Pmax is reached, firstly 
reproduce freely according to the previous steps. Then, based on the population upper limit 
requirement, the parents and children are eliminated together according to the adaptive value. 

Figure 1. Schematic diagram of activated sludge model 1 (ASM1) parameter estimation using the
niche-based adaptive invasive weed optimization (NAIWO) algorithm.

2. Materials and Methods

2.1. Invasive Weeds Optimization (IWO)

The IWO algorithm imitates the basic process of weed diffusion, growth, propagation,
and competitive survival in the field. “Weeds” represent a feasible solution to the problem and
“populations” represent the set of all weeds.

The basic steps of IWO can be expressed as follows:

(1) Population initialization. P0 of weeds (feasible solutions) were randomly generated in the solution
space (D-dimension). Generally, the size of P0 can be adjusted according to the actual situation.

(2) (Growth and reproduction. After seeds grow and bloom, they produce a new generation of seeds
according to their own fitness. The number of seeds produced by the parents is related to the
fitness of the parents. The specific relationship is shown in Equation (1):

SN =
FN − Fmin

Fmax − Fmin
(Smax − Smin) + Smin, (1)

where FN and SN represent the fitness value of the Nth parent and the number of seeds it should
produce, respectively; Fmax and Fmin represent the maximum and minimum fitness of the parents,
respectively. Smax and Smin represent the maximum and minimum number of seeds produced by
individual weeds, respectively. The number of seeds generated is a rounded down number of SN.

(3) Space diffusion. The generated seeds are normally distributed in the D-dimensional space near
their parents. The mean value of the normal distribution is 0 and the standard deviation is σiter.
The variation of the standard deviation with the number of iterations is shown in Equation (2):

σiter =
(itermax − iter)n

itermaxn × (σinitial − σ f inal) + σ f inal, (2)

where iter and itermax represent the current number of iterations and the maximum number of
iterations; σinitial represents the initial standard deviation value; σfinal represents the final standard
deviation value; and n represents the nonlinear harmonic coefficient. It is generally ensured that
σinitial is greater than σfinal.

(4) Competition exclusion. After several generations of reproduction, environmental resources will
not be able to bear the number of offspring produced. The maximum population size is determined
as the preset maximum population number Pmax. When Pmax is reached, firstly reproduce freely
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according to the previous steps. Then, based on the population upper limit requirement,
the parents and children are eliminated together according to the adaptive value.

(5) Repeat steps 2 to 4 until the maximum number of iterations is reached or the solution satisfying
the required conditions is found.

2.2. Niche-Based Adaptive Invasive Weed Optimization (NAIWO)

It can be seen from Equations (1) and (2) that in the IWO algorithm, the individual weeds of
each generation determine the number of next generations according to the degree of fitness, so as to
ensure that the excellent individual genes are inherited to the next generation. As the iteration goes on,
the diffusion range (i.e., the size of the standard deviation σiter) of the next generation seed is gradually
reduced, which ensures that the algorithm has a strong global search ability in the early stages and
local search ability in the later stages. However, this also leads to insufficient local search capability in
the early stages of the algorithm and later searches only near seeds with higher fitness, resulting in a
lack of diversity in the later stages of the algorithm. In order to solve these problems, a niche-based
adaptive invasive weed optimization (NAIWO) algorithm is proposed by introducing the idea of a
niche and adaptive mechanism.

2.2.1. Dynamic Adaptive Mechanism

In step 3 of the IWO algorithm, the distribution of the next-generation seeds generated by each
parent follows the same normal distribution and the standard deviation of its search walking is σiter,
which decreases with the number of iterations. Although the global search ability in the early stages
and the local search ability in the later stages are considered in this distribution method, the population
diversity in the later stage of the algorithm is insufficient, which makes the algorithm fall easily into a
local optimum. In this paper, the dynamic adaptive mechanism is introduced into the spatial diffusion
step of the IWO algorithm to balance the global and local optimization ability of the algorithm.

The spatial diffusion criterion is shown in Equations (3)–(5):

σiter1 =
(itermax − iter)n

itermaxn × (σinitial − σ f inal) + σ f inal (3)

σiter = σiter1 ×

(
K ×

∣∣∣∣∣cos(
π× iter

T
)

∣∣∣∣∣+ 1
K

)
(4)

σ j = σiter × e(1−
Fmax−Fj

Fmax−Fmin
). (5)

In the dynamic adaptive spatial diffusion mechanism, the spatial distribution σj of the children
generated by each parent is shown in Equations (4) and (5). In Equation (4), a cosine periodic function
is employed, where T is a periodic parameter and K is a scaling factor. By adjusting the values of K
and T, the dynamic diffusion standard deviation σiter can be changed with a period T between [1/K, K].
For the jth parent‘s weed, the distribution of its offspring σj is also related to its fitness in the population,
as shown in Equation (5).

In each iteration, Fmax and Fmin are the maximum and minimum fitness values in the parent
population; Fj is the fitness value of the jth parent. The distribution of each generation’s population is
not only related to the iteration number (iter), but also has a functional relationship with the fitness
of the parent in the population. In the iterative process, the higher the adaptability of the weeds,
the larger the number of the next generation seeds and the more centralized the distribution of the
next generation, making the seeds continuously concentrate to high adaptability. However, for the
parents with low adaptability, the number of seeds produced is less in a larger distribution range, so as
to improve the possibility of finding the global optimal solution.
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2.2.2. Niche Idea

The niche idea is derived from biology and refers to a living environment under a specific
condition. In the evolution process of organisms, they generally always live with the same species and
jointly reproduce offspring. Each generation is divided into several classes according to the fitness
value and each class can represent a niche. The combination of a niche idea and intelligent algorithm
shows strong utility [22,23]. In this paper, the niche idea is introduced into the competitive exclusion
step of the IWO algorithm, and the characteristics of classification competition of niche is used to
increase the diversity of the population and improve the overall optimization ability of the algorithm.

The determination of the radius R of the niche is based on Equation (6):

R = max(dni) × [k(
iter

itermax
)

1
a
+ b− k], (6)

where dni represents the Euclidean distance from the ith weed to the most adaptable weed in the iter
iteration; a, b, and k are adjustable parameters. By adjusting their values, we can adjust the rate of
change and the start and end values of the radius R of the niche accordingly.

The process of dividing niches is described as follows:

(1) Arrange the weed individuals in the population in descending order according to the degree of
fitness. If the population number is greater than the maximum population number Pmax, take the
first Pmax weed individuals as the parents for the next generation.

(2) The center (H1) of the first niche is the position of the weed with the highest adaptability, and R is
its radius. If the Euclidean distance (d1,i) of the other weeds in the population from the center
of niche H1 is less than R, they would be included into the niche H1. Otherwise, it would
be excluded.

(3) The second niche, H2, is marked by the weed with the highest adaptability among the rest of
the individuals not belonging to H1. Repeat the process (2) until all weeds in the population
are tagged.

The steps of NAIWO can be described as follows:

(1) Population and parameter initialization.
(2) Calculate the fitness of each individual weed and arrange all the individual weeds according to

the above-mentioned niche classification method.
(3) According to Equation (1), the growth and propagation of weeds are carried out to produce seeds.
(4) According to Equations (3)–(5), the adaptive spatial diffusion based on fitness is carried out.
(5) Solution is considered optimal when the solution meets the requirements or the maximum number

is reached.
(6) If the current number of individual weeds Piter is greater than the maximum population number

Pmax, go to the competition exclusion process in step 7; otherwise, return back to step 2.
(7) Competition exclusion: Select a certain number of weed individuals from each niche for the next

iteration as parents. The number of individuals selected in each niche is related to the ratio of the
number of individuals in the niche to the total number of individuals in the population as shown
in Equation (7):

N(i) = round(Pmax ×
X(i)

sum(X)
), (7)

where Pmax is the maximum population; X(i) represents the number of individuals in the ith niche
and sum(X) is the total number of individuals in all niches.

(8) Repeat steps 2 to 7 until the optimal solution is found or the maximum number of iterations
is reached.
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Based on the above improvement ideas, a new algorithm (NAIWO) with excellent performance is
established. To verify the effectiveness of the NAIWO algorithm, we have done a series of optimization
performance tests. The results and more information could be found in Appendix A.

2.3. Application: ASM1 Parameter Optimization for Actual Wastewater Treatment Plants

During the operation of a biological wastewater treatment plant, its internal biochemical reaction
mechanisms are extremely complex. Therefore, before the ASM1 was proposed, establishing the
process model for biological wastewater treatment plants was always difficult and lacked accuracy;
this led to difficulties in controlling the effluent water quality to meet increasingly strict standards
using controllers.

The purpose of ASM1 is to describe the reaction mechanisms of the activated sludge process as
accurately as possible. After selecting the appropriate reaction parameters for ASM1, the reaction
processes of an activated sludge plant can be described more accurately, laying the foundation for a
precise control of the effluent water quality parameters.

However, for different wastewater treatment plants located in different places, the environmental
conditions and inflow conditions may be quite different. If the recommended parameters given
by IWA are continued to be used, the model will lack accuracy when predicting the quality of the
treated effluent.

2.3.1. Plants and Data Description

In order to obtain an accurate model of the wastewater treatment plant, the proposed NAIWO
algorithm was used to estimate seven important parameters of ASM1, and the process models of two
wastewater treatment plants, the Pingliang City Wastewater Treatment Plant (PC-WWTP) in Gansu
Province, China and the Wushan County Wastewater Treatment Plant (WC-WWTP) in Tianshui City,
Gansu Province, China were established. PC-WWTP is a large full-scale activated sludge process-based
wastewater treatment plant with a designed wastewater treatment capacity of 50,000 m3/day and
an average daily wastewater inflow of 20,291 m3/day. WC-WWTP is a small biological wastewater
treatment plant with a designed wastewater treatment capacity of 8000 m3/day and an average daily
wastewater inflow of 5742 m3/day. Figure 2 shows the basic processing of both plants, PC-WWTP and
WC-WWTP, based on activated sludge process (ASP).
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All the experimental data used in this work comes from the dry weather dynamic inflow and
effluent water quality measurement data of these two wastewater treatment plants. The inflow data is
collected as an “Influent” input, shown in Figure 2, and the effluent data is collected as an ‘Effluent’
output. The data used in the experiment were measured by the sensors in the two wastewater treatment
plants. The inflow wastewater data includes the components of SI, SS, XI, XS, XB,H, XB,A, XP, SO, SNO,
SNH, SND, XND, SALK, TSS, and Q0, where TSS represents total amount of solids (mg SS /L) and Q0
stands for influent flow rate (m3/day). The effluent concentration of four representative components,
SNH, SNO, SS, and XS, was selected as the standard to judge the accuracy of parameter estimation.
A detailed description of these components and reactions is given in Table A5. See more information
in Appendix B.
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The simulation data were collected in dry weather and the duration was 1 day. The sampling
frequency was 15 min, so there were 97 sets of sampling data for computations.

2.3.2. ASM1 Parameter Estimation

The purpose of parameter estimation for ASM1 is to select a set of appropriate parameter values
to minimize the errors between the model output and the observed values in the wastewater treatment
plant. There are five stoichiometric parameters of biochemical reactions and 14 kinetic parameters
involved in ASM1. The correctness of these 19 parameters ensures the accuracy of the ASM1 model
in simulating the performance of actual wastewater treatment plants and the specific information of
those 19 parameters is shown in Table 1.

Estimation of all the 19 parameters in ASM1 is very complicated. Therefore, seven parameters [24]
that have a greater influence on the output results were selected in this section as the estimation
objects and the remaining 12 insensitive parameters were used as recommended by the ASM1
model description.

In the process of parameter estimation of ASM1, the sum of squares of relative errors f (t) were
used as the objective function as shown in Equation (8) in order to minimize the difference between
model outputs and observed data:

f (t) =
p∑

i=1

q∑
j=1

 yi j − y′i j

y′i j


2

, (8)

where p is the total number of times the samples were taken and q is the number of effluent quality
parameters considered; yi j is the model prediction of the jth effluent quality parameter of the ith
sampling time and y′i j is the measured value of the jth effluent quality parameter of the ith sampling time.
The process of parameter optimization is to find the minimum value of the objective function. Figure 3
shows the flow chart of the NAIWO algorithm used in parameter estimation of the ASM1 model.

By bringing the optimal parameter values estimated by the proposed NAIWO algorithm to
run ASM1, this will simulate the effluent quality from an activated sludge plant accurately. In this
study, the effluent concentration of ammonia nitrogen (SNH), nitrate nitrogen (SNO), soluble rapidly
biodegradable organic matter (SS), and insoluble slowly degradable organic matter (XS) were selected
as the objects to verify the validity of the ASM1 parameter estimation.
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Table 1. Nineteen parameters of ASM1.

Symbol Description Value ++ Unit

5 stoichiometric parameters

YA Yield coefficient of autotrophic bacteria 0.24 g cell COD
formed·(g COD oxidized)−1

YH Heterotrophic yield coefficient 0.67 g cell COD formed·(g N oxidized)−1

f p Proportion of inert particles in microorganisms 0.08 dimensionless

ixb Proportion of nitrogen content in microbial cells 0.086 g N·(g COD)−1 in biomass

ixp Proportion of nitrogen content in microbial products 0.06 g N·(g COD)−1 in particulate
products

14 kinetic parameters

µH
Maximum specific growth rate coefficient of

heterotrophic bacteria 6.0 d−1

KS Half saturation coefficient of heterotrophic bacteria 20.0 g COD·m−3

KO,H
Oxygen half-saturation coefficient of heterotrophic

bacteria 0.2 g COD·m−3

KNO
Nitrate half-saturation coefficient of denitrifying

bacteria 0.5 g NO3-N·m−3

bH Attenuation coefficient of heterotrophic bacteria 0.62 d−1

ηg
Hypoxia correction factor for heterotrophic bacteria

under hypoxia 0.8 dimensionless

ηH
Correction factor for hydrolysis under anoxic

conditions 0.4 dimensionless

kh Maximum specific hydrolysis rate 3.0 g slowly biodegradable
COD·(g cell COD·d)−1

KX
Half saturation coefficient of slowly biodegradable

substrate hydrolysis 0.03 g slowly biodegradable
COD·(g cell COD)−1

µA Maximum specific growth rate of autotrophic bacteria 0.80 d−1

KNH
Ammonia half-saturation coefficient of autotrophic

bacteria 1.0 g NH3-N·m−3

KO,A
Oxygen half saturation coefficient of autotrophic

bacteria 0.4 d−1

ka Dissolved organic ammonia nitrating rate 0.08 g COD·m−3

bA Autotrophic bacteria specific decay rate 0.05 m3
·(g COD·d)−1

++ The values are for 20 ◦C, extracted from [1].

3. Results and Discussion

In order to prove the advantages of the proposed NAIWO algorithm, seven parameters of ASM1
are estimated by IWO, GA, BA, and NAIWO, respectively. The optimization results are shown in
Table 2 (PC-WWTP) and Table 3 (WC-WWTP).

Table 2. Estimated results of seven parameters of ASM1 for PC-WWTP.

Parameter Range
International Water
Association (IWA)

Recommendation (20 ◦C)

Values Estimated by Selected Algorithms

Genetic
Algorithm

(GA)

Bat
Algorithm

(BA)

Invasive Weed
Optimization

(IWO)
NAIWO

YH 0.4–0.9 0.67 0.6663 0.6720 0.6649 0.6690
bH 0.3–1.2 0.62 0.3448 0.3728 0.4413 0.4521
µH 2–18 6 2.6388 2.8941 3.2101 4.9771
µA 0.3–2.4 0.8 0.7293 0.9243 0.9225 0.6733

KOA 0.13–1.2 0.4 0.2189 0.6011 1.1064 0.5139
KNH 0.3–3 1 1.9232 2.0819 1.2479 1.0908
KS 10–40 20 12.9502 13.6463 13.1019 21.8191
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Table 3. Estimated results of seven parameters of ASM1 for Wushan County Wastewater Treatment
Plant (WC-WWTP).

Parameter Range IWA Recommendation (20 ◦C)
Values Estimated by Selected Algorithms

GA BA IWO NAIWO

YH 0.4–0.9 0.67 0.7630 0.7447 0.7247 0.7510
bH 0.3–1.2 0.62 0.4953 0.5480 0.5482 0.5891
µH 2–18 6 4.9608 5.7496 8.5081 6.2899
µA 0.3–2.4 0.8 2.2481 1.4434 1.9918 0.9003

KOA 0.13–1.2 0.4 1.1205 0.5600 1.1855 0.3851
KNH 0.3–3 1 2.8231 1.9352 1.9732 1.0687
KS 10–40 20 18.2024 16.8986 28.1369 18.8017

The fitness curves of the four algorithms in the parameter estimation process of ASM1 for the
two wastewater treatment plants are shown in Figure 4a,b, respectively. The calculation result of
Equation (8) (i.e., the sum of squares of relative errors) is used as the fitness value. Therefore, the fitness
value reflects the error between the predicted values by ASM1 and the actual measured values at the
wastewater treatment plant. The smaller the error value is, the better the simulation performance.
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(a) Pingliang City Wastewater Treatment Plant (PC-WWTP) and (b) WC-WWTP.

The shape of fitness curve reflects the change in error during the process of parameter optimization
carried out by an algorithm. The faster the fitness curve drops, the faster the convergence speed of the
algorithm and the smaller the final fitness value, the higher the convergence accuracy of the algorithm.

It can be seen from the fitness curve shown in Figure 4a (PC-WWTP) that the convergence accuracies
of GA and BA are significantly lower than that of IWO and NAIWO. For IWO, its convergence accuracy is
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only slightly less than NAIWO, but the convergence speed (declining speed of the curve) is significantly
lower than NAIWO. In addition, in the process of estimating the parameters of WC-WWTP, the final
fitness value of NAIWO is significantly smaller than the other three algorithms and the falling speed of
the fitness curve is also significantly higher than that of the other three.

In summary, the NAIWO algorithm can achieve the minimum error with the fastest speed in
comparison with GA, BA, and IWO, whether it is applied for large (PC-WWTP) or small (WC-WWTP)
wastewater treatment plants.

In order to further verify the effect of parameter estimation, the parameters estimated by the four
algorithms were introduced into ASM1 and the error between the predicted data of the ASM1 and
the actual effluent data were compared. Ammonia nitrogen (SNH), nitrate nitrogen (SNO), soluble
rapidly biodegradable organic matter (SS), and insoluble slowly degradable organic matter (XS) were
used as comparative objects. The comparison curves of predicted values and actual values are shown
in Figures 5 and 6.

Figures 5a–d and 6a–d are the effluent SNH, SNO, SS, and XS concentration curves of PC-WWTP
and WC-WWTP. The red solid line in the figure represents the actual measured water quality parameters
of the two wastewater treatment plants. The closer the other curves are to the red solid line, the smaller
the error during the simulation of ASM1 and the higher the accuracy of the parameter estimation.

It can be seen that when the recommended parameter values given by IWA were used,
the prediction errors of the model were larger. After optimal parameters were obtained by GA,
BA, IWO, and NAIWO algorithms, the prediction accuracy was improved to a certain extent.

In Figure 5a, when the concentration of effluent SNH was small, the prediction errors of the four
algorithms were small. When the concentration increased rapidly (the 50th–70th sampling points),
the four algorithms had obvious differences. Only the parameters estimated by NAIWO could track
the change of SNH concentration well. Meanwhile, it can be seen from Figure 5b–d that the NAIWO
algorithm had the best performance with the highest tracking accuracy to the measured data of SNO,
SS, and XS.

As can be seen from Figure 6, IWO had a similar prediction accuracy to that of NAIWO only when
predicting the SS concentration of the effluent. The prediction errors of the NAIWO algorithm for the
effluent concentration of SNH, SNO, and XS were much smaller than the GA, BA, and IWO algorithms.
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According to the results simulated by ASM1 for the effluent quality of two wastewater treatment
plants, it was found that the parameters estimated by GA, BA, and IWO can reduce the prediction error
of ASM1 to a certain extent, while the parameters estimated by NAIWO can produce the minimum
prediction error. Therefore, NAIWO is more effective in optimizing ASM1 parameters than GA, BA,
and IWO.

The results illustrate that for both the Pingliang City Wastewater Treatment Plant (PC-WWTP)
and Wushan County Wastewater Treatment Plant (WC-WWTP), the proposed NAIWO algorithm
is effective for the optimization of the seven sensitive parameters of ASM1. The ASM1 model with
optimized parameters can effectively predict the effluent quality of Pingliang City Wastewater Treatment
Plant and Wushan County Wastewater Treatment Plant. These two wastewater treatment plants
represent different scales with respect to treatment capacity and different water quality environments.
The successful application of NAIWO in ASM1 parameter estimation for these two wastewater
treatment plants gives confidence for NAIWO to be applied to other activated sludge process based
wastewater treatment plants.

4. Conclusions

In this paper, a niche-based adaptive invasion weed optimization (NAIWO) algorithm was
proposed to overcome the shortcomings of invasive weed optimization (IWO), such as insufficient local
search ability in the early stages of the iteration and insufficient population diversity in the later stages.
On the basis of high convergence accuracy, the NAIWO algorithm achieved the balance of global
convergence ability and convergence speed and the stability of the algorithm was also improved.

IWA recommended model parameters cannot be used to run ASM1 for each and every activated
sludge process based wastewater treatment plants as they are being operated under different
environmental conditions. Thus, seven sensitive parameters of the ASM1 model were estimated by
the NAIWO algorithm using the data obtained from a large and a small to medium scale treatment
plant. In tracking the effluent parameters of those two actual wastewater treatment plants, the NAIWO
algorithm achieved better prediction accuracy than the GA, BA, and IWO algorithms.

Author Contributions: X.D., Y.M. and X.W. conceived and designed the experiments; Y.M. performed the
experiments; X.D., Y.M. and V.J. analyzed the data; X.D., Y.M., X.W. and V.J. wrote the paper. All authors have
read and agreed to the published version of the manuscript.

Funding: This work is supported by the National Natural Science Foundation of China (No. 61563032, No. 61763208,
No. 61963025), the Natural Science Foundation of Gansu Province, China (No. 1506RJZA104, No. 2017GS10945),
and the University Scientific Research Project of Gansu Province (No. 2015B-030).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In order to evaluate the performance of the proposed NAIWO algorithm, two simulation
experiments were designed and the details of which are provided in this section. In the first part,
nine well-known test functions were selected to verify the searching ability of the proposed NAIWO.
Table A1 shows the basic information of the nine benchmark functions and the corresponding 2D
perspectives are shown in Figure A1.
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Table A1. Two-dimensional benchmark test functions considered in the simulations.

Functions Names Dimension Solution Range Global Minimum

F1 Ackley 2 xi ∈ [−32.768, 32.768] f min = 0 at (0, 0)
F2 Cross-in-Tray 2 xi ∈ [−20, 20] f min = −2.06261 at (±1.3491, ±1.3491)
F3 Drop-wave 2 xi ∈ [−10, 10] f min = −1 at (0, 0)
F4 Griewank 2 xi ∈ [−100, 100] f min = 0 at (0, 0)
F5 Levy 2 xi ∈ [−10, 10] f min = 0 at (1, 1)
F6 Rosenbrock 2 xi ∈ [−2.048, 2.048] f min = 0 at (1, 1)
F7 Schaffer 2 xi ∈ [−20, 20] f min = 0 at (0, 0)
F8 Schwefel 2 xi ∈ [−500, 500] f min = 0 at (420.9687, 420.9687)
F9 Three-hump camel 2 xi ∈ [−10, 10] f min = 0 at (0, 0)
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Figure A1. A two-dimensional perspective with contours of the benchmark test functions, including
(a) Ackley function (F1), (b) Cross-in-Tray function (F2), (c) Drop-wave function (F3), (d) Griewank
function (F4), (e) Levy function (F5), (f) Rosenbrock function (F6), (g) Schaffer function (F7), (h) Schwefel
function (F8), and (i) Three-hump camel function (F9).

Except for F6 and F9, all the other seven functions have a large number of local minimums.
Even for F6 and F9, the global minimum of the function cannot be easily found when reaching the
convergence point. These functions are widely used in the performance test of any newly proposed
intelligent algorithm [25,26].

During the test, the initial search range (σinitial) of the IWO algorithm and the NAIWO algorithm is
generally 1% of the definition domain and the final search range is σfinal = 1e− 5. The initial population
P0 = 25 and the maximum population Pmax = 100; Maximum number of iterations itermax = 300.
Where in the NAIWO algorithm, the determination parameters of the niche radius are a = 3, b = 1.05,
and k = 0.6, Adaptive spatial diffusion parameter K = 5 and T = 10.

Figure A2 shows the fitness curves of the two algorithms. The maximum number of iterations
selected in the test is 300, while the global search of the two algorithms is mainly reflected in the first
100 generations and the iterative process of the latter is mainly local search in order to obtain better
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convergence accuracy. Therefore, when generating the fitness curve, in order to better display the
contrast, the first 100 generations of data were selected. The nine images in Figure A2 illustrate that
the NAIWO algorithm proposed in this study has obvious advantages in both global convergence
ability and convergence speed than the IWO.

In order to obtain more reliable results, each function was tested 30 times and the average value,
minimum value, and variance are shown in Table A2. By comparing the minimum convergence
values of the two algorithms in Table A2, it can be seen that in most cases, the NAIWO algorithm
has comparable or higher convergence accuracy than the IWO algorithm. Meanwhile, the mean of
convergence can better reflect the overall convergence of the algorithm. The analysis reflects that
NAIWO has a higher probability of converging to the global minimum than IWO. The variance data
shows that the stability of the NAIWO algorithm converging to the global optimal solution is much
higher than IWO.
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Figure A2. Comparison of the fitness curves between NAIWO and IWO. The maximum number of
iterations selected in the test is 300. In order to better display the contrast, the first 100 generations
are selected when generating the image. (a) Ackley function (F1), (b) Cross-in-Tray function (F2),
(c) Drop-wave function (F3), (d) Griewank function (F4), (e) Levy function (F5), (f) Rosenbrock function
(F6), (g) Schaffer function (F7), (h) Schwefel function (F8), and (i) Three-hump camel function (F9).
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Table A2. Comparison data of IWO and NAIWO algorithms.

Functions Algorithms Mean Minimum Variance

F1
IWO 0.96031 1.329 × 10−7 11.153

NAIWO 1.702 × 10−6 1.4251× 10−7 5.9939 × 10−13

F2
IWO −2.0511 −2.0626 1.919× 10−3

NAIWO −2.0626 −2.0626 1.2302 × 10−28

F3
IWO −0.8402 −1 1.983 × 10−2

NAIWO −1 −1 7.125 × 10−24

F4
IWO 5.5380 × 10−2 4.6835 × 10−2 2.1 × 10−4

NAIWO 1.9692 × 10−14 1.22125 × 10−15 5.3704 × 10−28

F5
IWO 1.895 5.7394 × 10−13 5.95262

NAIWO 2.125 × 10−12 1.1457 × 10−13 5.7893 × 10−24

F6
IWO 6.29 × 10−3 3.8735 × 10−14 4.1 × 10−4

NAIWO 8.3774 × 10−13 7.91675 × 10−16 5.876 × 10−25

F7
IWO 6.474 × 10−3 0 5.0604 × 10−5

NAIWO 6.6613 × 10−17 0 2.0912 × 10−32

F8
IWO 68.431 2.5455 × 10−5 7463.60

NAIWO 7.8959 2.5455 × 10−5 902.928

F9
IWO 3.98 × 10−2 1.66 × 10−15 1.066 × 10−2

NAIWO 1.32 × 10−13 7.04 × 10−16 1.229 × 10−26

To further verify the optimization ability of the proposed NAIWO algorithm, two well-known
optimization algorithms, genetic algorithm (GA) and bat algorithm (BA), are compared using four
higher-dimensional benchmark functions in this section. Table A3 shows the details of the four test
functions. The number of iterations is 500 and the selection methods of the value of other parameters
are the same as above.

Table A3. High dimensional benchmark test functions considered in the simulations.

Functions Names Dimension Equations Global Minimum

F10 Griewank 3 f (x) =
n∑

i=1

x2
i

4000 −
n∏

i=1
cos

(
xi√

i

)
+ 1,−600 ≤ xi ≤ 600 f min = 0 at (0,0,0)

F11 Rastirgin 3 f (x) =
n∑

i=1

[
x2

i − 10 cos(2πxi)
]
+ 10n,−5.12 ≤ xi ≤ 5.12 f min = 0 at (0,0,0)

F12 Colville 4 f (x) = 100(x1
2
− x2)

2
+ (x1 − 1)2 + (x3 − 1)2 + 90(x3

2
− x4)

2

+10.1((x2 − 1)2 + (x4 − 1)2) + 19.8(x2 − 1)(x4 − 1),−10 < xi < 10
f min = 0 at (1,1,1,1)

F13 Powell 4 f (x) = (x1 + 10x2)
2 + 5(x3 − x4)

2 + (x2 − 2x3)
4

+10(x1 − x4)
4,−4 < xi < 5

f min = 0 at (0,0,0,0)

Figure A3 shows the fitness curve of the iterative process of the four algorithms, which shows
that in the process of finding the minimum value of F10 and F11 functions, the NAIWO algorithm has
the most outstanding comprehensive convergence ability and fastest convergence speed. BA also has a
faster convergence speed, but its poor convergence stability makes it possible to converge to a local
minimum with a certain probability.

The statistical information of the 30 repeated simulations shown in Table A4 also confirms the
conclusions made above. In the 30 runs of the two functions F10 and F11, the minimum convergence
accuracy of the BA algorithm is the highest of the four algorithms, but its average value and variance
value are higher than that of the NAIWO algorithm by one or more orders of magnitude, indicating
that its convergence probability and stability are far inferior to the NAIWO algorithm. The comparison
of the statistical data of F10–F13 shows that the NAIWO algorithm has greater advantages in stability
and convergence accuracies compared with the other three algorithms, which shows the effectiveness
of the proposed algorithm.
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number of iterations selected in the test is 500. (a) Griewank function (F10), (b) Rastirgin function (F11),
(c) Colville function (F12), and (d) Powell function (F13).
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Table A4. Statistical comparison data of IWO, GA, BA, and NAIWO algorithms.

Functions Algorithms Mean Minimum Variance

F10

IWO 1.45927 2.58225 × 10−10 1.27896
GA 0.42361 0.02378 0.17285
BA 0.43115 2.70894 × 10−12 0.25147

NAIWO 2.3897 × 10−9 6.7921 × 10−11 3.5773 × 10−18

F11

IWO 0.18875 0.00740 0.01780
GA 0.35222 0.08101 0.01243
BA 0.01052 8.88178 × 10−14 0.00023

NAIWO 0.00263 1.61982 × 10−13 1.71477 × 10−5

F12

IWO 0.25676 1.02182 × 10−10 0.39066
GA 0.19600 0.01125 0.02123
BA 1.77976 0.01474 3.29279

NAIWO 0.00011 4.29174 × 10−11 1.66852 × 10−7

F13

IWO 1.73784 × 10−7 1.98073 × 10−12 3.33946 × 10−13

GA 0.08609 0.00225 4.89659 × 10−3

BA 8.79407 × 10−5 7.17666 × 10−6 5.63957 × 10−9

NAIWO 1.63239 × 10−9 1.12409 × 10−12 1.03073 × 10−17

Appendix B

ASM1 contains 13 substrate components (seven soluble components and six insoluble components)
as shown in Table A5. The influent concentrations of these 13 components reflects the degree of
contamination of the influent to the wastewater treatment plant. All the 13 substrates have their
reaction rates and the reaction rate equations are given in Table A6.

Table A5. The 13 components of ASM1.

Components Definition Unit

SI Soluble inert organic matter g·COD·m−3

SS Readily biodegradable substrate g·COD·m−3

XI Particulate inert organic matter g·COD·m−3

XS Slowly biodegradable substrate g·COD·m−3

XB,H Active heterotrophic biomass g·COD·m−3

XB,A Active autotrophic biomass g·COD·m−3

XP Particulate product arising from biomass decay g·COD·m−3

SO Oxygen (negative COD) g·COD·m−3

SNO Nitrate and nitrite nitrogen g·N·m−3

SNH NH4+ and NH3 nitrogen g·N·m−3

SND Soluble biodegradable organic nitrogen g·N·m−3

XND Particulate biodegradable organic nitrogen g·N·m−3

SALK Alkalinity mol·m−3

Table A6. Reaction rate equations of the 13 components.

Components Reactions

SI (i = 1) r1 = 0

SS (i = 2) r2 = − 1
YH
ρ1 −

1
YH
ρ2 + ρ7

XI (i = 3) r3 = 0

XS (i = 4) r4 =
(
1− fp

)
ρ4 +

(
1− fp

)
ρ5 − ρ7
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Table A6. Cont.

Components Reactions

XB,H (i = 5) r5 = ρ1 + ρ2 − ρ4

XB,A (i = 6) r6 = ρ3 − ρ5

XP (i = 7) r7 = ρ4 + ρ5

SO (i = 8) r8 = − 1−YH
YH

ρ1 −
4.57−YA

YA
ρ3

SNO (i = 9) r9 = − 1−YH
2.86YH

ρ2 +
1

YA
ρ3

SNH (i = 10) r10 = −iXBρ1 − iXBρ2 −
(
iXB + 1

YA

)
ρ3 + ρ6

SND (i = 11) r11 = −ρ6 + ρ8

XND (i = 12) r12 =
(
iXB − fpiXP

)
ρ4 +

(
iXB − fpiXP

)
ρ5 − ρ8

SALK (i = 13) r13 = − iXB
14 ρ1 +

(
1−YH

14·2.86YH
−

iXB
14

)
ρ2 +

(
iXB
14 + 1

7YA

)
ρ3 +

1
14ρ8

where ρ1 to ρ8 are the growth, decay, and hydrolysis of microorganisms in wastewater listed in Table A7. These 21
reaction processes, shown in Tables A6 and A7, represent the basic processes involved in the biological treatment of
activated sludge-based wastewater treatment plants.

Table A7. Reaction rate of eight sub-reaction processes.

Processes Descriptions

ρ1 µH
(

SS
KS+SS

)(
SO

KO,H+SO

)
XB,H

ρ2 µH
(

SS
KS+SS

)( KO,H
KO,H+SO

)(
SNO

KNO+SNO

)
ηgXB,H

ρ3 µA
(

SNH
KNH+SNH

)(
SO

KO,A+SO

)
XB,A

ρ4 bHXB,H

ρ5 bAXB,A

ρ6 kaBNDXB,H

ρ7 kh
XS/XB,H

KX+(XS/XB,H)

[
ηh

(
SO

KO,H+SO

)
+ ηh

( KO,H
KO,H+SO

)(
SND

KNO+SNO

)]
XB,H

ρ8 ρ7(XND/XS)

There are five stoichiometric parameters of biochemical reactions and 14 kinetic parameters
involved in Tables A6 and A7, respectively. The correctness of these 19 parameters ensures the accuracy
of the ASM1 model in simulating the performance of actual wastewater treatment plants.
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