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Dynamic Detection and Analysis of Fore-Put Powder Melting Behavior
in Diode Laser Cladding Process

Zhu Ming"*, Wang Bo', Yan Buyun', Yang Qian', Shi Yu'?, Fan Ding'*
'State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology ,
Lanzhou, Gansu 730050, China ;
*Key Laboratory of Nonferrous Metal Alloys and Processing , Ministry of Education, Lanzhou University of
Technology , Lanzhou, Gansu 730050, China

Abstract

Objective  Laser cladding technology is widely used in coating deposition, worn surface repairing, and direct
fabrication due to advantages, such as high deposition accuracy, small heat-affected zone, metallurgical bonding,
and minimal dilution with the substrate. It is a surface modification technology for thin coating/layer fabrication
with improved surface properties or surface defect refurbishment by forming highly resistant gradient coatings/
layers on a substrate. Recently, the innovations in diode laser cladding significantly support remanufacture, and
more stringent requirements have been put forward on the forming accuracy and quality. There is inadequate
research on forming mechanisms in the diode laser cladding process; just depending on numerous process tests or
human experience cannot effectively improve accuracy or control quality under unfavorable conditions, such as heat
accumulation and stress concentration. To improve the laser cladding technology level, the development of on-line
and high-speed monitoring and process controlling system is necessary. In particular, studies on powder melting
behavior play a paramount role in forming mechanisms. Therefore, for fore-put powders, the characteristic
behavior of the melting process was detected, and the investigation of the thermal physical characteristics was
analyzed. Then, the equations of heat balance to describe the melting process were established. Finally, a model to

analyze the thermal physical process in diode laser cladding process was set up.

Methods To analyze the interaction process between the diode laser and fore-put powders, first, an optical
acquisition system with a high-speed camera was set up to observe the powder melting process; second, based on
the analysis of the collected high-speed camera data, the characteristic behavior of the cladding process was
analyzed; and finally, according to the analysis of the powder melting process, the models of thermophysical
processes in different characteristic stages were set up, and the heat-balance equation for each characteristic stage

was established.

Results and Discussions There are typical physical phenomena in the powder melting process, starting from the
laser irradiation of the powder layer to the formation of the cladding layer (Fig. 4). The cladding process can be
divided into four stages according to the existing physical phenomena (Fig. 5). 1) Initial stage: under the laser heat
source radiation, the powder particles adhere to each other and gather to form particle agglomerates. 2) Melting
stage one: the powder particles are melted to form liquid metal pellets with sizes of 1.27—1.90 mm. 3) Melting
stage two: the liquid metal pellets agglomerate to form a larger liquid metal ball with a diameter of 3.80—7.25 mm,
surrounded by a few liquid metal pellets with diameters of <2.54 mm. 4) Forming stage: numerous liquid metal
pellets and powder particles merge into large liquid metal balls in the central area of the laser action to form a liquid
metal pool with a diameter of 9.52—12.50 mm and spread over the substrate. The forming shape mainly depends on
the duration of each characteristic stage in the laser cladding process with fore-put powders (Figs. 3 and 6). In
addition, the energy balance equation for each stage can be established. From the heat transfer process perspective,
the influence of laser power on the powder melting process was analyzed, and the mechanism by which the laser

parameters incident the forming quality was clarified.

Conclusions  In this study, the melting process of fore-put powders was detected by a high-speed camera and
divided into four typical stages. Based on the influence of laser irradiation on the duration of each characteristic
stage, the duration of each of characteristic behavior @, @, and @) increased under the same laser irradiation. This
result shows that the transformation of the powders from solid to liquid droplets does not require much energy;

however, to realize the movement, convergence, and fusion penetration of the liquid droplets, certain laser energy
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is required. The process is slow with a lower laser power, which affects the spread of the liquid droplets and
forming morphology. A thermophysical model that can describe the dynamic thermal interaction behavior between
the laser and fore-put powders has been established. Through the analysis of the model, the thermophysical
interaction behavior at different characteristic stages can be explained. According to the analysis of the powder
melting process, when the laser power increases or the defocus amount decreases, the rate at which the powder
melts increases, and numerous liquid metal drops are formed. The diameter of the liquid metal drops and spread
rate increases. As the radius of solid powder particles decreases or the reflectivity of liquid metal drops, the

duration of @ and @ reduces; also, the wetting angle decreases, and the spreading performance improves.
Key words laser technique; diode laser; surface cladding; fore-put powder; melting process
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