
Vol.:(0123456789)

https://doi.org/10.1007/s11042-021-11708-z

1 3

Long sequence biometric hashing authentication based 
on 2D‑SIMM and CQCC cosine values

Yi‑bo Huang1  · Hexiang Hou1 · Tengfei Chen1 · Hao Li1 · Qiu‑yu Zhang2

Received: 18 November 2020 / Revised: 7 October 2021 / Accepted: 22 October 2021 / 

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
The existing speech authentication algorithms hash extracted speech features directly 
and saved them to the cloud, which is easy to cause speech feature leakage. In the pro-
cess of constructing hashing, the utilization efficiency of speech feature is poor, and the 
short hashing sequence will lead to the lack of discrimination of hashing sequence and the 
deviation of authentication. In order to solve the above problems, a long sequence biom-
etric hashing authentication algorithm based on two-dimensional Sine ICMI Cmodulation 
map (2D-SIMM) and constant Q cepstral coefficients (CQCC) cosine was proposed. First, 
this algorithm extracts the CQCC of the speech signal, then obtains the eigenvalue of the 
space cosine distance of the adjacent speech frame CQCC, and finally performs projection 
mapping between the eigenvalue and the pseudorandom matrix generated by 2D-SIMM to 
construct a biometric hashing sequence. This paper evaluates the proposed robust feature 
schemes of MFCC and CQCC space cosine distance through experiments. The experimen-
tal results show that CQCC spatial distance combined with 2D-SIMM biometrics charac-
teristics can reach 10−21 . when the threshold is 0.35. The BER mean was only 0.0383 for 
maintaining the robustness of operation for different contents. When the SNR is -5 dB, 
the matching rate of different noises can reach 45%. At the same time, it also improves the 
security of the biological template, and the overall performance is greatly improved com-
pared with the existing algorithm.
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1  Introduction

In recent years, the storage of unprotected biometric data poses a serious privacy threat. 
Due to the scarcity of personal biometrics, once lost, sensitive information about users 
will be exposed, leading to security risks [3, 6]. At present, Security vulnerability can be 
identified in the speech biometric authentication algorithms right from data capture up to 
data storage into the speech biometric database. At the same time, the hashing sequence 
constructed is relatively short, and the same hashing sequence may come from different 
user speech features. The low discrimination among users leads to high error rate and poor 
authentication effect. Therefore, the research on the security and differentiation of speech 
biometric content authentication becomes an important challenge.

Biometric authentication algorithms widely use biometric features such as human face 
[2, 14], palm print [9, 20, 31], fingerprint [1, 18], signature [10, 35], iris [11, 24], but rarely 
involve speech features. In recent years, speech perceptual hashing authentication algo-
rithm can not only achieve good authentication results, but also resist noise interference 
during channel transmission, but the speech authentication algorithm lacks security. Due 
to the computational efficiency and security of biometric hashing, it is widely used to pro-
tect privacy of biometric features [21, 32]. Therefore, the combination of speech percep-
tual hashing and biometric hashing can not only improve the authentication effect, but also 
ensure the security of speech features. The most widely used speech signal features include 
short-term cross-correlation [26], short-term zero-crossing rate [38], Mel-frequency ceps-
tral coefficient (MFCC) [16], Linear prediction cepstrum coefficient (LPCC) [12], Modi-
fied discrete cosine transform (MDCT) [17], discrete wavelet transform (DWT) [27], spec-
tral entropy [25], measurement matrix [28], Modulated complex lapped transform (MCLT) 
[19], spectrogram [13, 29] and Multiple fusion features. Li et al. [17] used non-negative 
matrix factorization (NMF) to obtain the local characteristics of MDCT coefficients, and 
then used the mean to construct a binary hash sequence. This algorithm has good robust-
ness to various content preserving operations, but its efficiency is low and it lacks security. 
Zhang et al. [27] simply compared the influence of different lengths of hashing sequences 
on the discrimination of the algorithm, but the algorithm only adopted 250 bits of hashing 
sequence length. Although the algorithm has a strong summarization, but its discrimination 
needs to be improved, there is no further study of the features of hashing long sequence. In 
Ref. [25], a feature fusion method for linear prediction of minimum mean square error and 
improved spectral entropy was proposed, and the constructed hashing sequence was only 
266 bits. The algorithm has poor discrimination and MP3 compression robustness, but it 
has high efficiency. Zhang et al. [28] used the measurement matrix after chaotic processing 
to reduce the dimension of the discrete wavelet coefficient matrix, and then constructed a 
hashing sequence of 360 bits in length. Although the discrimination of the algorithm has 
been improved, the improvement is small. The algorithm has some security, but it is differ-
ent from the biometric hashing algorithm, and its comprehensive performance needs to be 
improved. Therefore, the discrimination of the algorithm can be increased by increasing 
the length of the hashing sequence.

Sonnleitner et al. [33] used a two-dimensional filter to extract the local peaks in the 
spectrogram, and constructed the four-axis spatial features into a translational and scale-
invariant hashing sequence. The algorithm is robust to noise and severe time-frequency 
scale distortion. In [30], the spectral matrix is trimmed by using a threshold based on 
the average value of the spectral values to generate different versions of the audio signal 
spectral matrix, which can achieve better robustness against noise interference. Jiang 
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et  al. [15] proposes an audio fingerprinting algorithm based on the second-generation 
wavelet packet and improved optimal-basis search algorithm. Although the algorithm 
not only robust for the audio which is handled by some kinds of method but also has 
good distinguishability between different audio. But characteristic of the audio data 
which reflect by the audio with this algorithm is segmentary.The application of it has 
limitations.

Khurshid et al. [18] adopted a fingerprint feature vector transformation method based 
on block hashing (BBH), using the average value of the geometric feature vector of the 
hand to transform each feature vector. This solution has better performance and higher 
security for feature templates. In [23], the random standard orthogonal projection tech-
nology is used to reduce the computational complexity while ensuring accuracy, and 
the fuzzy commitment protocol is used to ensure the security of the biometric template. 
It has a higher authentication rate, but the algorithm complexity is higher and the effi-
ciency is slower. Chen et  al. [7] proposed a biometric hashing scheme based on deep 
security quantification (DSQ), which has a good balance between security and practical-
ity. But it requires a relatively long hashing sequence. When a new user joins, the DSQ 
neural network needs to be retrained, which reduces the flexibility of the framework.

In order to obtain higher template security and matching performance at the same 
time, this paper proposes a long-sequence biometric hashing authentication algorithm 
based on 2D-SIMM and CQCC cosine. In this paper, a long hashing sequence is used to 
improve the collision resistance performance of the algorithm. The extracted frequency 
domain spatial distance feature has strong robustness. The pseudorandom matrix gener-
ated by 2D-SIMM can ensure the security of biometric features. The irreversibility of 
biometric hashing sequences.

The remaining part of this paper is organized as follows. Section 2 describes related 
theory introduction. Section  3 introduces the details of the proposed algorithm. Sec-
tion 4 gives the experimental results and performance analysis as compared with other 
related methods. Finally, Section 5 summarizes the thesis and prospects for future work.

2  Related theory introduction

2.1  MFCC

Feature extraction technology based on MFCC is used to capture the most important 
features of speech, which is very close to the response of human auditory system [4, 8]. 
Figure 1 is a block diagram of MFCC calculation. The MFCC calculation steps are as 
follows:

Fig. 1  Block diagram of MFCC feature extraction
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2.1.1  Pre‑processing

Firstly, pre-emphasize the speech signal s(n) and amplify the high frequency components, 
which can effectively suppress random noise. Then the signal x(n) is divided into frames 
using the Hamming window function, and features are extracted in short frames. The Ham-
ming window function can effectively overcome the leakage phenomenon. The speech sig-
nal is divided into N frames, each frame has M samples.

where, � set parameters for Hamming Window. � represents the time step of the shift in the 
speech signal. x(n) is the pre-weighted speech signal. n is the index number of the speech 
signal frame, n ∈ [1, 2, ⋅ ⋅ ⋅,N] . m is the index number of each frame, m ∈ [1, 2, ⋅ ⋅ ⋅,M].

2.1.2  Discrete Fourier transform

The speech time domain signal is transformed into the frequency domain signal through 
the discrete Fourier transform (DFT) to obtain the spectrum X(m, k).

where, k,m ∈ [1, 2, ⋅ ⋅ ⋅,M] , X(n,  m) is the time domain signal after pre-processing, 
j =

√
−1.

2.1.3  Power spectrum

Take the square of the modulus of the signal spectrum XDFT
(n, k) to obtain the power spec-

trum P(n, k).

2.1.4  Mel frequency filter

The Mel scale is linear for frequencies below 1000Hz and logarithm for frequencies above 
1000Hz.The Power spectrum P(n, k) is obtained by means of a set of Mel scale triangular 
filter Banks. At each frequency, the product of P(n, k) and filter Hl(k) is calculated.

where, Mel(f) is the Mel frequency scale, Hl(k) is the transfer function (l = 1, 2, ⋅ ⋅ ⋅, L) of l 
filter, and L is the number of filters.

(1)w(m) = (1 − �) − �cos(2�m∕(M − 1))

(2)x(n,m) = x(n)w(n − m�)

(3)XDFT
(n, k) =

M∑
m=1

x(n,m)e−j2�mk∕M

(4)P(n, k) =
1

M
|XDFT

(n, k)|2

(5)Mel(f ) = 2595log10(1 +
f

700
)

(6)E(n, l) =

M−1∑
k=0

P(n, k)Hl(k)
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2.1.5  Discrete cosine transform

Logarithmic computation is performed on the Mel spectrum E(n, l) obtained, which is usu-
ally used to reflect logarithmic compression of human hearing. The final step is to convert the 
spectrum value of the L logarithmic filter bank to the I cepstrum coefficient using the discrete 
cosine transform (DCT).

where, i (i = 1, 2, ⋅ ⋅ ⋅, L) is the MFCC of each frame of speech signal.

2.2  CQCC

Constant Q Cepstral coefficients (CQCC) were recently introduced into the deception detec-
tion of ASV [37]. CQCC was extracted by combining constant Q transform and cepstrum 
analysis. CQCC is based on constant Q transform and adopts variable time-frequency resolu-
tion [34]. Compared with DFT, CQT frequency resolution is higher at lower frequencies and 
time resolution is higher at higher frequencies. Therefore, CQCC tend to capture more spectral 
details at lower frequencies and more temporal details at higher frequencies, which are usually 
lost through more traditional time-frequency analysis methods. Figure 2 is the block diagram 
of CQCC calculation. The calculation steps of CQCC are as follows:

2.2.1  Constant Q transform

Speech signal s(n) is pre-processed to get x(n, m) according to Pre-processing. Let x(m) be 
the data value of each frame, and the following equation is the constant Q transformation of 
x(m).

where, m is the sample index. k = 1, 2, ⋅ ⋅ ⋅,K is the frequency bin index. Nk are the length 
of the variable window. ⌊∙⌋ denotes the sign of rounding down. The basis function ak(m) is 
the complex time-frequency atom, ∗ is the complex conjugate.

(7)MFn(i)=

L∑
l=1

log(E(n, l))cos

[
i(l−0.5)�

L

]

(8)XCQT (m, k)=

m+⌊Nk
2
⌋�

j=m−⌊Nk
2
⌋
x(j)a∗

k
(j−m+

Nk

2
)

(9)ak(m) = gk(m)e
i(2�m

fk

fs
+Φk)

Fig. 2  Block diagram of CQCC feature extraction
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where, fk is the center of k frequency bin. fs is the sampling rate. gk(m) is zero-centred win-
dow function. Φk is a phase offset. Due to the need to adjust the scale between frequency 
storeys, the central frequency fk of frequency storeys k is defined as: fk = f12

(k−1)∕B . f1 is 
the center frequency of the lowest-frequency bin. B is the number of bins per octave.

Q is a filter selection metric that reflects the ratio between the center frequency and the 
bandwidth. For the CQT transform, Q is constant for all frequency bins k; filters are logarith-
mically spaced.

where, �f  is the bandwidth.

2.2.2  Power spectrum and uniform sampling

The spectrum of each frame is summed to obtain the spectral signal XCQT
(n, k) of the speech. 

The power spectrum R(n, k) is obtained by taking the signal spectrum XCQT
(n, k) and squaring 

its mode. Then take the logarithm of the power spectrum to get log(R(n, k)) . The logarithmic 
power spectrum is uniformly resampled to realize the conversion from non-linear octave to the 
linear scale.

2.2.3  Discrete cosine transform

log(R(n, l)) performed DCT to obtain CQCC.

where, p(p = 1, 2, ⋅ ⋅ ⋅, L) is the CQCC of each frame of speech signal.

2.3  Cosine similarity theorem

When cosine similarity measures the similarity of two directions in a space, when the angle 
between two vectors in the space is smaller, the cosine value will be closer to 1, which proves 
that the similarity between the two vectors is higher [5, 36].

For example, in three dimensions there are three points, R, Q and P. Where RO, QO and 
PO are vectors in three different directions in the space, and the included Angle between the 
three vectors is marked in Fig. 3. The cosine similarity theorem requires you to compute the 
cosine of the Angle between vectors. The smaller the angle, the bigger the value, the closer it 
is to 1, which means the vectors are going in the same direction. For two vectors x and y, the 
cosine similarity between x and y is:

(10)Q =

fk

�f
= (21∕B − 1)−1

(11)Nk =
fs

fk
Q

(12)CQn(p)=

L∑
l=1

log(R(n, l))cos

[
p(l −0.5)�

L

]

(13)
cos(�) =

x ⋅ y

‖x‖‖y‖ =

x1y1+x2y2 +⋅ ⋅ ⋅ +xnyn�
x2
1
+x2

2
+⋅ ⋅ ⋅+x2

n

�
y2
1
+y2

2
+⋅ ⋅ ⋅+y2

n

2878 Multimedia Tools and Applications (2022) 81:2873–2899



1 3

In this paper, each frame of speech signal is regarded as a vector in high-dimensional 
space, the coefficients of each frame number MFCC and CQCC represent the vector, and 
the included angle cosine of the adjacent two frames are calculated as biometric.

2.4  2D‑SIMM

In order to improve the security of biometrics, a pseudorandom matrix was constructed 
by using two dimensional sinusoidal ICMIC modulation mapping (2D-SIMM). The map-
ping has good ergodicity, hyperchaotic behavior, high security and low time complexity. 
2D-SIMM is defined as:

where, n is the length of the set matrix, corresponding to the number of frames of speech 
biometric. x0, y0 are the initial value set for xn, yn . a, b are the parameters set for the system, 
while a, b ∈ (0,+∞) . In Ref. [22], the matrix can be completely chaotic. k is the parameter 
added on the original model to further improve the security of the biometric template.

3  Biometric hashing authentication scheme

The block diagram of the long sequence biometric hashing authentication algorithm based 
on 2D-SIMM and CQCC cosine values proposed in this paper is shown in Fig. 4.

3.1  Registration phase

Registered users feature the original voice, then construct a biometric security template, 
and finally store the binary hashing sequence to the cloud.

Step 1: Pre-processing Pre-processing includes pre-emphasis, framing and windowing. 
The speech signal x(n) is obtained by pre-emphasis the input signal s(n) . Then the pre-empha-
sized speech signal is framed and windowed, in which the Hamming window is used to smooth 
the frame edges. The speech x(n) is divided into N frame, and signal x(n, m) is obtained, where 

(14)xn+1 = a sin(�yn) sin(b∕kxn)

(15)yn+1 = a sin(�xn+1) sin(b∕yn)

Fig. 3  The cosine of the space 
between two points
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n(n = 1, 2, ⋅ ⋅ ⋅,N) is the index number of the speech frame, m(m = 1, 2, ⋅ ⋅ ⋅,M) is the index 
number of a frame of signal data.

Step 2: Robust feature extraction
1. MFCC feature extraction
DFT converts frequency domain signals into frequency domain signals to obtain fre-

quency domain signal XDFT
(n, k1) (n = 1, 2, ⋅ ⋅ ⋅,N;k

1
= 1, 2, ⋅ ⋅ ⋅,M) . Then obtain the 

power spectrum and the Mel filter transformation to obtain the Mel spectrum P(n, l1) 
(n = 1, 2, ⋅ ⋅ ⋅,N;l

1
= 1, 2, ⋅ ⋅ ⋅, L

1
) . Finally, take the logarithm and DCT transform to get the 

Mel cepstrum coefficient MF(n, i) (n = 1, 2, ⋅ ⋅ ⋅,N;i = 1, 2, ⋅ ⋅ ⋅, L1).
2. CQCC feature extraction
CQT also transforms the time domain signal to get the spectrum signal XCQT

(n, k2) 
(n = 1, 2, ⋅ ⋅ ⋅,N;k

2
= 1, 2, ⋅ ⋅ ⋅,K) . Then obtain the rate spectrum, take the logarithm and uni-

form sampling, and get the transformed feature R(n, l
2
) (n = 1, 2, ⋅ ⋅ ⋅,N;l2 = 1, 2, ⋅ ⋅ ⋅, L2) . 

Finally, use the same method as MFCC to perform DCT transformation to obtain constant Q 
cepstrum coefficient CQ(n, j) (n = 1, 2, ⋅ ⋅ ⋅,N;j = 1, 2, ⋅ ⋅ ⋅, L

2
).

This paper uses 16 Mel filters to obtain MFCC features, among which L1 = 16 . In calculat-
ing CQCC, after CQT transformation, the value of K is 8; then, equal interval interpolation 
sampling is performed, and L2 is 16.

3. Cosine of adjacent speech frame space is obtained
The extracted MFCC and CQCC eigenvalues are uniformly set as 

MQ(n, i)(n = 1, 2, ⋅ ⋅ ⋅,N;i = 1, 2, ⋅ ⋅ ⋅, L) , where L = L1 = L2 . The row vectors of the 
eigenvalues are calculated as MQ1(i) , and then the matrix is spliced to obtain the matrix 
Λ1 = [MQ1,MQ] , Λ2 = [MQ,MQ1] . Take the cosine of each column of the two matrices and 
get the final eigenvector F(n)(n = 1, 2, ⋅ ⋅ ⋅,Np).

Step 3: Construct an orthogonal set matrix A pseudorandom matrix is generated by 
2D-SIMM. This article sets a = 1;b = 5 , sets the key k, and the length of the matrix is 

(16)F(n) =
Λ1(n) ∙ Λ2(n)

‖‖Λ1(n)
‖‖‖‖Λ2(n)

‖‖

Fig. 4  Block diagram of the proposed long sequence biometric hashing algorithm
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consistent with the length of the biometric matrix. The initial value is randomly selected 
and set x0 = 0.2;y0 = 0.3 to obtain a pseudorandom matrix v(n, t)(n = 1, 2, ⋅ ⋅ ⋅,Np;t = 1, 2) . 
Schmidt orthogonalization is performed on the pseudorandom matrix to obtain an orthogo-
nal matrix V(n, t).

Step 4: Biometric security template construction Extract the row vector of the posi-
tive set intersection matrix as V1(n)(n = 1, 2, ⋅ ⋅ ⋅,Np) . The biometric feature F(n) is multi-
plied by the orthogonal row vector V1(n) to obtain the square matrix Ψ(n, n).

In order to further increase the security of the biometric template, the square matrix Ψ(n, n) 
is shifted chaotically, and the rows and columns are shifted cyclically in a ring form. In 
order to reduce the complexity of the algorithm and improve the efficiency, the rows and 
columns of the square matrix are moved by 0.5N positions, and the encrypted square matrix 
Ψ

∗

(n, n) is obtained at this time. The row vector V2(n)(n = 1, 2, ⋅ ⋅ ⋅,Np) in the orthogonal 
set matrix is projected to reduce the dimensionality of the square matrix Ψ∗

(n, n) to obtain 
the biometric security template W.

Step 5: Biometric hashing construction Binarize the biometric security template W to 
generate a one-dimensional binary hashing length sequence h. Then store the long biomet-
ric hashing sequence in the cloud to complete the registration phase.

where, h(1) = 0. h(n)(n = 2, ⋅ ⋅ ⋅,Np) is the perceived hashing value of each frame speech 
signal. Therefore, the length of the hashing sequence in this article is Np bits.

3.2  Authentication phase

The authenticated user provides speech, constructs a long biometric hashing sequence, per-
forms matching authentication with the biometric hashing sequence in the cloud, and feeds 
the result back to the authenticated user.

Step 1: The authenticated user provides an authentication speech, and passes the speech 
through Steps 1-5 in the registration phase to obtain a biometric hashing length sequence 
H(n).

Step 2: Calculate the bit error rate (BER) of the two sequences through the Hamming 
distance between the biometric hashing long sequence H(n) obtained by the authentication 
speech and the biometric hashing long sequence y in the cloud.

where, ⊕ is the XOR logic operation, and Np is the length of the biometric hashing 
sequence. In this paper, BER hypothesis testing is used to describe hashing matching. 

(17)Ψ(n, n) = F(n) ∙ V1(n) =

⎡⎢⎢⎢⎣

Ψ(1, 1) Ψ(1, 2) ⋯ Ψ(1,Np)

Ψ(2, 1) Ψ(2, 2) ⋯ Ψ(2,Np)

⋮ ⋮ ⋱ ⋮

Ψ(Np, 1) Ψ(Np, 2) ⋯ Ψ(Np,Np)

⎤⎥⎥⎥⎦

(18)W(n) = V2(n) ∙ Ψ
∗

(n, n) = [W(1),W(2), ⋅ ⋅ ⋅,W(Np)]

(19)h(n) =

{
1, if W(n) > W(n − 1)

0, Otherwise

(20)BER(h,H) =

∑Np

n=1
h(n)⊕ H(n)

Np
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 T0:  If the h and H of two speech clips have the same content: 

 T1:  If the h and H of two speech clips have the different content: 

 where, � represents the authentication threshold. By comparing the size between the BER 
and the set threshold � , biometric authentication is achieved. If BER is less than the thresh-
old � , then biometric features are the same and the authentication is passed, otherwise the 
authentication fails.

Step 3: Feedback the result of the authentication to the authenticated user. This paper 
uses the False Accept Rate (FAR) and False Reject Rate (FRR) to evaluate the perfor-
mance of the algorithm. Among them, FAR is used to evaluate the discrimination of the 
algorithm, and FRR is used to evaluate the robustness of the algorithm.

where, � is the expected value, � is the standard deviation. The smaller the value of FAR 
and FRR, the better the discrimination and robustness of the algorithm.

4  Experimental result and analysis

The operating experimental hardware platform is Intel(R) Core(TM) i5-7500 CPU, 3.40 
GHz, with computer memories of 4G. The operating software environment is MATLAB 
R2018b of Windows 7 system.

In this study, after lots of experiments, we found that the following param-
eters are given the best results after applying it to the proposed algorithm: 
M = 200;N = 1064;Np = 1065;K = 8;B = 8;L = L

1
= L

2
= 16;k = 0.5 . Where: M is the 

length of a frame of speech signal; N is the number of frames after speech framing; Np is 
the length of the hashing sequence; K is the number of frequency bands after CQT trans-
formation; B is the number of frequency bins per octave; L = L1 = L2 is the number of 
MFCC and CQCC features in each frame; k is the secret key in 2D-SIMM.

4.1  Speech database

The experimental speech datas comes from TIMIT (Texas Instruments and Massachusetts 
Institute of Technology) speech database and TTS (Text to Speech) speech database. This 
paper uses 1,200 different speech clips for experiments, each of which has a duration of 4s, 
a format of WAV, and a sampling frequency of 16kHz.

In order to imitate the interference of the channel transmission environment on the 
speech signal, the content preserving operation is performed on 1200 speech clips. 

(21)BER(h,H) ≤ �

(22)BER(h,H) > 𝜏

(23)FAR(�) = ∫
�

−∞

1

�
√
2�

e
−(x−�)2

2�2 dx

(24)FRR(�) = 1 − ∫
�

−∞

1

�
√
2�

e
−(x−�)2

2�2 dx
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The content preserving operation includes volume, resampling, noise, echo and mp3 
compression.

In order to detect the effect of the algorithm of this paper under various background 
noises, the Noise-92 noise database was introduced, and 86,400 noisy speech clips were 
established. Noise includes 8 different formats such as Pink noise and Gnoisegen noise. 
The SNR (signal noise ratio) ranges from -10db to 30db, and the interval is 5db.

4.2  Discrimination test and analysis

The BER of the biometric hashing value of different speech content basically obeys the 
normal distribution. There are 1200 different speech clips, using binomial coefficients to 
calculate the number of all available BER values as 1200 × 1199∕2 = 719400 . Figure  5 
shows the BER histogram of a speech clips that matches the other 1199 speech clips. Fig-
ure 6 shows the normal distribution of BER of different biometric content hash sequences.

As shown in Fig. 6, the BER value probability of different speeches has a higher degree 
of coincidence with the probability curve of the standard normal distribution. With the 
increase of the hashing sequence, the BER range is closer to 0.5, and the value of the distri-
bution is closer to the theoretical value. Compared with 640 bits and 799 bits, the sequence 
length 1065 bits selected in this article is smaller in BER range and has the best effect. 
Compared with the MFCC cosine algorithm, the CQCC cosine algorithm has smaller fluc-
tuations in the actual value, and the effect is better.

According to the De Moivre-Laplace central limit theorem, the hamming distance is 
approximate obeying normal distribution ( � = 0.5 , � =

√
0.25∕Np ). The length Np of the 

biometric hashing sequence in this paper is 1065 bits, and the theoretical value of the 
standard deviation is � = 0.0153 . Table 1 shows the theoretical and experimental values 
obtained from BER. Figure  7 shows the FAR curves of robust features with different 
sequence lengths.

As shown in Table 1 and Fig. 7, as the length of the hashing sequence increases, the 
actual value of the algorithm is closer to the theoretical value, the actual curve is getting 

Fig. 5  BER histogram
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closer and closer to the theoretical curve. It shows that the algorithm has good randomness 
and collision resistance. The difference between the CQCC cosine value and the actual 
value of the MFCC cosine value curve is small, and both are close to the theoretical curve, 
indicating that the two algorithms have good discrimination.

Tables 2 and 3 compares FAR of different long hashing sequence algorithms and dif-
ferent algorithms. As can be seen in Table 2: when the threshold is the same, as the hash 
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Fig. 6  BER normal distribution with different robust features and different hashing sequence lengths
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sequence increases, the FAR value will be smaller and the algorithm’s discrimination will 
be better. In the case of different thresholds, the difference in FAR values between the two 
methods is small, which proves that the discrimination effects of the two methods are simi-
lar. As can be seen in Table 3: Compared with Refs. [17, 25, 28, 38], the FAR values of 
the proposed method are all the lowest, and they are all lower than the third power of other 
algorithms. As for the short hashing sequence used in Refs. [17, 25, 28, 38], the long hash-
ing sequence of the proposed method has a greater advantage in discrimination, and it also 
proves that the long hashing sequence has strong discrimination.

Table 1  Normal distribution 
parameters with different robust 
features and different hashing 
sequence lengths

Parameter Hashing 
sequence 
length

Theoretical value Actual 
value 
(MFCC)

Actual 
value 
(CQCC)

� 640 bits 0.5000 0.4990 0.4988
� 799 bits 0.5000 0.4992 0.4991
� 1065 bits 0.5000 0.4994 0.4993
� 640 bits 0.0198 0.0208 0.0204
� 799 bits 0.0177 0.0183 0.0184
� 1065 bits 0.0153 0.0157 0.0157
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Fig. 7  Robust features FAR Curves with different hashing sequence lengths
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Entropy rate (ER) mainly compares the comprehensive performance of hash algo-
rithms and, unlike other calculation parameters, ER is not affected by the length of the 
hash sequence. The range of ER value is (0,1). The closer the value is to 1, the better 
the discrimination.

where � and �
1
 are theoretical and experimental standard deviation of BERs respectively.

According to the results in Tables 4 and 5, the hash long sequence used in this paper 
has a high ER value. Comparing different algorithms, the algorithm in this paper also 
has good results. Experiments have proved that the use of long hash sequences can 
increase the ER value of the algorithm. Therefore, the proposed algorithm in this paper 
is highly discrimination.

(25)ER = −[q log2 q + (1 − q) log2(1 − q)]

(26)q =

1

2

⎛⎜⎜⎝

����2
− �1

2��
�2

+ �1
2

+ 1

⎞⎟⎟⎠

Table 2  The FAR value of 
different hashing sequence 
lengths and different robust 
features

� 640 bits 799 bits 1065 bits

Algorithm MFCC cosine
0.10 1.8876 × 10

−82
3.5113 × 10

−106 8.1612 × 10
−143

0.20 3.0935 × 10
−47

1.3340 × 10
−60 3.0884 × 10

−81

0.25 2.2082 × 10
−33

1.1216 × 10
−42

5.0071 × 10
−57

0.30 5.0284 × 10
−22

5.4620 × 10
−28

3.3864 × 10
−37

0.35 3.7320 × 10
−13

1.5750 × 10
−16 9.7708 × 10

−22

Algorithm CQCC cosine
0.10 9.3958 × 10

−86 7.3441 × 10
−104

1.9846 × 10
−142

0.20 4.4688 × 10
−49

2.7386 × 10
−59 5.5650 × 10

−81

0.25 1.1897 × 10
−34

9.2351 × 10
−42

7.9201 × 10
−57

0.30 7.9063 × 10
−23

2.1269 × 10
−27

4.7640 × 10
−37

0.35 1.3405 × 10
−13

3.4196 × 10
−16 1.2387 × 10

−21

Table 3  The FAR value of different algorithms

� Algorithm

The Algorithm Ref. [38] Ref. [17] Ref. [25] Ref. [28]

0.10 1.9846 × 10
−142

7.8834 × 10
−50 1.4855 × 10

−43
1.7668 × 10

−28
3.7200 × 10

−43

0.20 5.5650 × 10
−81

1.2031 × 10
−28

2.5886 × 10
−25

1.9604 × 10
−16

4.3453 × 10
−25

0.25 7.9201 × 10
−57 2.4792 × 10

−20
3.9877 × 10

−18
9.8689 × 10

−12
5.7209 × 10

−18

0.30 4.7640 × 10
−37

1.5705 × 10
−13

3.2038 × 10
−12

6.6409 × 10
−08

4.0419 × 10
−12

0.35 1.2387 × 10
−21

3.1249 × 10
−08

1.3692 × 10
−07

6.1048 × 10
−05 1.5630 × 10

−07
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4.3  Robustness test and analysis

In order to simulate the interference of speech during channel transmission, Table  6 
shows ten different content preserving operations.

Figure  8 shows the BER mean of different robust features and hashing sequence 
lengths. Compared with the MFCC cosine value feature, the BER average value of the 
feature value used in this paper does not exceed 0.1653, while the maximum value of the 
MFCC cosine value reaches more than 0.3, indicating that the algorithm in this paper is 
very good Robustness for various content preserving operations. As the sequence length 
increases, the robustness of the content preserving operation decreases, but the decrease 
is relatively small, which does not affect the overall robustness of the algorithm. In 

Table 4  ER of the different 
hashing sequence lengths and 
different robust features

ER

Sequence length 640 bits 799 bits 1065 bits
MFCC Cosine 0.9642 0.9758 0.9813
CQCC Cosine 0.9784 0.9719 0.9813

Table 5  ER of the different 
algorithms

Algorithm Ref.[38] Ref.[17] Ref.[25] Ref.[28]

ER 0.9837 0.9112 0.9732 0.9062

Table 6  Content preserving operations

Operating means Operation method Abbreviation

Volume Adjustment 1 Volume down 50% V.1
Volume Adjustment 2 Volume up 50% V.2
Resampling 1 Sampling frequency decreased to 8 kHz, R.8→16

and then increased to 16 kHz
Resampling 2 Sampling frequency increased to 32 kHz, R.32→16

and then dropped to 16 kHz
Echo Addition 1 Superimposed attenuation 30%, E.A1

delay 100 ms,initial strength were 10% of the echo
Echo Addition 2 Superimposed attenuation 60%, E.A2

delay 300 ms, initial strength were 25% of the echo
Narrowband Noise 1 SNR=30 dB narrowband Gaussian noise, G.N1

center frequency distribution in 0 ∼ 4 kHz
Narrowband Noise 2 SNR=50 dB narrowband Gaussian noise, G.N2

center frequency distribution in 0 ∼ 4 kHz
MP3 Compression 1 Re-encoded as MP3,  M.32

and then decoding recovery, the rate is 32 k
MP3 Compression 2 Re-encoded as MP3, M.128

and then decoding recovery, the rate is 128 k
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order to balance discrimination and robustness, the hashing sequence uses 1065 bits, 
which has the best overall effect.

Calculate the FRR values of different features and hashing sequence lengths according 
to Table 6, and then combine the discrimination to obtain the FAR value. The FAR-FRR 
curves of different features and hashing sequence lengths are shown in Fig. 9.

As shown in Fig. 9, the FRR and FAR curves of the MFCC cosine values of different 
hashing sequence lengths intersect, which cannot balance discrimination and robustness. 
However, the FRR and FAR curves of different hashing sequence lengths in this paper do 
not cross. The ability to accurately distinguish between content preserving operations and 
different content speech shows that the Proposed algorithm has good discrimination and 
robustness. The BER means comparison results of this algorithm and Ref. [38], Ref. [17], 
Ref. [25] and Ref. [28] are shown in Table 7 and Fig. 10.

It can be obtained from Table 7 and Fig. 10: for different content preserving operations, 
the algorithm in this paper is superior to other algorithms except the echo operation. There-
fore, the proposed algorithm has better robustness. Since echo has a large interference to 
the original speech waveform, the algorithm is less robust to echo operations. For the inter-
ference of MP3 compression, the robustness of the proposed algorithm is better than other 
algorithms.

Calculate the FRR values of different algorithms according to Table  6, and then 
combine the discrimination to obtain the FAR value. The FAR-FRR curves of dif-
ferent algorithms are shown in Fig.  11. Figure  11a is the FRR-FAR curve diagram 
of the proposed algorithm in this paper. The interval between the final drop points 
of FRR and FAR is [0.235 0.425], indicating that the algorithm in this paper has a 
good distinction and robustness, capable of accurately identifying content preserving 
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Fig. 8  Comparison of BER means of different robust features and different hashing sequence lengths
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operations and speech of different content. As shown in Fig. 11b and e, the FRR-FAR 
curve obtained by Refs. [28, 38] does not cross, and the interval between the final fall-
ing point of FRR and FAR are [0.305 0.370] and [0.330 0.350]. Compared with the 
algorithm in this paper, there is no larger threshold selection space to balance the dis-
tinction and robustness. Compared with Fig. 11c and d, Ref. [17] has crossover in the 
figure, reflecting that the distinction and robustness cannot be solved well. Although 
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there is no crossover in Ref. [25], it is also difficult to balance distinction and robust-
ness. The experimental results show that the proposed algorithm has good distinction 
and robustness, and can accurately recognize content preserving operations and speech 
clips of different content.

4.4  Verification and analysis of matching rate in complex noise environment

In order to further verify the anti-interference ability of the proposed algorithm against 
various background noises, the matching rate Mr is introduced.

where, TA is the algorithm that correctly recognizes the number of speech clips with the 
same perceptual content, TR is the algorithm that incorrectly recognizes the number of 
speech clips with the same perceptual content, FA is the algorithm that correctly recognizes 
the number of speech clips with the different perceptual content. The threshold � is selected 
as the minimum BER of FAR curve. Different algorithms select different thresholds: the 
proposed algorithm is 0.4173, that is MFCC cosine, that in Ref. [38] is 0.3677, that in Ref. 
[17] is 0.3593, that in Ref. [25] is 0.3037, and that in Ref. [28] is 0.3472. Figure 12 shows 
the comparison of the matching rate between the proposed algorithm, MFCC Cosine and 
that in Refs. [17,20,22,23] under eight different noise environments.

As shown in Fig. 12, for Factory noise 1, Gaussian white noise, HF channel noise, and 
Machine gun noise, the matching rate of this algorithm is higher than other algorithms. For 
all noises, the proposed algorithm has a matching rate of 100% when the SNR is greater 
than 10db. This is also the MFCC cosine value feature that cannot be compared with Refs. 
[17, 25, 28, 38]. The proposed algorithm only has a slightly lower matching rate than the 
MFCC cosine feature under Factory2 noise and Volvo noise. For other noises, the per-
formance of the MFCC cosine feature is poor. When the SNR of the noise is below 0db, 
the matching rate of Ref. [38] is basically less than 30%, which cannot be well adapted to 
the speech biometric authentication in complex environments. Ref. [28] only has higher 
matching rate than the algorithm in this paper in terms of Factory2 noise. Refs. [17, 25] 
has higher matching rate than the algorithm in this paper in terms of Babble noise, Fac-
tory1 noise and Pink noise. On the whole, the algorithm in this paper is more robust than 
Refs. [17, 25, 28, 38], and can better achieve biometric authentication under extreme noise 

(27)Mr =
TA

TA + TR + FA

Fig. 10  BER normal distribution 
with different robust features 
and different hashing sequence 
lengths
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environments. Therefore, the algorithm proposed in this paper has strong robustness to 
different noises under low SNR, and can meet the needs of speech matching in complex 
environments.
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Fig. 11  The FRR-FAR curves of different algorithm
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Fig. 12  Comparison of matching rates of different algorithms under different noises

2893Multimedia Tools and Applications (2022) 81:2873–2899



1 3

4.5  Unidirectional and security testing and analysis

In order to verify that the biometric hashing has the unidirectionality of the trapdoor, a 
unidirectivity verification algorithm based on logarithmic ratio method is proposed in this 
paper.

Randomly extract the speech clips from the speech database, and its original speech fea-
ture obtains the biometric security template through the direction of part A in Fig. 13, and 
then obtains the speech feature through the direction of part B, and finally calculates the 
difference between the two biometric feature sequences. The logarithmic ratio difference 
method between two sequences is defined as:

where, F′ is the feature value obtained from the biometric security template. F is the origi-
nal feature value. RC is the difference state of the biometric features.

This paper randomly extracts speech clips from the original speech database to verify 
the unidirectionality of the biometric hashing algorithm with trapdoors. Figures 14 and 15 
show the difference between the features F′

1
 and F′

2
 obtained by the correct secret key and 

the wrong secret key and the original feature F respectively.
According to Figs. 14 and 15, there is a slight gap between the feature F′

1
 obtained by 

the correct key and the original feature F, and the gap between the two is only distributed 
in ( −2.2 × 10−16 , 2.2 × 10−16 ). The feature F′

2
 extracted using the wrong key is completely 

different from the original feature F. The distance between the two is distributed around 
−4.1 . Since the error is only 10−8 , the error is too small, so it is shown as a straight line 
in Fig. 15b. Compared with the correct secret key, the feature sequence generated by the 
wrong secret key has a larger gap with the original feature sequence, which explains the 
one-way nature of the biometric hashing with trapdoor.

In order to further verify the one-way nature of the biometric hashing algorithm with 
trapdoors, this article first randomly extracts 150 speech from the speech database. Calcu-
late the Hamming code distances between F′

1
 , F′

2
 and F respectively. The Hamming code 

distance is shown in Fig. 16.

(28)RC(n)=
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Fig. 13  Verify the unidirectional block diagram of the biometric security template with trapdoor
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As shown in Fig. 16, the Hamming distance range between the feature F′

1
 obtained by 

the correct key and the original feature F is (−3.7 × 10−18, 6.9 × 10−18) , and the Hamming 
distance range between the feature F′

2
 obtained by the wrong key and the original feature F 

is (0.10, 0.19), further verified that the biometric hashing algorithm is one-way with trap-
doors, and also proved the security of the biometric hashing algorithm.

In order to enhance the security of the algorithm, this paper uses chaotic shift when 
constructing the biometric security template. Figure 17 compares the correct chaotic shift 
and the wrong chaotic shift to obtain the biometric security template. The values of the 
biometric security template obtained are completely different. The algorithm cannot get the 
required the biometric security template when the correct chaotic shift is not known. It also 
proves this article Algorithm security.

4.6  Efficiency testing and analysis

In order to verify the efficiency of the proposed algorithm, 200 speech clips in the speech 
library were randomly selected and the average running time was calculated. In order to 
ensure the consistency of the experiment, the same operating environment and speech data 
clips are used. Table 8 shows the comparison results of the algorithm in this paper, the 
MFCC cosine value, and the algorithm in Refs. [17, 25, 28, 38].

As shown in Table 8, as far as the algorithm in this paper is concerned, as the length of 
the hash sequence increases, although the efficiency performance of the algorithm is decreas-
ing, the difference is small, which meets the requirements of real-time authentication. The 
hashing long sequence used by the proposed algorithm is compared with other hashing short 
sequences of the proposed algorithm, although the efficiency performance is low, the dis-
crimination is greatly improved. Compared with the MFCC cosine value, when the hashing 
sequence is 1065 bits, the MFCC cosine value is 1.08 times of the proposed algorithm. Com-
pared with other literatures, the efficiency of this algorithm is 2.21 times that of Ref. [17] and 
1.07 times that of Ref. [28]. But compared to Refs. [25, 38], Ref. [38] is 5.44 times of the 
algorithm in this paper, and Ref. [25] is 3.31 times of the algorithm in this paper. Due to the 
use of long hashing sequences and chaotic shifts of biometric features, this paper has a long 
running time, so the efficiency performance of this algorithm is low. Although the length of 
the hashing sequence in this paper is 4 times that of Ref. [25] and 3 times that of Refs. [17, 28, 
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Fig. 17  Biometric security templates for correct chaotic shift and false chaotic shift
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38], the algorithm in this paper performs very well in efficiency performance and can meet the 
requirements of efficiency authentication.

5  Conclusions and future work

This paper proposes a long sequence biometric hashing authentication algorithm based on 
2D-SIMM and CQCC cosine. The algorithm has good comprehensive performance and solves 
the problems of poor discrimination, low robustness and security in the existing biometric 
authentication algorithm. Through experimental analysis, the following conclusions can be 
drawn: the use of long hashing sequences can effectively reduce the probability that different 
speech segments are recognized as the same segment, and improve the authentication rate of 
the algorithm. The extracted biometric features can well deal with the interference of the vol-
ume, resampling, MP3 compression and other content preserving operations. For low SNR, 
Babble and other complex noise environments have better matching rate. This paper uses the 
ratio method to prove the one-way nature of the biometric hashing algorithm with trapdoor. 
The biometric security template produced by 2D-SIMM has high security and reduces the risk 
of biometric features leakage.

Because the hashing sequence is too long, it will occupy a larger storage space, resulting 
in a decrease in efficiency performance. The speech biometric content is subject to tamper-
ing attacks, resulting in missing and forged information, and it is impossible to determine the 
accuracy of authentication. Therefore, the next work needs to further optimize the length of 
the hashing sequence to realize the tampering detection and positioning of the speech biomet-
ric content.
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Table 8  Efficiency of the 
different algorithms

Algorithms Hashing 
sequence 
length

Working frequency Average time

The algorithm 640 bits 3.4 GHz 0.0508s
799 bits 3.4 GHz 0.0693s
1065 bits 3.4 GHz 0.0827s

MFCC cosine 640 bits 3.4 GHz 0.0469s
799 bits 3.4 GHz 0.0592s
1065 bits 3.4 GHz 0.0767s

Ref. [38] 360 bits 3.4 GHz 0.0152s
Ref. [17] 360 bits 3.4 GHz 0.1825s
Ref. [25] 266 bits 3.4 GHz 0.0250s
Ref. [28] 360 bits 3.4 GHz 0.0883s
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