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A Two-Stage Cooperative Evolutionary Algorithm
With Problem-Specific Knowledge for
Energy-Efficient Scheduling of No-Wait
Flow-Shop Problem

Fuqing Zhao

Abstract—Green scheduling in the manufacturing industry has
attracted increasing attention in academic research and industrial
applications with a focus on energy saving. As a typical scheduling
problem, the no-wait flow-shop scheduling has been extensively
studied due to its wide industrial applications. However, energy
consumption is usually ignored in the study of typical scheduling
problems. In this article, a two-stage cooperative evolutionary
algorithm with problem-specific knowledge called TS-CEA is
proposed to address energy-efficient scheduling of the no-wait
flow-shop problem (EENWFSP) with the criteria of minimizing
both makespan and total energy consumption. In TS-CEA, two
constructive heuristics are designed to generate a desirable ini-
tial solution after analyzing the properties of the problem. In the
first stage of TS-CEA, an iterative local search strategy (ILS)
is employed to explore potential extreme solutions. Moreover,
a hybrid neighborhood structure is designed to improve the
quality of the solution. In the second stage of TS-CEA, a muta-
tion strategy based on critical path knowledge is proposed to
extend the extreme solutions to the Pareto front. Moreover,
a co-evolutionary closed-loop system is generated with ILS and
mutation strategies in the iteration process. Numerical results
demonstrate the effectiveness and efficiency of TS-CEA in solving
the EENWEFSP.
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I. INTRODUCTION
A. Background and Motivation

CHEDULING plays a pivotal role in manufacturing

systems. The flow-shop scheduling problem (FSP) is
a commonly used model in manufacturing systems and has
been a hot research topic. The massive real-world applica-
tions can be modeled as flow-shop scheduling problems [1].
According to different constraints, the flow-shop problems can
be divided into blocking flow shop [2], no-wait flow shop [3],
no-idle flow shop [4], distributed flow-shop [5], [6], etc. The
assumptions widely used in the FSP are as follows.

1) The processing path of each job is the same and not

allowed to change.

2) At one time, each machine only processes one operation,

and the operation is not allowed to be interrupted.

3) A job is not allowed to be processed on different

machines at one time.

4) The setup time of the operation is negligible or included

in the processing time.

The no-wait flow-shop scheduling problem (NWFSP)
widely exists in various industrial systems [7], such as steel-
making, food processing, chemical industry, and pharmaceu-
ticals. In the NWFSP, once a job starts to be processed,
the operations of the job are not allowed to be interrupted.
The objective of classical NWFSP is to minimize comple-
tion time (makespan) by arranging all the jobs reasonably. As
shown in Fig. 1, in the steel making-continuous casting pro-
duction process of iron and steel enterprises, the temperature
of molten steel is not allowed to decrease quickly to conduct
the hot-feeding and hot-packing processes. So, the steel mak-
ing continuous casting production process of iron and steel is
a no-wait scheduling process with the corresponding operation
modes under different power modes. The processing procedure
may vary with the type of production. Those operations that do
not go through the assembly line are regarded as passing with-
out any operation, that is, the processing time of operations
is zero.

The NWFSPs with the objectives of production efficiency
have been extensively studied. However, objectives related to
energy efficiency are rarely considered in NWFSP [8]. As we
know, the energy crisis has become one of the most serious
and urgent issues in the world [6]. The huge consumption
of nonrenewable resources will lead to energy depletion and
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the greenhouse effect. Energy consumption in industrial man-
ufacturing systems accounts for more than half of the total
energy consumption (TEC) in the world. In many situations,
machines in factories may operate with different processing
modes, and the energy consumption of machines is differ-
ent and the impact on the manufacturing process is different
as well. Under the pressure of public awareness of sus-
tainable development and the competition of the market,
manufacturing enterprises are driven to pay great attention
to reduce energy consumption [9]-[12]. So it is extraor-
dinarily important for manufacturing enterprises to develop
effective energy-efficient measures and technologies including
scheduling approaches [13], [14].

The classical NWFSP has been proved to be NP-hard [15]
according to computational complexity. The size of the solu-
tion space of NWFSP is n!, where n is the number of
jobs. The search efficiency of the mathematical programming
methods that implicitly enumerate the entire space is rather
low. Although such methods can obtain an optimal solution
theoretically, it is difficult to solve the large-scale schedul-
ing problems in a reasonable time. For the energy-efficient
scheduling of the no-wait flow-shop problem (EENWEFSP),
both the economic and environmental criteria should be con-
sidered simultaneously, which is a large-scale multiobjective
optimization problem (MOP). The size of the solution space
of EENWFSP is n!-x"", where x is the number of speed levels
of the machines, n is the number of jobs, and m is the number
of machines. Clearly, it is more difficult to solve EENWFSP
than classical NWESP.

B. Literature Review

In [16], heuristics for NWFSP were roughly divided into
two categories: 1) constructive heuristics and 2) metaheuris-
tics. In [17], an average departure time (ADT) heuristic was
presented to minimize makespan for NWFSP. The experimen-
tal results showed that the ADT heuristic outperformed three
existing state-of-the-art heuristics with the same computational
effort. In [18], an average idle time heuristic called AIT was
presented to minimize makespan for NWFSP. First, the cur-
rent waiting time and future waiting time of machines were
utilized to construct an initial scheduling sequence. Then, the
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insert and swap operations were employed to enhance the local
search of AIT. In [3], a modified iterated greedy algorithm
was presented for the mixed no-wait flow-shop problems.
The experimental results showed that the algorithm yielded
the best performance among all the methods for comparison.
In [16], the NWFSP was converted to an asymmetric trav-
eling salesman problem (ATSP), and then two metaheuristics
were proposed to solve the ATSP. The optimal solutions of the
small-scale NWFSP were obtained by the Gurobi optimizer,
and good results were obtained by the two metaheuristics for
the large-scale problems with makespan criterion.

For metaheuristics, various research works were imple-
mented with different search frameworks to solve the
NWESP [19], [20]. Inspired by the process of teaching—
learning, an extended framework of metaheuristic was
presented to solve the NWFSP [21]. An effective new hybrid
ant colony algorithm called HACO based on crossover and
mutation was proposed for NWFSP with the makespan
criterion [22]. According to the theory of shallow water
wave, two discrete water wave optimization algorithms were
proposed to solve the NWFSP [23], [24]. The local search
algorithms have also gained much attention. The search pro-
cess of a local search method depends on neighborhood
structures and environment selection rules [25]. For the greedy
local search, the current solution is updated by the best neigh-
bor solution. The search process conducts until no better
neighbor solution can be found. Some techniques are used to
avoid being trapped in local optima. For instance, restarting the
search process (iterated local search) [26], jumping with a cer-
tain probability (simulated annealing) [27], and using history
information to avoid revisit (tabu search) [21].

In recent years, the research of green scheduling in
manufacturing has gained increasing attention [6], [28]-[30].
A multiobjective method based on decomposition was imple-
mented by Jiang and Wang [14] to solve the energy-efficient
permutation flow-shop scheduling problem (EEPFSP).
A multilevel algorithm for energy-efficient flexible flow-shop
scheduling was proposed by Yan er al. [31] to investigate
the potential energy saving in the management of shop floor.
A hybrid backtracking search algorithm called HMOBSA was
proposed by Lu ef al. [32] to address EEPFSP from a real-
world manufacturing enterprise. In [29], an ant colony
system-based approach was presented to achieve the goals
of the placement of virtual machine and energy efficiency
in cloud computing. An adaptive multiobjective variable
neighborhood search (AM-VNS) algorithm was proposed
to solve the energy-efficient no-wait permutation flow-shop
problem [33] by adopting an adaptive mechanism to dynam-
ically determine which structure was selected to handle the
current solution. Chen et al. [6] proposed a collaborative
optimization algorithm (COA) for solving the energy-efficient
scheduling of distributed no-idle permutation flow-shop
problem, in which multiple search strategies collaborated in
a competitive way to improve the capability of search.

Considering the constraint that TEC cannot exceed a given
threshold, Lei et al. [34] proposed a two-phase metaheuris-
tic to solve the flexible job shop scheduling problem with
consideration of the makespan and total tardiness. In [35],
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an energy-aware multiobjective optimization algorithm was
proposed for solving the energy-efficient scheduling of hybrid
flow-shop scheduling problem. Recently, Zheng et al. [28]
proposed a hybrid ant colony optimization algorithm to solve
the blocking permutation flow-shop scheduling problem with
the objectives of minimizing makespan and total energy
costs. A large amount of literature about energy-efficient
scheduling for intelligent production systems has been pub-
lished [30], [36]-[39]. Since the EENWFSP considers both
the economic and environmental criteria simultaneously, it
is a complex MOP. For most realistic problems, they are
large scale with huge search space. Moreover, the considered
multiple objectives are conflicting. So, it is full of challenge
to solve the large-scale MOPs [40]-[42].

C. Contribution

Inspired by [43] and [44], a two-stage cooperative evolu-
tionary algorithm with problem-specific knowledge (TS-CEA)
is proposed in this article to solve the EENWFSP. Considering
a speed scaling strategy, machines may operate at three speed
levels (1: fast, 2: normal, and 3: slow speed levels). According
to [45], different constructive heuristic algorithms are suitable
for scheduling problems of different scales. So, both extended
energy-efficient Nawaz—Enscore-Ham (NEH) heuristic and
Jigsaw puzzle inspired algorithm (JPA) are used to produce
initial solutions.

Moreover, the evolution process of the co-evolutionary
algorithm is divided into two stages. In the first stage, the pro-
cessing speed of machines keeps constant, and the local search
strategy (ILS) is used to obtain a potential job scheduling
sequence. At this stage, the smaller makespan of the solu-
tion is, the smaller the TEC of the solution is. Therefore,
EENWFSP is converted to a single-objective optimization
problem. In the second stage, the scheduling sequence of the
jobs remains unchanged. A mutation strategy based on crit-
ical path knowledge is used to change the processing speed
of the machine to obtain potential nondominated solutions. At
this stage, the EENWFSP is a MOP. A scheduling sequence
of jobs is provided by ILS for the mutation strategy, and the
processing speed of the machines is provided by the muta-
tion strategy for ILS. Therefore, a co-evolutionary closed-loop
system is formed by the operators of stage 1 and stage 2 of
TS-CEA.

The main contributions of this article are summarized as
follows.

1) Formulate the considered EENWFSP as a mixed-integer

linear programming (MILP) model.

2) A two-stage co-evolutionary algorithm with problem-
specific knowledge that can reduce the solution space
is proposed to solve EENWEFSP.

3) According to the problem characteristics, some proper-
ties of EENWFSP are derived to obtain the knowledge
to guide the design of the mutation strategy of machine
processing speed.

4) The EENWEFSP is converted to a special case of the
(n + 1)-city ATSP, where the distance between cities is
variable. The effectiveness of the proposed model and
algorithm is verified.
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The remainder of this article is organized as follows. The
formulation of EENWFSP is described in Section II. The
framework of TS-CEA and its detailed implementation is
presented in Section III. The verification of the proposed
model is presented in Section IV. The computational results
of TS-CEA are provided in Section V. The comparisons
between TS-CEA and the state-of-the-art algorithms are given
in Section VI. Finally, the conclusions and future work are
summarized in Section VIL.

II. PROBLEM DESCRIPTION AND MATHEMATICAL MODEL

In this article, the notation is described as follows.

N Set of jobs N ={1,2,...,n}.

M Set of machines M = {1,2, ..., m}.

pji  Standard processing time of job j on machine i.

v Speed factor of speed level l € L, L = {1, 2, 3}.

EC  Energy consumption.

©; EC of the machine i at standby mode per unit time
ieM (kW).

7;;  EC per unit time of machine i running at speed /,
leL,ieM (kW).

D Very large number.

vjig 1 if job j is processed at speed ! on machine i; 0,
otherwise.

xjr 1 1if job j precedes job k; O otherwise.

Cj; Completion time of job j on machine i.

6; Idle time on machine i.

Cigx Maximum completion time (makespan).

TEC TEC (kWh).

The EENWEFSP is considered to obtain a feasible schedule
that minimizes the two conflicting objectives, that is, makespan
and TEC. Unlike the classical NWESP, a discrete set of [ dif-
ferent processing speed levels is provided for each machine.
Therefore, the processing time of jobs is different according
to the chosen speed level. The proposed MILP is described as
follows:

Minimize(Ciax) = min(Cp,m) 1)
Minimize TEC 2)
Pj1Yj,1,1
Ci1> = 3
A Z i (3)
leL
C Pj,iYjil . . .
ji— Gt = Y I yieN VieM:iz2 @)
e V!
Ci— Cei+ D=y M ik eN k#jVieMm
. "
leL
&)
Piiviil
Cii—Cri+Dxjp <D — Z L lvljl
leL
XVjkeN:k#£jVYieM 6)
Chnax > Cim VJjEN (7
Ci— G = Y B yieNvieM iz2  @®
leL Vi
Zyj,i,l=1; VjeNYieM 9)

leL
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TABLE I
ENERGY-RELATED PARAMETERS

l 14 Tj1 Bj
1 1.2 1.5

2 1 1 0.05
3 0.8 0.6

Pj,iTil
TEC=) Y > Z“"yu+ ) ¢ib (10)
jen iem e V! ieM
6= Conax — 3 3 ALy ey (11)
jen e V!
Vil €10,11,Ci>0 VjeNVieMViel
5 € 0,1} VjkeN k+#]). (12)

Objectives are defined as (1) and (2). Constraint (3) implies
that the completion time of the jobs on machine 1 is not
less than the processing time of the jobs on that machine 1.
Constraint set (4) means that the job j is started to process on
the machine i only after its preceding operation on previous
machine i—1 is finished. Constraint sets (5) and (6) guarantee
that the relative position of the job j and job k in the schedul-
ing sequence is unique. The makespan is calculated by (7).
Constraint sets (8) and (9) ensure that the job j is processed
on the machine i, and only one speed level is selected, and all
the operations of the job j on all machines are not allow to be
interrupted. The TEC is calculated by (10). The idle time on
each machine is calculated by (11). All the decision variables
are defined as (12).

An example is presented as follows to illustrate the
EENWFSP. The energy-related parameters used in the calcu-
lation of TEC are adopted from [46] as shown in Table L.

Suppose the speed level matrix SLM and the standard
processing time matrix P are as follows:

24 3 4 1 2 3
P=]3 48 6| SLM=|2 3 1
6 6 4 1 1 2

Then, the speed matrix v and unit time energy matrix t are
as follows:

1.2 1 08 L5 I 06
v=|1 08 12)t=]1 06 15
1.2 12 1 1.5 1.5 1

The actual processing time matrix 7 is calculated as follows:

2 35
T=Pv=|(3 6 5
5 5 4

Consider a job processing sequence w = {1, 2, 3}. Thus,
Cmax is 20. As shown in Fig. 2, the processing time energy
consumption of machines is calculated as follows:

TECproccssing = Sum(T . 'C) =42.1.

The standby time energy consumption of machines is
calculated as follows:

TECstandby = (Cmax - m — sum(7)) - Qi = I.1.
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Fig. 2. Gantt chart with n =3 and m = 3.

Algorithm 1 Procedure of NN + MNEH

1 Inputs: The standard processing time matrix P, the speed level matrix
SLM, the population size NP

2 Initialize: The best solution mp,ij, = {}, the actual processing time
matrix 7.

3 Pick up NP job pairs with minimized makespan from a set sg =
{J1,J2,---Jn} and construct a sequence JF.//[JF is the set of the
first and second jobs.

4 For k = 1:NP do

5 s1 =50 —JFk

6 ny = JFy + MNEH((s)
7 End for

8

Output: the best solution i, with the smallest makespan.

Algorithm 2 Procedure of JPA

1 Inputs: The standard processing time matrix P;
The speed level matrix SLM.
Initialize: The best block i, = {}, the actual processing time matrix
T.
Calculate the stand-by time of machine (WT) between two jobs;
Jobs is sorted according to the value of WT' from small to large;
For i = 1:n do
Taking the job J; as the head job;
According to the value of W7, the unscheduled jobs are sequentially
linked behind the job J;. The scheduling sequence 7 is obtained.
Calculate Cpax (77);
9 End for
10 Output: the best solution 7,,;, with the smallest makespan.

NN AW S

o]

Therefore, the TEC of machines is calculated as follows:

TEC = TECprocessing + TEcslandby =43.2.

III. DESCRIPTION OF TS-CEA
A. Initialization

Since the initial v is generated randomly and remained
unchanged, the smaller standby time of the machine is, the
smaller the energy consumption of the machine is. Moreover,
the smaller makespan of the solution is, the smaller the TEC of
the solution is. So, different indicators may be used to design
different constructive initialization methods.

Here, two heuristics are proposed for TS-CEA to generate
initial solutions, focusing on different subproblems (Cpax and
TEC). As we know, NEH is one of the most popular con-
structive heuristics for NWFSP with the makespan criterion.
The extended NEH by [23] (NN + MNEH) is more effective
than NEH by considering the arrangement and combination
of the first and second jobs. Inspired by such an idea, the
NN + MNEH is used to generate certain initial solutions for
solving EENWESP. The description of NN + MNEH is shown
in Algorithm 1.
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Fig. 4. Flowchart of TS-CEA.

Aiming at reducing TEC, JPA is used to generate an ini-
tial solution. As shown in Algorithm 2, the standby time of
machines is used as an indicator to construct the initial solu-
tion. The core idea of JPA is to find the best matching job
for each job and then construct a complete scheduling solu-
tion in an iteratively incremental manner. The JPA constructs
a solution with fast speed and the result of each run is unique.

B. Cooperative Evolutionary Algorithm With
Problem-Specific Knowledge

According to the principle of a single variable, the evolution
process of the proposed cooperative evolution algorithm is
divided into two stages.

As shown in Fig. 3, in the first stage, the processing speed
of machines remains unchanged. The smaller the makespan
is, the smaller the TEC is. Therefore, the EENWFSP is
a single-objective optimization problem. An iterative ILS is
used to explore the feasible promising solutions while opti-
mizing makespan and TEC (the movement from the red circle
to the blue square).

In the second stage, the scheduling sequence of the jobs
remains unchanged. The mutation strategy is employed to
change the processing speed of the machine to obtain the
potential nondominated solution of EENWFSP (the diffusion
process from the blue square to brown five-pointed star).
The flowchart of the proposed TS-CEA algorithm is shown
in Fig. 4.
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Fig. 5. Module interaction diagram.

Algorithm 3 Procedure of ILS

1 Input: wp=constructive heuristic NN + MNEH and JPA
2 While stop condition not met do

3 // The perturbation procedure

4 7 = perturbation (7))

5 // The local search procedure

6

7

8

9

w1 = insert ()
1y = block neighborhood search (1)
/I The acceptance criterion
If Cmax(72) < Cmax (70)
10 Ty = M)
11 End if
12 End while
13 Output: mp//best solution so far

As shown in Fig. 5, a scheduling sequence of jobs is
provided by ILS for the mutation strategy, and the muta-
tion strategy provides the processing speed of the machines
for ILS. Therefore, a co-evolutionary closed-loop system is
generated with ILS and mutation strategies in the iteration
process.

C. Iterative Local Search

As a simple and powerful search framework, the iterative
local search (ILS) is a trajectory-based metaheuristic. Only
one solution is manipulated in the iterative local search, which
consists of initialization, local search, perturbation, and accep-
tance criterion. The better solution of the NEH and JPA, which
has the smallest makespan and TEC, was chosen as the initial
solution for ILS.

The local search operator is assisted by the perturbation
operator to escape from the current local optimum. The pertur-
bation operator generates a perturbation solution of the current
local optimum and continues to explore from the perturbation
solution. Here, a perturbed solution is generated by perform-
ing SP times random insertion operation to the current local
optimum. A simple variable neighborhood search mechanism,
including insertion and block-shift operations (the length of
block len € [1, n/2]) [27], is used in the local search operator.
Since the processing speed of the machine has certain ran-
domness, the greedy preferential selection strategy is used as
the acceptance criterion. The procedure of the proposed ILS
is given in Algorithm 3.

D. Critical Path Knowledge-Based Mutation Strategy

In the second stage of TS-CEA, the scheduling sequence of
the jobs is kept unchanged, and the processing speed of the
machines is changed to detect potential nondominated solu-
tions. Here, certain attributes of the EENWFSP are extracted
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Fig. 7. Reduce the processing speed of jobs on noncritical paths.
and used as prior knowledge to guide the design of a mutation
operator.

Definition: For NWFSP, the length of the critical path is
equal to the makespan of a solution. The critical path is the
continuous job path from the beginning of the entire process
to the completion of the last job with no standby time between
any two jobs, as shown in Fig. 6.

Property 1: If two schedules a = (1, v1) and b = (72, v2)
satisfy Cpax (@) = Cpax (b) and TEC(a) < TEC(b), then a > b.

Property 2: Given a scheduling solution, increasing the
processing speed of the jobs on the noncritical path with-
out affecting the critical path, the makespan of the solution
is unchanged, and energy consumption of the solution is
increased.

In general, the makespan is reduced and the TEC is
increased if the processing speed of the jobs on the critical
path is increased. The makespan is increased and the TEC is
reduced if the processing speed of the jobs on the critical path
is reduced. According to Properties 1 and 2, given a scheduling
solution @ = (&1, v1), decreasing the speeds of the noncritical
operations without deteriorating the makespan of the solution,
TEC of the solution can be reduced. That is, a better schedul-
ing solution b = (;ry,vy) is obtained and b > a, as shown
in Fig. 7. A mutation strategy is proposed to detect potential
nondominated solutions as follows. An operation is chosen
randomly. If the operation is on a critical path, the process-
ing speed of the operation is increased or reduced randomly.
Otherwise, the processing speed of the operation is reduced.

IV. MODEL VERIFICATION

In this article, the constraints of energy efficiency are
considered on the classical no-wait flow-shop problem. The
EENWFSP is mathematically modeled by using the MILP.
The CPLEX optimizer is used to obtain the optimal solution

IEEE TRANSACTIONS ON CYBERNETICS, VOL. 51, NO. 11, NOVEMBER 2021
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Fig. 8. Directed Hamiltonian cycle of a scheduling sequence.

for the model. The model is correct if the CPLEX solution is
the same as heuristic solution for small-scale instances. First,
the EENWFSP is transformed into a special case of the (n+1)-
city ATSP, where the distance between cities is variable. The
distance between any two cities/jobs is calculated as follows:

Tji = Pji/vj,i (13)
LT itj=0
i =0
C: v =
o CJ’ — G

max

:1§i§m {O’ Z?=l‘ (T.‘]./ai/ - T}’i/) + ’T]?i/}’ OtherWise

(14)

where Jp is a dummy job with zero-processing time on
all machines. Let # = {J3, Jg, J2, Js, J5, J7, Ja, J1}
be a scheduling sequence. The corresponding directed
Hamiltonian cycle of the ATSP is as follows.

Furthermore, the transformed ATSP is mathematically mod-
eled by using the binary integer programming (BIP) as
follows:

n n
Minimize Cmax = Y > Gy (15)
j=0 j’=0
Minimize TEC (16)
n
Y xy=1j7=01,....n (17)
j=0
Jj#T
n
Y xyp=1j=01,....n (18)
j =0
J#i
X={xyles (19)
n n
§= xjj’|ZZxJJ’ =1
JjeQ j'¢Q
Q is a nonempty proper subset of n jobs (20)
0 = Cpax — Y _ T 1)
jen
TEC =Y Y Tiitiry+ Y obi (22)
jen iem leL ieM
x; € {0, 1} Vj,j/ =0,1,...,n, andj ;éj/,yj,,',l € {0, 1}
VielL. (23)
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TABLE 11
PROCESSING TIMES OF A 8 X 5 INSTANCE

M, M, M, M, Ms
A 54 79 16 66 58
JA 83 3 89 58 56
A 15 11 49 31 20
I 71 99 15 68 85
s 77 56 89 78 53
s 36 70 45 91 35
A 53 99 60 13 53
Je 38 60 23 59 41

The makespan and TEC are defined as (15) and (16), respec-
tively. Constraint set (17) ensures that only one city/job is
directly visited before city/job j(j/ = 0, 1, ..., n). Constraint
set (18) ensures that only one city/job is directly visited
after city/job j(j = 0,1,...,n). Constraints (19) and (20)
prevent from subtours. The TEC is calculated by (21) and (22).
Constraint set (23) defines the decision variable x;; and y; ;;
as binary.

Then, the branch and bound algorithm (BB) is used to
solve the above BIP model. BB is implemented by using the
CPLEX-12.5 optimizer. BB is a type of mathematical pro-
gramming method that implicitly enumerates the entire space.
So, its search efficiency is low. Although it can theoretically
provide the optimal solution to the ATSP, it is difficult to solve
large-scale scheduling problems in a reasonable time.

To illustrate the correctness of the EENWFSP model,
an 8-job 5-machine instance from the Taillard benchmark
problem set is provided in Table II. The Taillard benchmark
set comes from real-life flow-shop scheduling problems.

Such an 8-job 5-machine instance in the EENWFSP, the
number of solutions is (8!)%3%° = 4.9020E + 23. Just the
number of speed matrices is 3%*> = 1.2158E + 19. Therefore,
it is impossible to enumerate all solutions. Here, 10000 speed
matrices are randomly sampled. Then, BB is used to obtain
the approximate Pareto front of EENWFEFSP. The calculation
results of BB and TS-CEA are shown in Fig. 9.

As shown in Fig. 9, when Cmax(TS-CEA) = Cmax(BB),
TEC(TS-CEA)<TEC(BB). It just illustrates the correctness of
the proposed model and algorithm. Because the knowledge of
the critical path is not used in the BB algorithm, the solu-
tion obtained by TS-CEA dominates the solution obtained by
BB. However, the knowledge based on the critical path is
added to the BB algorithm (BB-V1), the result obtained by
BB-V1 and TS-CEA is the same, as shown in Fig. 10. So, the
proposed EENWFSP model is correct and the corresponding
algorithm is effective for small-scale problems.

V. NUMERICAL RESULTS OF TS-CEA

In this section, 120 benchmark instances, where n =
{20, 50, 100, 200, 500}, m = {5, 10, 20}, are used to
test the performance of TS-CEA in solving EENWFSP [47].
The benchmark set consists of 12 groups of questions of differ-
ent sizes, and each group contains ten instances. The relevant
parameters of energy consumption are shown in Table I. We
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Fig. 10. Pareto fronts obtained by TS-CEA and BB-v1.

code all the algorithms in MATLAB and run them on a com-
puter with an Intel Core i5-3230M CPU @ 2.60-GHz and
8 GB of RAM for comparison. Every algorithm is run inde-
pendently ten times on each instance. The maximum running
time of each algorithm is n x m x p/100 s, where p = {5, 10}.

Since the EENWFSP is an MOP, the following metrics are

used to evaluate the quality of the obtained Pareto set.

1) Overall Nondominated Vector Generation (ONVG): The
number of the nondominated solutions in the obtained
Pareto archive E is counted (denoted as |E|).

2) C Metric: The dominance relationship between the solu-
tions in two Pareto archives E; and E, is measured,
which reflects the percentage of solutions in E, that
are dominated by or the same as the solutions in Ej.
C(E1, Ey) is calculated as follows:

C(E\,E>) = |{b € Es]3a € E1,a > b or a = b}|/|Ea|.

3) Spacing Metric (TS): The metric measures how evenly
the nondominated solutions distribute, which is calcu-
lated as follows:

5= |3 (4, —d)/d
|E| acE
where d, is the Euclid distance in the objective space
between solution @ and its nearest solution, and d =
Y ack da/|E| is the average distance. The smaller TS is,
the more uniformly the solutions distribute.

A. Parameter Setting

There are three key parameters in TS-CEA: 1) the number of
iterations of ILS (K); 2) the strength of perturbation (SP); and
3) the population size of mutation (PS). The famous design of
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TABLE III
PARAMETERS FOR DIFFERENT LEVELS

Parameters Factor level
1 2 3
K 5 10 15
SP 5 10 15
PS 50 100 200
TABLE IV

ANOVA RESULTS FOR PARAMETER SETTINGS OF TS-CEA

Sum of  Degrees of Mean

Source F-ratio  p-value
squares freedom Square
K 102.01 2 51.005 22.6 0.0005
SP 22.088 2 11.044 4.89 0.0409
PS 294.975 2 147.488 65.36 0
K * SP 12.847 4 3212 1.42 0.3102
K * PS 71.978 4 17.994 7.97 0.0068
SP % PS 18.835 4 4.709 2.09 0.1745
Residual 18.051 8 2.256
Total 540.784 26

experiment (DOE) is used to analyze the effect of parameters
on the performance of TS-CEA. The levels of each parameter
are listed in Table III.

A total of 60 instances from different scales are randomly
selected for investigation. For every instance, the TS-CEA with
each parameter combination is run independently ten times to
obtain the nondominated solution set E;(i = 1,2,...,27).
The rigid nondominated solutions among E; — E>7 consist
of the final set FE. To evaluate the contribution of each
parameter combination, an evaluation metric is defined as
CON(i) = |E}|/|FE|, where E;= E; N FE. After all instances
are tested, the average contribution of each parameter combi-
nation is calculated as the response value (RV). Following [2],
the experimental results are analyzed by the multivariate anal-
ysis of variance (ANOVA). Whether the interaction between
parameters is significant or not is expressed by variance
analysis. The results of the ANOVA are shown in Table IV.

According to the results from Table IV, the p-values of
parameters K and PS are less than the confidence level (o =
0.05), which implies these parameters are more influential
than other parameters in TS-CEA. Meanwhile, the param-
eter PS corresponds to the greatest F-ratio, which suggests
that the parameter PS is of the greatest effect on the average
performance of the TS-CEA among all factors. According to
Fig. 11, the best parameters are K = 10, SP = 5, and PS = 50.
Furthermore, if the p-value between the two parameters is less
than 0.05, the main effect plot is meaningless [48]. As shown
in Table IV, the p-value of parameter K * PS is 0.0068, which
is less than 0.05. The interactions between the parameters K
and PS are significantly demonstrated. From the interaction
plot between K and PS in Fig. 12, the selection of K = 10
and PS = 50 contributes to the best performing TS-CEA. So,
the following parameters are used in the TS-CEA: K = 10,
SP = 5, and PS = 50. Besides, since NN + MNEH and
JPA are both constructive heuristics, their performance is not
sensitive to the value of the parameters [45]. Therefore, the
population size of NN + MNEH is set as NP = 50.
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TABLE V
MAKESPAN OBTAINED BY NN + MNEH AND JPA

Instance NN+MNEH JPA
20x5 1.54E+03 1.59E+03
20x10 2.06E+03 2.12E+03
20x20 3.08E+03 3.18E+03
50x5 3.48E+03 3.48E+03
50x10 4.50E+03 4.57E+03
50x20 6.16E+03 6.35E+03
100x5 6.68E+03 6.51E+03
100x10 8.51E+03 8.43E+03
100x20 1.13E+04 1.13E+04
200x10 1.63E+04 1.59E+04
200%20 2.11E+04 2.09E+04
500x20 4.97E+04 4.83E+04

B. Effectiveness of Initialization Methods

Both NN 4+ MNEH and JPA are constructive heuristics. The
speeds at which NN + MNEH and JPA construct a solution
are fast. So, the result of each run is unique. In the initial
stage of the TS-CEA, both NN + MNEH and JPA use the
same speed matrix v. Therefore, the smaller the makespan is,
the smaller the TEC is. 120 benchmark instances [47] are used
to test the performance of NN + MNEH and JPA.

As shown in Table V, NN + MNEH and JPA are suitable for
scheduling problems of different scales. The former is effective
for constructing initial solutions of the small-scale scheduling
problems, and the latter is effective for constructing initial
solutions of large-scale scheduling problems.

C. Effect of Combined Neighborhood Structures

According to [25], there are a lot of local optima and a big
valley structure in the fitness landscape of NWFSP. Therefore,
the hybridization with local search procedures enabled the
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TABLE VI

COMPARISON OF THREE COMBINATION OPERATORS
ON MAKESPAN METRIC

TABLE VII

5299

COMPARISON OF THREE COMBINATION OPERATORS ON RPI METRIC

_ - ‘ . Instance Insert and swap  Swap and block shift  Insert and block shift
Instance  insert and swap  swap and block shift  insert and block shift RPI SD RPI SD RPI SD
20%5 1.48E+03 1.49E+03 1.48E+03 20x5 0.00 0.00 0.00 0.00 0.00 0.00
20%10 1.98E+03 1.99E+03 1.98E+03 20x10 0.00 0.00 0.00 0.00 0.00 0.00
20%20 2.97E+03 2.97E+03 2.97E+03 20x20  0.00  0.00 0.00 0.00 0.00 0.00
50%5 3.31E+03 3.36E+03 3.28E+03 50%5 0.0  0.00 0.02 0.00 0.00 0.00
50x10 431E+03 4.40E+03 4.28E+03 5010 0.0 0.00 0.03 0.00 0.00 0.00
50%20 5.94E+03 6.06E+03 5.91E+03 50%20 0.01 0.00 0.03 0.00 0.00 0.00
100x5 6.33E+03 6.44E+03 6.25E+03 100x5  0.01  0.00 0.03 0.00 0.00 0.00
100x10 8.15E+03 8.33E+03 8.05E+03 10010 0.01  0.00 0.04 0.00 0.00 0.00
100x20 1.09E+04 1.11E+04 1.07E+04 100x20 0.01 0.00 0.03 0.00 0.00 0.00
200%10 1.56E+04 1.58E+04 1.53E+04 200x10 0.02 0.00 0.03 0.00 0.00 0.00
200%20 2.04E+04 2.08E+04 2.01E+04 200x20  0.02  0.00 0.04 0.00 0.00 0.00
500%20 4.78E+04 4.83E+04 4.74E+04 500x20  0.01  0.00 0.02 0.00 0.00 0.00
Average 1.08E+04 1.09E+04 1.06E+04 Average 001 0.00 0.02 0.00 0.00 0.00
0.025
algorithm to find high-quality solutions. Variable neighbor- 0020 I
hood search is an effective strategy to solve combinatorial
optimization problems [49]-[51]. So, in the first stage of TS- _ oors
CEA, the processing speed of machines remains unchanged. &
The smaller the makespan is, the smaller the TEC is. Thus, 0010 K3
EENWFSP is formulated as a single-objective optimization 0.005
problem. The three local search operators, insert and swap,
0.000 .

swap and block shift, insert and block shift, are tested in
the section. The same stop criterion is used by the three
local search operators. The relative percentage increase (RPI)
is adopted to evaluate the effect of the three local search
operators as RPI = (C, — C})/C} x 100, where C, is the
makespan of the rth solution produced by the corresponding
algorithm, and C; is the makespan of the best solution among
all the algorithms for comparison. The values of RPI reflect the
performance of the algorithms. The average makespan, aver-
age RPI, and the standard deviation (SD) for each group with
different size are listed in Tables VI and VII, respectively.

First, from Tables VI and VII, it can be seen that the solu-
tions generated by insert and block shift are better than those
obtained by insert and swap as well as swap and block shift
on almost all the test cases. As shown in Fig. 13, it is worth
mentioning that insert and block shift obtain significantly bet-
ter results. Second, a neighborhood structure corresponds to
a fitness landscape in the solution space of NWFSP. The trans-
formation between different neighborhood structures helps
local search algorithms escape from local optima. Finally,
given a solution, the number of neighborhoods generated by
the insertion operator is (n — 1)?, and the number of neigh-
borhoods generated by the swap operator is n(n — 1)/2. The
search range of the insertion operator is larger than that of
the swap operator. Furthermore, block structure is an intrin-
sic property of the NWFSP. Therefore, the insert and block
shift neighborhood structures are used as local search operators
for ILS.

D. Effect of Mutation Strategy

In the second stage of TS-CEA, the scheduling sequence
of the jobs keeps unchanged. A mutation strategy based on

insert and swap swap and block insert and block
Fig. 13. Means plot and 95% Tukey’s honest significant difference intervals

for local search.
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Fig. 14. Mean and 95% LSD interval for the TS-CEA.

critical path knowledge is proposed to detect potential non-
dominated solutions. A random mutation experiment (denoted
as R) is carried out to verify the effect of the mutation strategy.
The random mutation experiment means that an operation is
randomly selected and then randomly changes the processing
speed of the operation, regardless of whether the operation is
on the critical path.

For each scale, the average C metric of ten instances
is presented in Table VIII. The mean and 95% Fisher’s
least-significant difference (LSD) interval for TS-CEA are
illustrated in Fig. 14. It is concluded that the TS-CEA signif-
icantly outperforms R that does not consider the critical path
knowledge. From Table VIII, the values of C(TS-CEA, R) are
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TABLE VIII
COMPARISON OF C BETWEEN TS-CEA AND R

Instance C(TS-CEA, R) C(R, TS-CEA)
20x5 0.88 0.07
20x10 0.89 0.02
20%20 0.58 0.06
50%5 0.54 0.27
50x10 0.71 0.12
50%20 0.51 0.05
100x5 0.33 0.31
100x10 0.52 0.19
100x20 0.57 0.06
200x10 0.30 0.24
200%20 0.43 0.09
500%20 0.09 0.47
Average 0.53 0.16
TABLE IX

COMPARISONS OF ONVG BETWEEN TS-CEA AND R

Instance TS-CEA R
20x5 75.1 120.9
20x10 78.7 94.6
20%20 67.4 85.6
50x5 97.1 107.6
50x10 82.0 90.3
50x20 66.8 54.8
100x5 125.8 88.9
100x10 79.3 60.9
100x20 55.6 44.0
200x10 61.0 52.0
200%20 46.3 30.7
500x20 42.4 252
Average 73.1 713

larger than those of C(R, TS-CEA) on almost all instances,
except instance 500 x 20. This implies that the most non-
dominated solutions obtained by R are dominated by those
obtained by TS-CEA.

From Fig. 15, it can be seen that as the size of the problem
increases the value of C(TS-CEA, R) shows a decreas-
ing trend.

Furthermore, Wilcoxon’s test [52] is executed to check the
behaviors of the two algorithms. From Table IX-XI, TS-CEA
is significantly better than R with « = 0.05 in terms of C
metric. R is significantly better than TS-CEA with o = 0.05
in terms of TS metric. Although the significant differences
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TABLE X
COMPARISONS OF TS BETWEEN TS-CEA AND R

Instance TS-CEA R
20%5 2.90 2.54
20x10 3.52 3.07
20%20 4.29 2.35
50%5 3.46 2.29
50x10 3.57 2.39
50%20 5.81 2.64
100x5 3.18 2.26
100x10 4.80 2.87
100x20 7.84 3.39
200x10 3.59 2.98
200%20 5.48 2.76
500%20 6.81 10.33
Average 4.60 3.32
TABLE XI

WILCOXON’S TEST OF C METRIC BETWEEN TS-CEA AND Ra = 0.05
SIGNIFICANCE LEVEL

TS-CEAvs  Metrics R+ R- Y4 p-value  a =0.05
C 6235.50 1024.50  -6.824 0.000 Yes
R ONVG 3806.00 2980.00 -1.138 0.255 No
TS 919.50 6340.50  -7.098 0.000 Yes
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Fig. 16. Pareto front of TS-CEA and R.

are not observed between the TS-CEA and R in terms of the
ONVG metric, the value of R+ is better than the value of
R-. That is, the number of nondominated solutions obtained
by the TS-CEA is larger than that of R. From Fig. 16, it can
be seen that the performance of TS-CEA is better than that
of R. Therefore, the mutation strategy based on critical path
knowledge is more effective than the random mutation strategy
in solving EENWFSP.

VI. COMPARISONS TO THE STATE-OF-THE-ART
ALGORITHMS

A. Numerical Result

Next, we compare the TS-CEA with the state-of-the-
art algorithms, including NSGA-II [53], IG_ALL [8], and
KCA [13], to further test the performance of TS-CEA. The
control parameter of each algorithm is set as the value
recommended in the original paper. Although most of the
comparative algorithms are proposed for the permutation
flow-shop scheduling problem, they can be generalized with-
out changing their framework, idea, encoding, initialization,
and local search. NSGA-II is a nondominated sorting-based
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TABLE XII
ONVG OF THE ALL ALGORITHMS

Instance TS-CEA  NSGA-II  IG ALL KCA
20%5 75.10 33.00 14.30 20.20
20x10 78.70 27.00 8.60 14.50
20%20 67.40 14.30 430 9.80
50%x5 97.10 29.40 10.40 15.40
50x10 82.00 17.90 4.20 10.70
50%20 66.80 7.10 3.00 6.10
100x5 125.80 22.90 11.20 13.50

100x10 79.30 13.30 3.00 8.00
100%20 55.60 7.30 3.00 7.60

200%10 61.00 16.40 3.00 8.40

200%20 46.30 7.90 3.00 5.50

500%20 42.40 5.90 3.00 7.80

Average 73.13 16.87 5.92 10.63

TABLE XIII
TS OF THE ALGORITHMS

Instance TS-CEA  NSGA-II  IG ALL KCA
20%5 2.90 3.08 16.80 4.78
20x10 3.52 2.25 28.83 8.77
20%20 4.29 4.05 32.81 15.11
50%5 3.46 3.57 39.61 7.41
50x10 3.57 4.05 42.14 15.84
50%20 5.81 6.35 1.07 24.95
100x5 3.18 7.50 60.23 19.78
100x10 4.80 11.59 0.17 23.56
100x20 7.834 11.33 1.32 35.92

200x10 3.59 10.95 0.21 38.45

200%20 5.48 11.06 1.62 82.37
500%20 6.81 17.63 2.30 44.82

Average 4.60 7.78 18.93 26.81

TABLE XIV

COMPARISONS OF C METRIC DURING THE ALGORITHMS
(A = C(TS-CEA, NSGA-II), A’ = C(NSGA-II, TS-CEA),
B = C(TS-CEA,IG_ALL), B’ = C(IG_ALL, TS-CEA), C = C(TS-CEA,
KCA), C' = C(KCA, TS-CEA))

Instance A A' B B' C C'
20%5 0.95 0.00 0.82 0.00 032 0.00
20%10 1.00 0.00 0.75 0.00 0.29  0.00
20%20 1.00 0.00 0.51 0.00 0.35 0.00
50%5 0.96 0.00 0.80 0.00 036 0.00
50%10 1.00 0.00 0.52 0.00 0.56 0.00
50%20 1.00 0.00 0.33 0.00 0.55 0.00
100x5 0.99 0.00 0.82 0.00 0.54  0.00
100x10 1.00 0.00 0.33 0.00 0.66 0.00
100x20 1.00 0.00 0.33 0.00 0.62 0.00
200%10 1.00 0.00 0.33 0.00 0.63  0.00
200%20 1.00 0.00 0.33 0.00 0.61 0.00
500%20 1.00 0.00 0.27 0.03 0.67 0.00
Average  0.99 0.00 0.51 0.00 0.51 0.00

multiobjective evolutionary algorithm using the fast nondom-
inated sorting approach. A local search operator is applied to
the partial solutions after a complete solution is destructed in
the IG_ALL and a speed-scaling strategy [8] is employed. The
core idea of KCA is that different solutions search along differ-
ent search directions. According to the location of the solution
in the target space, the corresponding collaborative search
operator is used to obtain potential nondominant solutions.
Same as the experiment setting in Section V, 120 testing
cases are used to evaluate the performance of all algorithms.
Every algorithm is run independently ten times on each
instance and executed in the same operating environment. The
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TABLE XV
WILCOXON’S TEST OF TS METRIC OF ALL ALGORITHMS « = 0.05
SIGNIFICANCE LEVEL

TS-CEA

s R+ R- z p-value  a =0.05
NSGA-II 1942.00 5318.00 -4.421 0.000 Yes
IG_ALL 1983.00 5277.00 -4.313 0.000 Yes

KCA 391.50 6868.50 -8.481 0.000 Yes
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Fig. 17. Means plot and 95% Tukey’s honest significant difference intervals
for ONVG.

maximum running time of each algorithm is n x m x p/100 s,
where p = {5, 10}. The average ONVG, TS, and C metrics in
solving all the instances are listed in Tables XII-XIV grouped
by the scale of the testing instances.

B. Analysis and Discussion

First, as shown in Fig. 17, ONVG of the TS-CEA is larger
than those of the NSGA-II, IG_ALL, and KCA, which implies
that TS-CEA can obtain more nondominated solutions than
NSGA-II, IG_ALL, and KCA. Second, from Table XV, TS-
CEA is significantly better than the other algorithms with
a = 0.05 in terms of TS metric. That is, the nondom-
inated solutions obtained by the TS-CEA distribute more
uniformly than those obtained by other algorithms. Third,
from Table XIV, almost on all instances the values of C(TS-
CEA, NSGA — II) are almost equal to 1 while the values of
C(NSGA — 11, TS-CEA) are almost equal to 0, which implies
that almost all the nondominated solutions obtained by NSGA-
IT are dominated by those obtained by TS-CEA. Similarly,
comparing TS-CEA to IG_ALL and KCA, it can be seen that
the values of C(TS-CEA, IG_ALL) are larger than the val-
ues of C(IG_ALL, TS-CEA) and the values of C(TS-CEA,
KCA) are larger than the values of C(KCA, TS-CEA) on all
instances, which implies that the Pareto front obtained by TS-
CEA is better than those obtained by the IG_ALL and KCA in
terms of convergence. Furthermore, from Figs. 18 and 19, for
solving Ta005 instance with different p, the performance of
TS-CEA outperforms the other three algorithms in terms of
convergence and distribution of the nondominated solutions.
So, it can be concluded that TS-CEA is more effective than
state-of-the-art algorithms in solving EENWFSP.

For TS-CEA, its first stage focuses on finding extreme
solutions. In the stage, the processing speed of machines
remains unchanged. Therefore, the size of the solution space
of EENWEFSP is n!. In its second stage, the explored extreme
solutions extend to approximate the entire Pareto front. At
this time, the scheduling sequence of the jobs remains
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unchanged. The size of the solution space of EENWFSP is
3™m_ Without the above two-stage search, the solution space
of the EENWFSP will be n! - 3", So, the two-stage search
mechanism of TS-CEA is effective in solving the EENWFSP.

VII. CONCLUSION

This article presented a TS-CEA to solve the energy-
efficient no-wait FSP with minimizing makespan and TEC
simultaneously. According to the control variable method,
a reasonable co-evolutionary search framework is designed
to reduce the solution space of EENWESP. By reasonably
designing the two-stage cooperative evolutionary algorithm,
better results can be achieved than the existing algorithms.
Moreover, extensive numerical comparisons show that our
ideas are effective in designing the initialization method,
combined neighborhood structures, and mutation strategy.

Although the performance of TS-CEA outperforms other
algorithms for comparison, its performance could be further
improved by using some adaptive mechanisms and learning
strategy when designing the algorithm. We will extend our
research to the scheduling problems with blocking, no idle, and
distributed manufacturing scenarios. Moreover, some practical
applications about energy efficiency is worth the investiga-
tion. It is also interesting to explore domain knowledge and
employ them in designing powerful algorithms for solving
other energy-efficient scheduling problems.
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