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Abstract
The location and scale filters in discriminative correlation filter methods are lack of
accurate rotation representation capability and updated with fixed intervals, which leads
to tracking failure and time-consuming in complex scenarios. In this manuscript, a robust
tracker integrating particle filter into correlation filter is presented to cope with sharp
rotation and remarkable deformation. The target position and scale factor are firstly
estimated from the correlation filter, and then the rotation factor is determined by
similarity between candidates and template based on the particle filter. As a result, target
variation can be accurately described with position, scale and rotation factor. Moreover, a
long-time and short-time update scheme is proposed to solve target template drifting
problem. Extensive experimental results conducted on OTB-2013, OTB-2015 and VOT-
2016 show that the proposed tracker improves the accuracy and robustness of discrim-
inative correlation filter methods.

Keywords Object trackingcorrelationfilterparticle filter long-timeandshort-timeupdatescheme

1 Introduction

Visual tracking estimates the target trajectory from subsequent image sequences, with a given
initial position. Visual tracking technology plays an important role in intelligent surveillance
systems, intelligent transportation and human-computer interaction, etc.. It is still a challenging
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task due to severe occlusions, illumination variation, fast motion, motion blur and scale
variation, although lots of excellent visual trackers have been proposed in recent years.

The existing trackers are classified into discriminative trackers and generative trackers.
Discriminative trackers regard the tracking problem as a binary classification problem, and the
object is obtained by separating target from background. Target tracking method based on
correlation filter is an important branch of discriminative trackers, and attracts many re-
searcher’s attention because of its fast speed [3], high precision [13] on tracking benchmarks
[25, 38]. In 2010, Bolme et al. [3] firstly applied the correlation theory to target tracking and
proposed Minimum Output Sum of Squared Error (MOSSE) filter. Based on the MOSSE
filter, a large number of excellent research results have been put forward with different
strategies to improve robustness and accuracy of trackers. The KCF tracker [20] extends the
single channel grayscale feature to the multi channels features, and the paper [29] replaces the
HOG feature with layered convolution feature. Based on dimension reduction, Galoogahi et al.
[9, 16, 40] fused different features, such as the HOG, color attributes [14]. The CCOT and
ECO [11, 13, 39] introduced deep CNN features [8, 28] to improve the representation ability
of features. Danelljan et al. [12, 22, 26, 30] employed scale adaptive to estimate target size.
These multi channel and feature fusion can obtain more information of target appear-
ance changes and increase the robustness of visual trackers in complex scenes such as
illumination change, posture variation and fast motion. In addition, some works [10,
17, 18] optimize the filter learning effect on boundary constrains. These strategies
greatly promote adaptive ability of tracker in different complex scenes. However,
there are two obvious shortcomings in the DCF-based tracking methods, (1) the
tracker is not able to cope well with sharp rotation and remarkable deformation of
because of ignoring the rotation effect on tracking accuracy. (2) most of DCF-based
trackers [11, 13, 39] can not be updated in time with object changes owing to the
fixed intervals updating mechanism, especially when target has large appearance
changes and fast motion. On the other hand, generative trackers [31, 34, 35] imple-
ment tracking tasks by searching the most similar candidate to the target from the
appearance model space [24]. Generative trackers based on the Particle filter (PF) [4,
7, 34] can express and capture target with rotation or deform, but these methods focus
on description of target itself and ignore background information, which tends to drift
when target is occluded.

Contributions: The accurate rotation representation mechanism of the PF is introduced into
the CF in this manuscript, hence the tracker integrating PF into correlation filter framework
(CFPF) can solve the inaccurate tracking problem under target sharp rotation and remarkable
deformation. The target position and scale factor are determined by a trained correlation filter
based on DCF at the first stage. And then a PF tracking method is introduced to get the best
rotation factor on the basis of similarity between template and candidates. In the end the target
can be accurately captured by position, scale and rotation factor parameters. In order to solve
target template drifting problem, for the update of, we propose a long-time and short-time (LS)
update scheme of location filter to adaptively capture target changes. We use a short-time
update when the maximum score of the output response is a relatively small value, otherwise
we employ a long-time update.

The remainder of this manuscript is organized as follows. In Section 2, we review related work.
In Section 3, details of the proposed CFPF tracker including: filter training, target detection, and
model update are presented. Experiment results and discussions of parameters can be found in
Section 4. Finally, we conclude this manuscript and discuss the future works in Section 5.
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2 Related work

2.1 Discriminative correlation filter

The tracking methods based on DCF have attracted many researchers because of high accuracy
and efficiency. A correlation filter is learned to distinguish target from background appearance,
and the entire tracking process is achieved in the Fourier domain. The tracking task includes
three steps. Firstly, the correlation filter is trained by modeling input features as a Gaussian
distribution, and then output response is obtained using correlation and location filter. Finally,
the peak of output response is used to locate the target.

Bolme et al. [3] initially propounded a MOSSE filter that is robust for appearance changes,
and a kernelized tracker [21] was introduced to solve linearly inseparable and nonlinearly
separable problems, but these methods are restricted to a single feature channel. The perfor-
mance of more recent work [9, 16] have shown a notable improvement by expanding single-
channel grayscale features to multiple-channel features, but scale change does not attract any
attention. If the target scale can’t be detected, a lot of background or local target information
will be learned, which leads to tracker drifting. The achievements [12, 26] significantly
improved tracking accuracy thanks to multi-scale detection. However, the samples with
densely sampled were highly redundant. Henriques J.F. et al. [19] replaced dense sampling
with cyclic-shift sampling, which introduced boundary effects owing to periodic assumption.
Besides situation caused by fast motion is inevitable, Galoogahi et al. [17] proposed the
Alternating Direction Method of Multipliers (ADMM) to keep the correct filter size to deal
with the problem. Danelljan et al. [10] have proposed the Spatially Regularized DCF (SRDCF)
that used a larger detection area without enlarging effective filter size, and added space
regularization term to punish filter coefficients to near 0 in the boundary area, which increases
discriminative ability of classifier.

2.2 Particle filter

The PF is a sequential importance sampling algorithm based on Bayesian [2]. The PF was
firstly used for tracking [23] and offered a unified framework to estimate the posterior
probability density function of state variables. To guarantee robustness of tracker, particle
sampling combining affine transformation must be important to capture the variations in the
state space. Numerous importance sampling techniques of particle filter [5, 32, 41] have been
presented to obtain better proposals based on the previous position. The PF estimates posterior
probability of target position after getting observations in the following formulas (1) and (2).

p xt y1:t−1jð Þ ¼ ∫p xt xt−1jð Þp xt‐1 y1:t−1jð Þdxt−1 ð1Þ

p xt y1:tjð Þ ¼ p yt xtjð Þp xt y1:t−1jð Þ
p yt y1:t−1jð Þ ð2Þ

where x1 : t = {x1, x2,…, xt} donates all available state vectors with time t variation and y1 :
t = {y1, y2,…, yt} represents corresponding observations p(xt|xt − 1) is named as a dynamic
model, and p(yt|xt) is an observation model that estimates the likelihood of observing yt at
state xt.
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3 CFPF tracker

As shown in the Fig. 1, the entire tracking process of our CFPF tracker contains two
steps. We use correlation filter to define the location and size of the object in the first
stage (indicated by CF in the orange rectangle box), and then we use PF method to
detect the rotation scale of the object in the second stage (indicated by PF in the
green rectangle box). Combining traditional features HOG (Histogram of Oriented
Gradient, HOG), CN (Color Name, CN) and deep CNN features, the correlation filter
is trained for position and scale. During tracking process for each frame, a long-time
and short-time update scheme (shown in Fig. 2) and the two target templates update
scheme (shown in Fig. 3) are proposed to update the CF and PF model.

3.1 Training of location and scale filter

In the CF of Fig. 1, we first construct a correlation filter in the target tracking stage, the location and
scale are detected simultaneously by ECO [13]. A large number of target tracking algorithms have
been proposed to achieve fast and accurate scale estimation. We learn the training of location and
scale filter from ECO [13].We combine traditional features HOG, CN and deep CNN features. The
HOG feature represents the structural features of the gradient and describes local shape information.
The quantization of position and direction space can control the influence of translation and rotation
to some extent, and a normalized histogram in a local area can partially offset the effects of
illumination. The paper [13] has drawn that shallow layers contain more low-level features but
spatial resolution is high, while features from deep convolutional layers are discriminative and
possess more semantic information, namely high-level visual information. Therefore, the shallow
features are beneficial to target position. By a summary of the performance of these models on the
ILSVRC 2012 validation data, we select the imagenet-vgg-m-2048 net [6] and the outputs of the
first and fifth layers are selected as features [13].

If sn is the total number of scales, every scale level can be expressed as υ∈ − sn−1
2

� ��
;…; sn−1

2

� �g. A relative scale factor is α and the scale change factor between two adjacent

expressed as αυ. The scale factor of the previous frame is sc and the scale factor of the current
frame is αυsc. We extract image patches according to the scale factor αυsc. Training samples f
are made up of i feature maps f1, f2, …fi extracted from the image patches. There are J feature
channels f 1i ; f

2
i ;⋯ f J

i for per sample fi. Nj is the number of spatial samples in each feature

layer f j
i∈R

N j , f j
i n½ � donates a function indexed by the discrete spatial variable n ∈ {0,⋯,Nj −

1}, Ω ¼ RN1 �⋯RN J is sample space. To fuse different spatial resolution features, we
introduce an implicit interpolation model. And these features are translated into a continuous
spatial domain, the continuous spatial interval of samples is [0, T) ⊂ R. Here, the scalar T is

Fig. 1 The tracking flow diagram of the CFPF tracker
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arbitrary and it donates scaling of coordinate system. For each feature channel j, the interpo-
lation operator Oj{fj}(tp)is expressed as

Oj f j� �
tp
� � ¼ ∑

N j−1

n¼0
f j n½ �bj tp−

T
N j

n
� 	

ð3Þ

where Oj{fj} ∈ RJrepresents interpolated feature layer and regarded as a T-periodic function, bj
is an interpolation function with period T > 0, tp stands for the current position. A location
filter h is trained by the loss formula (4)

E hð Þ ¼ ∑
i¼1

Ns

αi C f f if g−si


 

2

L2 þ ∑
J

j¼1
ωh j



 

2
L2 ð4Þ

where we provide Ns pairs of samples f if ; sigNs
1 , αi are weights of samples, si represents a

label function that is a Gaussian function defined in the continuous spatial domain. Cf{fi} is
actual output response. The last item in formula (4) is a regular term and where ω is
regularization weights defined in the entire continuous interval [0, T) [10]. Since samples fi
have J feature channels, we need train a set of filters h = (h1, h2…hJ), where hj is the continuous
filter for feature channel j.

It has shown that many of filters hj learned incorporate little energy but take more time to
calculate [13]. Thus the number of filters can be greatly reduced by Principal Component
Analysis (PCA) in the first frame to discard the filters containing less information. The new

filters can be expressed as a linear combination ∑
P

p¼1
mj;php, namely h = (h1, h2…, hP). The

learned coefficientsmj, c transform a J-dimensional matrix into a P-dimensional matrix, written
as a J × P matrix M = (mj, p). The new filters can be expressed as Mh. The output response is
shown in formula (5).

CMh ff g ¼ Mh*O ff g ¼ ∑
p; j

mp; jhp*Oj f j� � ¼ h*MTO ff g ð5Þ

Fig. 2 Long-time and short-time update strategy

Fig. 3 The updating flow diagram of the object template
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We can see that the dimensionality reduction operator about the filter can be transformed to the
interpolated feature maps. So, the input of updating filters is the projected feature maps
MTO{f} in subsequent frames. The filters h and matrix M can be learned jointly in the first
frame, the training process is as follows

E h;Mð Þ ¼ CMh ff g−sk k2L2 þ ∑
P

p¼1
ωhpk k2L2 þ λ Mk k2 ð6Þ

where the last term in formula (6) is defined as L2-norm of M controlled by weight
parameterλ. In order to speed up training, the operation of the training filters is carried out

in the Fourier domain by Parseval’s theorem. bOj
k½ � ¼ bf j

k½ �b j k½ � donates the Fourier coeffi-
cients of the interpolated feature maps Ok{f}, and k represents the discrete Fourier transform.
The mark ∧ indicates the Fourier coefficients of corresponding variables. The loss (6) in the
Fourier domain is derived as

E bh;M� �
¼ bOT

Mbh−bs








2
l2
þ ∑

P

p¼1
bω*bhp


 


2

l2
þ λ Mk k2 ð7Þ

we employ Gauss-Newton and the Conjugate Gradient method in [13] to optimize the
quadratic subproblems.

3.2 Target detection

Traditional window-fixed PF tracking algorithms fail to effectively track targets under
limited particle number constraints. Especially when the target is in complex scenes,
such as occlusion or large deformation, the PF- based tracking methods can not
accurately obtain the position and scale of the target. In this manuscript, we use
correlation filter trained by scaling samples based on DCF to detect object size and
scale, and the method based on PF is used to detect the rotation of the object during
the target detection process.

The Fig. 1 shows the entire tracking process of our tracker. It contains two steps. The
rectangle box with orange lines indicates the first stage of target detection. As shown by the CF
in the box, we use correlation filter method to define the location and size of the object. First of
all, different size blocks from the image are cropped based on the center of the previous target
and then we extract HOG, CN and CNN features from these blocks. According to Eqs. (5) and
(8), the detection score, namely output response, is obtained.

bCMh ff g k½ � ¼ bOT
Mbh ¼ ∑

J

j¼1

bhj
k½ �bf j

k½ �bbj k½ � ð8Þ

where bCMh ff g is the Fourier coefficients of total detection score for all channels. And the
position and scale of the target is obtained by the maximum of detection score in the time
domain. As shown by ECO [13], we structure grids to perform rough initial estimation at these

positions c Tn
2Kþ1

� �
for n = 0, …, 2K, and employ grid search to obtain the peak in the area.

Next, the maximum value is treated as initial values of iterative optimization of the Fourier

series expansion c tp
� � ¼ ∑K

−Kbc k½ �ek tp
� �

. Similar to other discriminative methods, the score
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function c(tp) is defined on the continuous interval [0, T). The target position is determined
using the standard Newton’s method, and the gradient and Hessian are computed by analytic
differentiation of c(tp). The scale of the object is the sample scale of corresponding to the target
position.

The rectangle box with green lines indicates the second stage of target detection. As shown
by the PF in the box, we use PF method to detect the rotation factor of the object. First, a target
templateer is generated by the affine transformation parameters such as the target position, size
and obtained rotation factor. Then according to standard normal distribution, a random number
generator is used to obtain a random number matrix that it’s dimension is the equal to the
number np of the particles sampled based on current target position tp. We combine the random
number matrix and initial affine transformation parameters to get the affine parameters of
particles with different rotation factors and positions, and different particles based on these
particle parameters are generated. The generated particles are the candidates fc with green
boxes in the first image of the PF step in Fig. 1.

Next, for the sake of obtaining rotate factors, we calculate the similarities between
candidates fc and initial object template eri instead of probability calculation based on particle
filter. The calculation process of the similarity consists of two steps. The first step is calculating
the error ei between candidates and template eri using L1-norm. The operator is expressed as

ei ¼ f c;i−eri


 



L1

ð9Þ

where fc, i is the i-th candidate. At this time the errors are ranked from small to large. We only

select the first few candidates. The second step is obtaining the candidate f *c with the highest
correlation. For the simple distance calculation can’t get the candidate most similar to the
template eri, we calculate the correlation between the template er and the candidates to get the

best candidate f *c by formula (10).

f *c ¼ arg max
f c;i

f c;i⊗eri ð10Þ

At this time, the rotation factor of the candidate f *c is the most accurate rotation
factor. In the end, the target position tp and size obtained by CF method and the most
accurate rotation factor r∗ obtained by PF method are regarded as affine parameters to
get tracking result of the current frame.

3.3 Model updating

3.3.1 Update location and scale filter by long-time and short-time update mechanism

As shown in Fig. 2, we employ a novel updating mode combined long-time update and short-
time update. The leftmost figure is the output response and the cm represents the maximum
response value. The higher the score, the more accurate is the tracking when the score is above
a certain threshold. Therefore, we set a threshold ε in accordance with the maximal output
response cm. If the score cm exceeds the threshold ε, the location filter is updated using long-
time update on account of little change of the target. Or else the location and scale filter is
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updated employing short-time update, because target change is so much that the location filter
is difficult to adapt current object status.

We know that collecting samples every frame leads to redundancies. A generative sample
space model is used to achieve a compact description of the samples [13]. The approach is
based on the joint probability distribution p(f, s) of the samplesfand corresponding desired
outputs. Location filters h are updated as shown below

E hð Þ ¼ Ε Oh;M ff g−s

 

2
L2

n o
þ ∑

J

j¼1
ωhj



 

2
L2 ð11Þ

the expectation E is evaluated over the joint sample distribution p(f, s). Label function
si in (4) aligns the peak with the object center by shifting the samples f and all s = s0
are identical. We observe that the distribution can be factorized asp f ; sð Þ ¼ p fð Þδs0 sð Þ,
where δs0 sð Þ denotes the Dirac impulse, the joint sample distribution p(f, s) can be
obtained by estimating p(f) using a Gaussian Mixture Model (GMM). The location
and scale filter updated has better performance due to sample diversity and less
redundancy by formula (12).

E hð Þ ¼ ∑
Q

q¼1
πq C f uq

� �
−s



 

2
L2 þ ∑

J

j¼1
ωhj



 

2
L2 ð12Þ

where Q is the number of categories of the sample. The Gaussian means uq and prior
weights πq directly replace fi and αi, respectively, in (4).

3.3.2 Update object template

In order to better integrate PF into the correlation filter framework, the local update
strategy is adopted to make the filter adapt to the target change. As shown in the Fig.
3, the two target templates are updated during tracking process for each frame. Firstly,
after the object position and size of the current frame is determined, we combine the
rotation factor r*t−1 of the t-1-th frame to obtain the initial target template erti in t-th
frame. The initial target template erti is used to track target in t-th frame by formulas
(9) and (10) and the rotation factor r*t of the t-th frame is obtained. Then the first

template erti is updated by replacing r*t−1 as r*t and we obtain the tracking result ertl.
Finally, we use the tracking result ertl to obtain the final template ert. As shown in Fig.
3, the first step is the similarity comparison between ert−1;l0 and ertl;l0 . The second step

is update ert−1;l0 according to formula (13).

ert;l0 ¼ μert−1;l0 þ 1−μð Þertl;l0 if ert−1;l0−ertl;l0


 


2 < τ ð13Þ

where l′ donates l′-th local block. In the t-th frame, the target template ert;l0 contains

two parts, one is the template ert−1;l0 of the t-1-th frame, the other is the tracking resultertl;l0 of the t-th frame. The two parts are weighted via a template update factor μ. The

threshold τ is an empirically defined parameter indicating the dissimilarity level. The
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local update method avoids updating background information when the object is
occluded. The overall algorithm of our CFPF tracker is summarized into Algorithm 1.

4 Experiment

We conduct lots of experiments to evaluate the efficacy of our proposed tracker. First, we
compare our tracker with the state-of-the-art trackers and quantitatively analyze the accuracy
and success rate of our tracker on benchmark datasets OTB-2013 [37], OTB-2015 [38] and
VOT2016 [25]. Second, we evaluate our proposed tracker with adaptive updating strategy
against the tracker with fixed interval updating mechanism on OTB-2013 [37].

4.1 Experimental setup

Our tracking algorithm is implemented in MATLAB on a PC with Intel i7–7700 CPU
(3.6 GHz) and 32 GB memory. In experiments, some parameters of the algorithms should
be properly set in order to obtain acceptable performances. The part of the key experimental
parameters in this manuscript are shown in Table 1. our tracker has the highest accuracy and
success rate based on these parameters.

In all the experiments, three benchmarks are used. The first evaluation benchmark is the
OTB-50 [37] benchmark. It contains results of 29 trackers evaluated on 50 sequences by a no-
reset evaluation protocol. In the evaluation benchmark, center location error is the difference
between the center of tracked results and the ground truth, where the smaller value means the
more accurate result. The Pascal VOC overlap ratio [15] is defined as shown in Eq. (14).

rVOC ¼ At∩Ag


 

= At∪Ag



 

 ð14Þ
where At is the area of the tracking result, and Ag is the area of the ground truth. The larger
value rVOC means the more accurate result. Based on two evaluation criteria, the benchmark
results are reported as success plots and precision plots. The success plot shows portion of
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frames with rVOC greater than a threshold with respect to all threshold values. The precision
plot shows similar statistics on the center error. The one-pass evaluation (OPE) is employed to
compare our algorithm. We set the threshold of distance precision rate at 20 pixels and the
threshold of overlap success rate at 0.5 center location errors. We use the area-under-the-curve
(AUC) to rank the different methods. The AUC is displayed in the legend for each tracker.

The second evaluation benchmark is the OTB-100 [38] benchmark, it similar to OTB-50
benchmark, and the only difference is that OTB-100 contains 100 sequences including 50
sequences from OTB-50. The third evaluation benchmark is the VOT2016 [24] benchmark.
The dataset contains 60 sequences with improved annotations. The benchmark evaluated a set
of 70 trackers which includes the recently published state-of-the-art trackers. In VOT challenge
protocol, target is re-initialized whenever tracking fails and the evaluation module reports both
accuracy and robustness, which correspond to the bounding box overlap ratio and the number
of failures, respectively. In the experiments, we use accuracy-robustness score, accuracy-
robustness plot and expected average overlap (EAO) plot to rank the different methods.

To evaluate the impact of introducing PF into CF framework and LS updating mechanism,
our tracker CFPF is compared with 9 state-of-the-art trackers, SAMF [26], CCOT [11],
DCFNet [36], CREST [33], ECO [13], DeepSTRCF [27], SRDCF [10], SiamFC [1] and
KCF [20]. All of these trackers can’t deal with target rotation.

4.2 Quantitative evaluation

To verify the contribution of each component in our algorithm, we implement and evaluate our
approach. This section mainly shows our experimental results and we analyze the accuracy and
robustness of proposed method in detail by experimental results. Firstly, the part 1) analyzes
the impact on the overall performance and under target deformation and rotation of the tracker
based on our method introducing PF into CF. Secondly, in the part 2), we analyze the adaptive
updating strategy on the basis of experimental results by comparing with fixed interval
updating mechanism.

4.2.1 Evaluation of target deformation and rotation

In this section, we evaluate the accuracy and robustness to the target deformation and rotation,
while ensure that the overall performance of the tracker is not weakened of our tracker
compared with some of state-of-the-art trackers on benchmark datasets OTB-2013 [37],
OTB-2015 [38] and VOT2016 [25], respectively.

Table 1 Main parameters set in our tracker

Parameters Value

Score threshold of the long-time and short-time update cls 0.8
Number of frames of location filter long-time update nl 6
Number of frames of location filter short-time update ns 5
Template update block size sTb 4*4
Dissimilarity level threshold τ 0.1
Number of candidatesnc 400
Template update factor μ 0.95
Template size sT 48*48
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4.2.2 Evaluation on OTB-2013 dataset

Our CFPF tracker that introduces PF into the CF framework is first in the place for out-plane
rotation, in-plane rotation and deformation under good overall performance by precision and
success rate in Figs. 4 and 6. Based on the experimental results, we compare and analyze in
detail the impact of PF on the tracker.

As shown in Fig. 4, the AUC scores for each tracker are shown in the Fig. 4. It can be seen
that the tracking tasks are better achieved compared with other discriminative trackers and it
outperforms high competition. The overall precision of our proposed tracker is the highest, and
the area-under-the-curve (AUC) score is 0.941, while the CFPF gets a 0.011 improvement
upon classic correlation filter method ECO. Compared with state-of-the-art deep learning

Fig. 4 The tracking success plots on OTB-2013. The area-under-the-curve (AUC) scores for the all trackers are
reported in the legend
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trackers CREST, and DCFNet, the CFPF gets a 0.032 improvement at least. For success rate,
our tracker ranks the second, and the area-under-the-curve (AUC) score of the success rate is
0.708, it is 0.001 lower than ECO, which mainly attributes to the training labels that are
marked by rectangle box. As shown in Fig. 5, the red bounding box represents the tracking
result of ground truth. The green bounding box represents the tracking result of other
discriminative trackers and the blue bounding box represents the tracking result of our tracker.
in the process of calculating the success rate, our tracker considers the deformation and rotation
of the target. As formula 14, the overlap rate is calculated and it is slightly unsuitable for our
tracker. By contrast, the success rate of our tracker is higher than other discriminative trackers’
listed in the figure.

As can be seen from the above analysis, results indicate that the CFPF can effectively
capture the target information and the proper PF method is beneficial to improve the accuracy
and robustness of our tracker.

Fig. 5 Tracking results with different tracking methods

Fig. 6 The success plots over four tracking challenges, including illumination variation, out-of-plane rotation, in-
of-plane rotation and deformation on OTB-2013. The area-under-the-curve (AUC) scores for the all trackers are
reported in the legend
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To evaluate our tracker in complex scenes, such as illumination variation, fast motion, rotation,
occlusion, deformation and scale variation, especially the rotation and deformation of the target.
We calculate the precision and success rate in these scenarios separately. Figure 6 shows success
plots of four different attributes: illumination, out-plane rotation, in-plane rotation and deforma-
tion. The area-under-the-curve (AUC) scores for the all trackers are reported in the legend. The
CFPF tracker achieves the best performance in terms of both precision and success rate. For target
out-of-plane rotation, in-of-plane rotation and deformation, we separately analyze the perfor-
mance of the tracker introduced into particle filter. The precision and success rate area-under-the-
curve (AUC) scores of out-of-plane rotation are respectively 0.951 and 0.705, the CFPF gets
0.015 and 0.002 improvement upon ECO. The precision and success rate area-under-the-curve
(AUC) scores of in-of-plane rotation are respectively 0.911 and 0.673, the CFPF gets 0.006 and 0
improvement upon ECO. The precision and success rate area-under-the-curve (AUC) scores of
deformation are respectively 0.970 and 0.719, the CFPF gets 0.051 and 0.015 improvement upon
ECO. Compared to other trackers based on correlation filter and deep learning, our tracking
performance has improved significantly.

In addition, Fig. 7 shows some results of the top performing trackers: ECO [13],
DeepSTRCF [27], CREST [33], CCOT [11] and our CFPF on 6 challenge sequences. Our
CFPF tracker performs well in sequences with illumination variation, fast motion, rotation,
occlusion, deformation and scale variation (ironman, football, lemming, carScale, faceocc2
and tiger 2), especially rotation and deformation, which contributes to PF that makes the
tracker better handle the target deformation and rotation problems. And HOG features weaken
the effect of light. For other trackers, it is impossible to improve the target’s accurate tracking
under deformation and rotation (ironman and faceocc2).

These promising results suggest that our CFPF not only has the advantage of high location
accuracy, but also the good robustness of particle filter to target deformation and rotation due
to PF method. Furthermore, the LS update strategy makes the tracker more adaptable to target
deformation and fast motion, and specifically experimental analysis is in the part (2).

4.2.3 Evaluation on OTB-2015 dataset

Our CFPF tracker ranks first for out-plane rotation and deformation under good overall
performance by precision and success rate in Figs. 8 and 9.

Fig. 7 Sampled tracking results of our tracker for some challenging sequences including illumination variation,
fast motion, rotation, occlusion, deformation and scale variation. From left to right: ironman, football, lemming,
carScale, faceocc2 and tiger2
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The AUC scores for each tracker are shown in the Fig. 8. We observe that the overall
precision of our proposed tracker is the highest, and the area-under-the-curve (AUC) score is
0.915, while the CFPF gets a 0.005 improvement upon ECO. For success rate, our tracker
ranks the second, and the area-under-the-curve (AUC) score of the success rate is 0.683, it is
0.006 similar to this part a), as shown in Fig. 5. Another reason is that lower than ECO. The
reason of causing low success rate is the accuracy of our tracker needs to be improved for low
resolution sequences. Since the OTB-2015 dataset contains more videos with low resolution,
our CFPF tracker does not perform as well as ECO in overlap success. Compared with other
state-of-the-art trackers, even if MDNet uses the test sequence to train tracker, our tracker is
still more accurate and robust than MDNet.

To verify the first contribution of CFPF method for target rotation and deformation in our
algorithm, we also present the evaluation results of the target out-of-rotation and deformation

Fig. 8 The tracking success plots conducted on OTB-2015. The area-under-the-curve (AUC) scores for the all
trackers are reported in the legend
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on OTB-2015. Figure 9 shows success plots of two different attributes and the area-under-the-
curve (AUC) scores for the all trackers are reported in the legend. The CFPF tracker ranks first
in terms of both precision and success rate. As can be seen from Fig. 9, the precision and
success rate area-under-the-curve (AUC) scores of out-of-plane rotation are respectively 0.926
and 0.674, the CFPF gets 0.02 and 0.004 improvement upon ECO. The precision and success
rate area-under-the-curve (AUC) scores of in-of-plane rotation are respectively 0.911 and
0.673, the CFPF gets 0.006 and 0 improvement upon ECO. The precision and success rate
area-under-the-curve (AUC) scores of deformation are respectively 0.890 and 0.645, the CFPF
gets 0.036 and 0.016 improvement upon ECO.

Fig. 9 The success plots over two tracking challenges, including out-of-rotation and deformation on OTB-2015.
The area-under-the-curve (AUC) scores for the all trackers are reported in the legend

Fig. 10 Sampled tracking results of our tracker for some rotation and deformation sequences on OTB-2015.
From up to down: basketball, dog1, faceocc2 and jogging-1
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Fig. 11 The robustness-accuracy plots of tested algorithms in VOT2016 dataset. The AR plot (left) shows the
accuracy and robustness scores. In the ranking plot (right) the accuracy and robustness rank for each tracker is
displayed. The better trackers are located at the upper-right corner

Multimedia Tools and Applications (2020) 79:28431–2845228446



Figure 10 shows some results of the ECO [13] and our CFPF on 4 challenge sequences.
The purpose is to visually show that our tracker introduced the particle filter significantly
improves the situation that the discriminative correlation filter methods, such as ECO, MDNet,
DeepSTRCF, cannot accurately and robustly cope with the target deformation and rotation. As
can be seen from the sequence results in the figure, the trackers rotate with targets (dog1,
faceocc2). When the targets have deformation (jogging-1, basketball), the tracker can adjust its
shape according to the deformation of the target, and accurately track the target to reduce
background information. The ECO tracker always tracks the target in a rectangle box, no
matter how the target changes, which leads to containing more background information for
target. And the background information is used to update the filter, which will reduce the
accuracy of the filter. Therefore, the tracker’s adaptability to target deformation and rotation is
weakened, which makes tracker low robustness.

These experimental results conducted on OTB-2015 and the above analysis suggest that our
tracker can be able to adapt to target changes and achieve better accuracy and robustness by the
combination of correlation filter and particle filter. Especially in the target deformation and
rotation, the CFPF tracker uses the affine transformation parameters and solve the problem
rotating with the target for discriminative correlation filter methods.

4.2.4 Evaluation on VOT2016 dataset

To further validate the robustness and accuracy of our tracker, we evaluated it based on the
VO2016 dataset. Although the VOT-2016 benchmark takes into account the deformation and
rotation of the target during labeling target, the target boxes of the sequences with rotation
during testing are transformed into rectangle boxes. As shown in Fig. 5 and formula 2, this
dataset will show lower evaluation score compared to the actual performance of our target. In

Fig. 12 Expected Average Overlap (EAO) curve on VOT2016. Only the top 2 trackers are shown for clarity

Table 2 State-of-the-art in terms of EAO

CFPF ECO

EAO 0.370 0.374
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addition, the dataset can’t evaluate individually the performance of target deformation and
rotation, so we only test the overall performance of the CFPF tracker based on this dataset.

Figure 11 shows the robustness-accuracy scores and plots of CFPF and ECO trackers. The
robustness and accuracy with blue solid line represent ECO’s and the robustness and accuracy
with blue dotted line represent CFPF’s. We can see that the accuracy of ECO is higher than
CFPF, but CFPF tracker ranks first in the robustness. Meanwhile, Fig. 12 and Table 2 show
expected average overlap (EAO) curvets and scores of ECO and CFPF. It can be seen that
CFPF tracker is as good as ECO when sequence length is less than 400 in Fig. 5. If sequence
length is longer than 400, the expected average overlap plot of CFPF is falling faster than
ECO’s. The situation is reflected by the EAO scores in Table 2, and score of CFPF is 0.004

Fig. 13 The tracking success plots conducted on OTB-2013. The area-under-the-curve (AUC) scores for the all
trackers are reported in the legend
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lower than ECO’s. The above experimental results can roughly reflect that our tracker
introduced into PF maintain a stable overall performance.

4.2.5 Evaluation of the long-time and short-time update strategy

We conduct experiments on OTB-2013 for validity of the LS strategy. The red line refers to
the performance effect that particle filter is introduced to correlation filter framework and
combining LS update method, while the green line means no LS update, and the ‘CFPF+
update’ is CFPF with LS update strategy, but the ‘CFPF+not update’ is CFPF without LS
update in Figs. 13 and 14.

It can be seen briefly that the CFPF with LS gets 0.001 and 0.001 improvement upon CFPF
without LS in success rate and precision from Fig. 13. Additionally, Fig. 14 shows success
plots of two different attributes: out-plane rotation and deformation. The area-under-the-curve
(AUC) scores of tracker with LS update in taget out-plane rotation are separately 0.951 and
0.705. The improvement of success rate and precision are separately 0.001 and 0.002 on CFPF
without LS. The area-under-the-curve (AUC) scores of tracker with LS update in taget
deformation are separately 0.970 and 0.719. The improvement of success rate is 0.001 on
CFPF without LS. It is known from the above experimental results that the LS update strategy
improves accuracy and robustness of tracker.

Fig. 14 The success plots over target rotation and deformation on OTB-2013. The area-under-the-curve (AUC)
scores for the all trackers are reported in the legend
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For the tracking speed, the GPU version of CFPF tracker operates at 6–7 FPS (Frames Per
Second) and it’s about one FPS slower than ECO. The reason is that template matching took
some time in PF. But compared with other good performance trackers based on CNN features,
the tracking speed of CFPF tracker is relative superior.

5 Conclusion and future work

In this manuscript, we have proposed a new CFPF tracker introduced PF into DCF framework.
At first, a correlation filter is used to estimate the position and scale of a given object. Besides,
the affine parameters are detected using PF. According to the currently known target position
and size, we obtain randomly candidates around the target and get the initial template of the
current frame. Next correlation coefficients are calculated between template and candidates.
The optimal candidate with the highest degree of correlation and its corresponding rotation
factor are obtained. Lastly, according to the tracking principle of PF, the target location, size
and rotation factor are used as affine parameters to get target. Experimental results show that
our tracker has promising performance in terms of accuracy and robustness, and improves
performance in rotation and deformation comparing existing discriminative trackers.

The proposed CFPF tracker can precisely describe target variation in complex scenarios,
and further improves accuracy and robustness of discriminative correlation filter methods.
Limited by representation capability of target variation in the PF and CF, the proposed CFPF
tracker can’t accurately capture object when target with wide rotation angle or low resolution.
There is still room for improvement of target variation representation mechanism in discrim-
inative correlation filter methods, hence object tracking is still a challenging task because of
background cluttering and some special application scenarios.
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