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'is paper deals with the spreading speeds in the classical Lotka–Volterra cooperative system, of which the bounds have been
studied earlier. By introducing an auxiliary cooperative system and constructing an upper solution, we obtain a sufficient
condition to confirm two distinct spreading speeds of unknown functions. Due to the different average moving speeds of different
level sets, we find the existence of propagation terraces in such a cooperative system with constant coefficients. We also present
some numerical results to illustrate our results.

1. Introduction

'ere are many examples where the interaction of two or
more species is to the advantage of all, which is described by
cooperative or mutualism models in population dynamics.
Considering the limited carrying capacities for both species,
one basic cooperative model is the following Lotka–Volterra
type system:

dN1

dt
� r1N1 1 − N1 + b1N2( 􏼁,

dN2

dt
� r2N2 1 − N2 + b2N1( 􏼁,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

in which all the parameters are positive and N1, N2 rep-
resent the densities of two cooperative species. We refer to
Murray (Section 3.6 [1]) for the dynamics of (1). Introducing
the spatial movement of individuals, one reaction-diffusion
model is given by [2]

zu1(x, t)

zt
� d1Δu1(x, t) + r1u1(x, t) 1 − u1(x, t) + b1u2(x, t)􏼂 􏼃,

zu2(x, t)

zt
� d2Δu2(x, t) + r2u2(x, t) 1 − u2(x, t) + b2u1(x, t)􏼂 􏼃,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

in which x ∈ R, t> 0,Δ � z2/zx2 and all the parameters are
positive. If b1b2 < 1, then (2) admits a positive steady state
that is spatially homogeneous and defined by

E � e1, e2( 􏼁 �
1 + b1
1 − b1b2

,
1 + b2
1 − b1b2

􏼠 􏼡. (3)

From the viewpoint of population dynamics, an im-
portant problem is to formulate the dynamics of (2) when
the initial values satisfy proper conditions. In particular,
assuming that u1(x, 0), u2(x, 0) have nonempty compact
supports, Li et al. [2] and Lin [3] studied the corresponding
initial value problem of (2) by the following propagation
threshold [4].

Definition 1. Assume that u(x, t) is a nonnegative function
for all x ∈ R, t> 0. 'en cu is called the spreading speed of
u(x, t) if

(a) limt⟶∞sup|x|>(cu+ε)tu(x, t)> 0 for any given ϵ> 0
(b) liminf t⟶∞inf |x|<(cu−ε)tu(x, t)> 0 for any given
ϵ ∈ (0, cu)

More precisely, Li et al. (Example 4.1 in [2]) estimated
that

2
���

diri

􏽱

≤ cui
≤ 2

�����

diriei

􏽱

, i � 1, 2, (4)
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and some other bounds when d1r1 > d2r2e2. Moreover, Lin
('eorem 3.1 in [3]) proved that if d1r1 >d2r2e2, then
cu2
≥ 2

����������
d2r2(1 + b2)

􏽰
, cu1

� 2
����
d1r1

􏽰
. 'e purpose of this pa-

per is to present some results such that cu2
� 2

����������
d2r2(1 + b2)

􏽰

if d1r1 >d2r2e2.
By Lin ('eorem 3.1 in [3]), it suffices to study the upper

bounds of cu2
if d1r1 > d2r2e2. For this purpose, we introduce

an auxiliary cooperative system that admits weaker irre-
ducible property.'e classical results inWeinberger et al. [5]
imply the existence of constant speed of asymptotic
spreading. However, this system is not subhomogeneous,
and we cannot use some classical results of monotone
semiflows to present the speed. In this paper, we present
some sufficient conditions such that cu2

� 2
����������
d2r2(1 + b2)

􏽰
,

which is based on proper upper and lower solutions and
comparison principle. Furthermore, we give some numerical
results to explore both the role of linear part and nonlinear
part in the reaction term.

2. Main Results

Consider the initial value problem

zu1(x, t)

zt
� d1Δu1(x, t) + r1u1(x, t)

1 − u1(x, t) + b1u2(x, t)􏼂 􏼃,

zu2(x, t)

zt
� d2Δu2(x, t) + r2u2(x, t)

1 − u2(x, t) + b2u1(x, t)􏼂 􏼃,

u1(x, 0) � ψ1(x), u2(x, 0) � ψ2(x),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

in which x ∈ R, t> 0, positive parameters satisfy

0< b1b2 < 1, d1r1 > d2r2e2. (6)

'e initial conditions ψ1,ψ2 are bounded and uniformly
continuous functions admitting nonempty supports such
that

0≤ψi(x)≤ ei, x ∈ R, i � 1, 2. (7)

By the basic theory of reaction-diffusion systems [6, 7],
we have the following conclusion.

Lemma 1. Equation (5) has a global classical solution such
that

0≤ ui(x, t)≤ ei, x ∈ R, t> 0, i � 1, 2. (8)

Study the following auxiliary system

zU1(x, t)

zt
� d1ΔU1(x, t) + r1 U1(x, t) + 1􏼂 􏼃

−U1(x, t) + b1U2(x, t)􏼂 􏼃,

zU2(x, t)

zt
� d2ΔU2(x, t) + r2U2(x, t)

1 + b2 − U2(x, t) + b2U1(x, t)􏼂 􏼃,

U1(x, 0) � ϕ1(x), U2(x, 0) � ϕ2(x),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

where x ∈ R, t> 0, and

ϕ1(x) � max 0,ψ1(x) − 1􏼈 􏼉,

ϕ2(x) � ψ2(x),

x ∈ R.

(10)

'e following existence of classical solutions of (9) is true
by the theory in [6, 7].

Lemma 2. Equation (9) has a global classical solution such
that

0≤U1(x, t)≤ e1 − 1, 0≤U2(x, t)≤ e2, x ∈ R, t> 0.

(11)

Moreover, the comparison principle implies that

max u1(x, t) − 1, 0􏼈 􏼉≤U1(x, t), u2(x, t)≤U2(x, t), x ∈ R, t> 0.

(12)

At the steady state (0, 0), the linearizing system of (9) is

zU1(x, t)

zt
� d1ΔU1(x, t) − r1U1(x, t) + r1b1U2(x, t),

zU2(x, t)

zt
� d2ΔU2(x, t) + r2 1 + b2( 􏼁U2(x, t).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(13)

Evidently, (13) is not irreducible, but the hair-trigger
effect in (9) occurs once ϕ2(x) admits nonempty support
even if ϕ1(x) � 0, x ∈ R. 'e phenomenon is similar to
that in competition-exclusion process in diffusive compet-
itive systems (see Weinberger et al. [5]). Again by the
comparison principle and the results stated in Section 1 (Li
et al. (Example 4.1 in [2]) and Lin ('eorem 3.1 in [3])), we
have the following results on spreading speed.

Lemma 3. cu2
� 2

����������
d2r2(1 + b2)

􏽰
if cU2

� 2
����������
d2r2(1 + b2)

􏽰
.

By Lemma 3, it suffices to give some sufficient conditions
such that cU2

� 2
����������
d2r2(1 + b2)

􏽰
. Note that (9) is cooperative

but not subhomogeneous; then Weinberger et al. [5] implies
that
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cU2
≥ 2

�����������

d2r2 1 + b2( 􏼁,

􏽱

cU1
≥ 2

����������

d2r2 1 + b2( 􏼁

􏽱

,

(14)
which is also clear by utilizing the comparison principle and
studying the following auxiliary equation [4]:

zw(x, t)

zt
� d2Δw(x, t) + r2w(x, t) 1 + b2 − w(x, t)􏼂 􏼃, x ∈ R, t> 0. (15)

Now, we prove that cU2
� 2

����������
d2r2(1 + b2)

􏽰
by con-

structing upper and lower solutions. For the purpose, we
introduce some notations. Define

c
∗

� 2
����������

d2r2 1 + b2( 􏼁

􏽱

,

λ �

���������

r2
1 + b2( 􏼁

d2

􏽳

.

(16)

We shall prove the following result on spreading speed.

Theorem 1. Assume that supx∈R[ϕ1(x) + ϕ2(x)]eλ|x| <∞. If

2r2 1 + b2( 􏼁≥d1r2
1 + b2( 􏼁

d2
+ r1 b1b2 − 1( 􏼁, (17)

then cU1
� cU2

� 2
����������
d2r2(1 + b2)

􏽰
such that cu1

� 2
����
d1r1

􏽰
>

cu2
� 2

����������
d2r2(1 + b2)

􏽰
.

Proof. Define

U1(x, t) � min e
λ x+c∗t+x0( ), e

λ − x+c∗t+x0( ), e1 − 1􏼚 􏼛,

U2(x, t) � min b2e
λ x+c∗t+x0( ), b2e

λ x+c∗t+x0( ), e2􏼚 􏼛,

(18)

in which x0 > 0 is a constant such that

U1(x, 0)≥ ϕ1(x),

U2(x, 0)≥ ϕ2(x),

x ∈ R.

(19)

If (U1(x, t), U2(x, t)) is an upper solution of (9), then
the result is true by the comparison principle of cooperative
systems. We now prove the definition of upper solutions.

We first prove that

zU2(x, t)

zt
≥d2ΔU2(x, t) + r2U2(x, t) 1 + b2 − U2(x, t)􏼂

+ b2U1(x, t)􏼃,

(20)

when U2(x, t) is differentiable, which is clear if
U2(x, 0) � e2. When U2(x, t) � b2e

λ(x+c∗t+x0) is differentia-
ble, then

zU2(x, t)

zt
� d2ΔU2(x, t) + r2U2(x, t) 1 + b2( 􏼁

≥ d2ΔU2(x, t) + r2U2(x, t) 1 + b2 − U2(x, t) + b2U1(x, t)􏼂 􏼃,

d2ΔU2(x, t) −
zU2(x, t)

zt
+ r2U2(x, t) 1 + b2( 􏼁 � b2e

λ x+c∗t+x0( ) d2λ
2

− c
∗λ + r2 1 + b2( 􏼁􏽨 􏽩 � 0,

(21)

such that (20) is true by the definitions of λ, c∗. Similarly, if
U2(x, t) � b2e

λ(− x+c∗t+x0) is differentiable, then we can ob-
tain the same inequality (20).

On U1, we need to prove that

zU1(x, t)

zt
≥d1ΔU1(x, t) + r1 U1(x, t) + 1􏼂 􏼃

· −U1(x, t) + b1U2(x, t)􏼂 􏼃,

(22)

when U1(x, t) is differentiable, which is true if U1(x, t) �

e1 − 1 since

r1 U1(x, t) + 1􏼂 􏼃 −U1(x, t) + b1U2(x, t)􏼂 􏼃≤ r1e1 − e1 − 1( 􏼁 + b1e2􏼂 􏼃 � r1e1 1 − e1 + b1e2􏼂 􏼃 � 0. (23)
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When U1(x, t) � eλ(x+c∗t+x0) is differentiable, then

zU1(x, t)

zt
− d1ΔU1(x, t) � c

∗λ − d1λ
2

􏼐 􏼑e
λ x+c∗t+x0( ),

� 2r2 1 + b2( 􏼁 − d1r2
1 + b2( 􏼁

d2
􏼢 􏼣e

λ x+c∗t+x0( ),

r1 U1(x, t) + 1􏼂 􏼃 −U1(x, t) + b1U2(x, t)􏼂 􏼃≤ r1 b1b2 − 1( 􏼁 U1(x, t) + 1􏼂 􏼃e
λ x+c∗t+x0( ),

≤ r1 b1b2 − 1( 􏼁e
λ x+c∗t+x0( ).

(24)

By b1b2 < 1, then (22) is true if (17) holds. Similarly, if
U1(x, t) � eλ(− x+c∗t+x0) is differentiable, then (22) holds. 'e
proof is complete. □

Once the spreading speed is confirmed, we may obtain
the convergence results in different moving intervals as time
goes to infinity by the monotonicity and Fatou lemma,
which is similar to that in the proof of Lin ('eorem 3.1 in
[3]). □

Theorem 2. Assume that 1eorem 1 holds. 1en for any
given

2ϵ ∈ 0, 2
����

d1r1

􏽱

− 2
����������

d2r2 1 + b2( 􏼁

􏽱

􏼒 􏼓, (25)

we have cu1
� 2

����
d1r1

􏽰
, cu2

� 2
����������
d2r2(1 + b2)

􏽰
and

limsup
t⟶∞

sup
cu2+ε􏼐 􏼑t<|x|< cu1−ε􏼐 􏼑t

u1(x, t) � liminf
t⟶∞

inf
cu2+ε􏼐 􏼑t<|x|< cu1−ε􏼐 􏼑t

u1(x, t) � 1,

limsup
t⟶∞

sup
|x|< cu2−ε􏼐 􏼑t

ui(x, t) � liminf
t⟶∞

inf
|x|< cu2−ε􏼐 􏼑t

ui(x, t) � ei, i � 1, 2,

limsup
t⟶∞

sup
|x|> cu1+ε􏼐 􏼑t

u1(x, t) � 0,

limsup
t⟶∞

sup
|x|> cu2+ε􏼐 􏼑t

u2(x, t) � 0.

(26)

3. Numerical Simulation

In this section, we simulate several cases of spreading speeds
of (2). Define

L
u
λ(t) � inf x: u(x, t) � λ{ }, (27)

which is a special level set of u(x, t). If t1 > t2 > 0, then
Lu
λ(t1) − Lu

λ(t2)/t2 − t1 may formulate the average move-
ment speed of the level sets in time interval [t2, t1], of which
the limit may further describe the spreading speed of u(x, t)

as t1 − t2 goes to infinity.

Example 1. We take

d1 � d2 � 1,

r1 � 1,

r2 � 0.3,

b1 � 0.2,

b2 � 0.3,

(28)

and initial value

ψ1(x) � ψ2(x) � cosx, |x|<
π
2

,

ψ1(x) � ψ2(x) � 0, |x|≥
π
2

.

(29)

Evidently, (17) is true. By our theory, we have cu1
�

2, cu2
� 1.2. From Figures 1 and 2, we see that two species

invade the habitat almost at two distinct constant speeds.
Furthermore, L

u1
0.1(t) and L

u1
1.1(t) have different moving

speeds, and the movement speed of L
u1
0.1(t) (Lu1

1.1(t) and
L

u2
1.1(t)) is close to cu1

(cu2
).

Example 2. We take

d1 � d2 � 1,

r1 � 1,

r2 � 0.3,

b1 � b2 � 0.2,

(30)

and initial value
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ψ1(x) � 1, x ∈ R,

ψ2(x) � cosx, |x|<
π
2

,

ψ2(x) � 0, |x|≥
π
2

.

(31)

Evidently, (17) is true. By our theory, we have cu1−1 �

2 and cu2
� 1.2. Although u1(x, 0) is not compactly sup-

ported, the spreading speed of u2 is close to our results from
Figures 3 and 4. Moreover, the movement speed of both
L

u1
1.1(t) and L

u2
1.1(t) is close to cu2

.

Example 3. We take

d1 � 1,

d2 �
1
3
,

r1 � r2 � 1,

b1 � b2 � 0.2,

(32)

and initial value

ψ1(x) � ψ2(x) � cosx, |x|<
π
2

,

ψ1(x) � ψ2(x) � 0, |x|≥
π
2

.

(33)

Evidently, (17) is not true. If our theory were true, then
we have

cu1
� 2,

cu2
�
2

��
10

√

5
≈ 1.264.

(34)

From numerical results (Figures 5 and 6), the threshold
may be true.

4. Discussion

'e cooperative systems have special dynamical features, for
example, many cooperative systems do not admit nontrivial
periodic solutions [8]. When the propagation dynamics is
concerned, much attention has been paid to monotone semi-
flows (see Fang et al. [9], Liang and Zhao [10], Lui [11], and
Weinberger et al. [5]). If a cooperative system is reducible at

1.5

1

0.5

0

1.5

1

0.5

0
150

100

50

0

Time t
150

100

50

0

Time t
–400

–400

–200

–200

0
0

200 200
400 400Distance x

u1 (x,t) u2 (x,t)

Distance x
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some invadable steady state (unstable steady state), then it is
possible that there are several different spreading speeds, which
at least has been observed in (2) (see Li et al. [2] and Lin [3]).
However, it remains open to present complete conclusion of
spreading speed of (2), and it is a challenging question to further
develop the propagation theory of monotone semiflows that are
not subhomogeneous and irreducible.

For scalar equations with constant coefficients, the propa-
gation dynamics has been widely explored. In particular, it has
been observed a unique spreading speed in both monostable
case and bistable case [4, 12] if the solutions could spread.When
the coefficients depend on spatial or temporal variables, the
propagation dynamics may be more complex [13]. In particular,
different propagation terraces occur due to the different
movement speeds of different level sets [14]. Although the
propagation terraces do not occur in classical monostable or
bistable scalar reaction-diffusion equations with constant coef-
ficients, we can observe different terraces in (2). To further show
different spreading speeds of different terraces is also an in-
teresting question.
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Figure 6: Spatial plots of u1(x, t) (green line) and u2(x, t) (blue line) at t � 100, 150 defined by (2) with (32) and (33).
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