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Abstract: The capture, storage and utilization of CO2 through hydrate-related technology is a
promising approach to addressing the global warming issue. Dissociation is required after the
transportation of CO2 gas in the form of a self-preserving hydrate. In order to investigate the
dissociation behaviors as the self-preservation effect is removed, CO2 hydrates were frozen, and then
the self-preservation effect was removed through uniform heating. An evident dependence of hydrate
dissociation duration on the initial dissociation rates after losing the preservation effect was observed.
The results in the silica gel powder and sodium dodecyl sulphate solution showed significant
reductions in the initial dissociation temperatures and a slight decrease in the initial dissociation rates
when compared with those of pure water. The reductions in the former were 2.88, 2.89, and 5.73 ◦C in
silica gel, sodium dodecyl sulphate, and a combination of the two, respectively, while the reductions
in the latter were 0.12, 0.12, and 0.16 mmol/min, respectively. As the results are inconsistent with
the conventional mechanism elucidating a self-preservation effect, the ice shell theory was hence
further supplemented by introducing innovative contribution factors—nonenclathrated liquid water
and gas molecules dissolved inside. These findings are expected to provide references for CO2 gas
transportation and usage of the self-preservation effect.

Keywords: self-preservation effect; CO2 hydrate; SDS; diffusivity; nonenclathrated liquid water

1. Introduction

Gas hydrates are crystalline compounds composed of water and gas. The gas molecules
(guests) are trapped in water cavities (host) composed of hydrogen-bonded water molecules [1].
Various types of gas hydrates [2] presenting different applicable contributions [3–6] have been
found both in nature and in the laboratory setting. The favorable conditions for CO2 hydrate
formation offer potential ways of mitigating climate warming through CO2 seabed storage
technology [7,8] and CO2 replacement for CH4 in methane hydrate [9–11]. Other applications
(such as seawater desalination [12,13], gas purification [14–16], cool storage [17,18], and bio-
gas upgrading [19,20]) have also ignited widespread concern in recent years. Before these
applications, CO2 hydrate storage and its safe and efficient transportation are crucial steps. In
order to solve this problem, plant-scale demonstration studies on hydrates are underway [21]
and innovative technology (that is, the application of the self-preservation effect of hydrates)
has been proposed. The so-called hydrate self-preservation effect is a phenomenon in which
gas hydrates can maintain stability even at atmospheric pressure in some non-equilibrium
temperature regions below the freezing point [22–24]. Due to the extremely slow dissociation
rate under this state, gas hydrates could be efficiently and successfully transported at atmo-
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spheric pressure, and the utilization of the self-preservation effect is therefore undoubtedly a
promising approach.

In order to better use this technology, it is necessary to understand its origins and
characteristics. The dissociation rates of “self-preserving” methane hydrate were measured
by Takeya et al. [25,26], at various temperature ranges, and the authors suggested that at
the initial dissociation stage, a layer of ice forms on the hydrate surface and then prevents
further dissociation. The influence of hydrate particle size and ice structure on the self-
preservation effect was subsequently investigated, further showing that the generation
of the effect depends on the action of the ice shell and the interaction between host and
guest molecules [27–29]. The dissociation processes of structure type I (SI) and II (SII)
hydrates at 193–290 K [30] and 190–273 K [31] were also studied by Stern et al., using
successive temperature delaying and the rapid decompression method. According to the
dissociation rates of methane hydrate measured between −7.5 and 0 ◦C at normal pressure,
Shirota et al. [32] noted that the dissociation rate at −5 ◦C was the lowest. In addition,
the influences of the hydrate surface structure, ice “defects” [33], ice particle size [34,35]
and thermodynamic conditions, as well as the influences of phase composition [36] and
supercooled water [37] on the self-preservation effect, have been considered by researchers.

As mentioned above, many research conclusions on the formation mechanism of the
effect and dissociation rules of “self-preserving” hydrates have been provided. However,
the disappearance patterns of this effect and the control mechanisms behind them (which
are significant for further utilization of hydrates after being transported to their intended
destinations) have rarely been reported in the literature. Additionally, few studies have
examined the influence of additives [38,39] on the self-preserving CO2 hydrate. Therefore,
the main purpose of this study is to further understand the dissociation characteristics
of the CO2 hydrate after the self-preservation effect is removed and the role of SDS in
the dissociation process. Using a uniformly increasing temperature method, the self-
preservation effects of CO2 hydrates formed within various reaction systems (including
pure water, silica gel (SG) powder, and sodium dodecyl sulphate (SDS) solution) were
removed slowly, and the disappearance patterns of the effect were investigated in detail.

On the base of a novel perspective, i.e., the relationship between gas content and the
initial decomposition temperature (IDT) or initial decomposition rate (IDR), analysis of
the influence of ice on the hydrate self-preservation effect is executed in terms of the ice
shell theory in this study. The role of SDS in the dissociation process of the self-preserving
hydrate was also clarified. Finally, some novel factors controlling the self-preservation
effects were proposed, supplementing the currently existing theories and thus providing
references for the efficient transportation of CO2 gas through the hydrate self-preservation
effect. The main conclusions of this study can be summarized as follows:

(1) Both SDS and silica gel can reduce the IDT and IDR of the self-preserving hydrate,
and there is synergy when they exist together. (2) The dissociation time and ice content are
directly and inversely proportional to the IDR of self-preserving hydrates, respectively. (3)
The self-preservation effect is a complicated process that is not entirely caused by ice shells.

2. Materials and Methods
2.1. Experimental Apparatus and Materials

As shown in Figure 1, the core of the experimental system is a crystallizer, made
of 316 stainless steel cylinders, with a magnetic stirrer inside and observation windows
on both sides, of which the diameter and height are 45 and 130 mm, respectively. The
crystallizer is wrapped in a water vest connected to a low-temperature circulating cooling
bath. Temperature can be controlled accurately, in the range of −50~150 ◦C ± 0.1 ◦C. The
pressure and temperature inside the crystallizer are measured using a digital pressure
meter (DPM) and temperature meter (DTM), respectively. The CO2 gas with high pressure
is stored in a gas cylinder also made of 316 stainless steel cylinders. There is a proportional-
integral-derivative (PID) pneumatic valve located between the crystallizer and the cylinder,
allowing the crystallizer to be pressurized through this PID valve. There is a vent at the
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bottom of the crystallizer, which is connected to a digital gas flow meter (DGM). The
measurement range of the DGM is 0~5 L/min, the resolution is 0.001 L/min, and the
precision is ±0.12%. The DGM, DPM, and DTM are controlled through a data acquisition
system (DAS). During the experiments, all of the measured parameters were recorded and
saved by the DAS at an interval of 5 s.
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Figure 1. Schematic of the experimental system.

CO2 gas with a purity of 99.99% was chosen to form the hydrate. During the formation
experiments of CO2 hydrates, sodium dodecyl sulphate (SDS) was widely applied as a
promoter [40–42]. Therefore, besides being formed in pure water, CO2 hydrates were also
formed in SDS solution. The transfer rate of gas to the aqueous phase can be significantly
enhanced by SDS [43], and a 1 wt% is an effective concentration for enhancing the hydrate
formation rate [42]. An SDS solution with 1 wt% concentration was therefore prepared
using analytical grade SDS and deionized water with resistivity higher than 18.00 MΩ·cm,
which was self-made in the lab. In order to ensure the comprehensiveness of the research
results, silica gel powder, produced by Yucheng Chemical (Shanghai, China) Co., Ltd.
(Figure S1, see Supplementary Materials), was also chosen as a porous medium in which
CO2 hydrates were formed. The medium density is 0.35 g/cm3, the porosity is 77.44%, and
the average particle size is between 25 and 58 µm. At the saturated state, the water content
of the medium is Wwater/Wmedia = 2.2:1. During all formations, the utilized experimental
media are all non-saturated, possessing a fixed water content of Wwater/Wmedia = 1.5:1.
This water content results in a large gas–water contact area and enormous interconnected
pore spaces, facilitating the formation of the hydrate [44]. As a result, high water conversion
ratios of hydrate formation can be achieved through this water content [45,46].

2.2. Experimental Procedure

CO2 hydrates were formed in two liquid phases (i.e., pure water and SDS solution
(abbreviated as PW and SS)) and one porous medium containing two different liquids
(i.e., silica gel powder mixed with pure water and SDS solution (abbreviated as SG/PW
and SG/SS)). Four temperatures (8.5, 6.5, 3.5, and 0.5 ◦C) were designed for the formation
experiments, as shown as Table S1 (See the Supplementary Materials). The corresponding
pressure values of the phase equilibrium of the CO2 hydrate were calculated as 3.67,
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2.77, 1.68, and 1.32 MPa (Table S1), with CSMGem software (Natural Gas Hydrate Center,
Colorado School of Mines).

Before each formation experiment in liquid phases, 104 mL of PW or SS was injected
into the crystallizer. For those in porous media, a certain quality of silica gel powder
also containing 104 mL PW or SS was charged. The initial temperature of the crystallizer
was set higher than the pre-designed temperature by 2.5 ◦C. The crystallizer was then
pressurized to the corresponding phase equilibrium value through the PID valve and
remained constant. As stirring was required, the magnetic stirrer was opened, and the
stirring speed was fixed at 200 r/min. The whole system was left undisturbed for over
12 h under the constant conditions to allow the CO2 to sufficiently dissolve in water. The
temperature was subsequently uniformly reduced by 4 ◦C in 80 min and then remained
constant under the constant pressure condition. Finally, a 1.5 ◦C subcooling driving force
was provided for each formation experiment of the CO2 hydrate.

After the hydrate was sufficiently formed, the PID valve was turned off. The tempera-
ture was lowered below 0 ◦C rapidly to freeze the as-formed hydrate for over 10 h. Free gas
in the crystallizer was then released slowly through the vent (Figure 1). Even under atmo-
spheric pressure, frozen hydrates dissociate very slowly and enter into the self-preserving
state. As reported, the optimum temperature condition of the self-preservation effect of
the methane hydrate is about −5 ± 1 ◦C [30,31], and the temperature utilized to freeze the
as-formed hydrates in the liquids was −6 ◦C. Considering the fact that there are a large
number of capillaries within silica gel powder, another two low temperatures (−8 ◦C and
−10 ◦C) were also used to freeze the as-formed hydrates in the porous medium.

After the self-preserving state of hydrate was maintained over 8 h, the temperature
in the crystallizer was uniformly raised to the initial set value at a rate of 3 ◦C/h. In
addition to the rise in temperature, the self-preservation effect gradually disappeared, and
the hydrate began to dissociate. The DGM recorded the entire change process of the flow
rate of released gas from the dissociating hydrate.

2.3. Calculation Method

As shown in Figure 2, due to the instantaneous opening/closing performance of the
PID valve to retain constant pressure, the profile of the CO2 uptake against time during
the entire hydrate formation process consists of many separated segments and presents a
sawtooth wave shape. Over each separated segment (in Figure 2A,B), the amounts of gas
uptake were calculated, and the total amount was obtained by summing up the separated
ones with the following formulas:

n = ∑ ni (1)

ni =
Psta × V

Zsta × R × T
−

Pf in × V
Z f in × R × T

(2)

where n is the total amount of gas (with a unit mmol), ni is the calculated amount of
gas uptake during each separated segment (mmol), P is the measured pressure in the
crystallizer (MPa), V is the volume of the headspace or residual pores of the porous
medium in the crystallizer (mL), T is the temperature (K), and R = 8.314 J/(mol·K). The
subscripts “sta” and “fin” represent the starting and ending points of each separated
segment, respectively. Z is the gas compressibility factor under a specific temperature
and pressure conditions, calculated by the Benedict–Webb–Rubin–Starling equation of
state [47].
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During the dissociation process of the hydrate under atmosphere pressure and room
temperature, the flow rates of the released gas were measured by the DGM with the unit
L/min. Using the gas state equation, this unit was finally converted into mmol/min.

3. Results
3.1. CO2 Hydrate Formation and Disappearance of Its Self-Preservation Effect

Figure 2 shows the changes in temperature and pressure during the entire CO2
hydrate formation process. In addition to the reduction in temperature, the hydrate
began nucleating in PW and acutely released heat. Hydrate crystals began growing and
continuously consumed gas. Figure 3 shows images of CO2 hydrate formation in four
reaction systems. CO2 gas was hence repeatedly replenished into the crystallizer through
the PID pneumatic valve, which presented as several sawtooth wave shapes on the pressure
curve (e.g., in Figure 2A,B). After being frozen thoroughly, the as-formed hydrate can be
dissociated through a method of continuously raising the temperature. Figure 4 shows
one complete dissociation process consisting of three successive stages. During stage I,
in addition to the release of free gas, the measured gas flow rate abruptly rose, and the
temperature dramatically decreased. After that, the flow rate returned to the original
0 mmol/min and the temperature returned to the pre-set value −6 ◦C at stage II, at which
point the hydrate was in a self-preserving state under normal pressure. During stage III,
while being heated continuously, the frozen hydrate gradually lost its self-preservation
effect and began dissociating. Because hydrate dissociation is an endothermic process, the
change curves for temperature deviate from the original trends. These obvious deviating
positions were defined as the initial dissociation points of temperature (IDTs), as shown
in Figure 4, and those points in fact characterize specific temperature conditions at which
the self-preservation effect is removed and the frozen hydrate begins dissociating. Because
hydrates were formed under various experimental conditions, the specific locations of
the IDT and change curves for the gas flow rate present obvious difference. As shown in
Figure 4, the initial dissociation rates of hydrates are all 0 mmol/min. The flow rates were
then plotted against the cumulative amounts of the released gas. As shown in Figure 5,
while the cumulative amounts are less than 40 mmol, the relations between the flow
rate and cumulative amount all exhibit superior linearity. Hence, the initial dissociation
rate (IDR) of the hydrate was defined as the measured instantaneous flow rate when the
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cumulative amount of gas reached 1 mmol in this study. The specific values of the IDP
and IDR were then counted and analyzed to investigate the disappearance patterns of the
self-preservation effect of hydrate and the control mechanism behind them.
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3.2. Influence of Medium and Experimental Conditions on IDT and IDR

Figure 6 shows that the IDTs of the self-preserving hydrates were significantly influ-
enced by the experimental medium on which the hydrate was formed. The IDTs in PW are
the highest, with an average value of −0.43 ◦C, followed by those in SG/PW and SS, with
average values of −3.31 and −3.32 ◦C, respectively. The IDTs in SG/SS are the lowest and
have an average value of −6.16 ◦C. In addition to the increase in chosen temperature, the
IDTs tended to slightly increase. Although the IDTs in SS and SG/PW had almost the same
average values (i.e., −3.31 and −3.32 ◦C, respectively), the specific values of SG/PW at
different frozen temperatures presented obvious differences (i.e., −1.57 ◦C at the freezing
temperature of −6 ◦C, −2.60 ◦C at −8 ◦C, and −5.93 ◦C at −10 ◦C). Similarly, there was an
obvious difference in values of SG/SS (i.e., −4.38 ◦C, −6.95 ◦C, and −7.15 ◦C). As shown
in Figure 6, in addition to the decrease in frozen temperatures, the IDTs in the silica gel
powder tended to decline. A comparison Figures 6 and 7 shows that the change rules of
the IDR are similar to those of the IDT. The values of the IDRs in PW are the highest, with
an average of 0.34 mmol/min, followed by those in SS and SG/PW with the same average
of 0.22 mmol/min, while SG/SS has the lowest average value at 0.18 mmol/min. The IDRs
followed different change rules in different reaction systems; values in SG/PW tended to
decline with the decrease in frozen temperature, with an average value 0.28 mmol/min at
−6 ◦C, 0.21 mmol/min at −8 ◦C, and 0.15 mmol/min at −10 ◦C. On the contrary, the values
in SG/SS tended to increase, with 0.15 mmol/min, 0.19 mmol/min, and 0.21 mmol/min.
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3.3. Relations between IDR and Ratio of Total Dissociation Time to Ice Content

When the self-preservation effect disappeared, the hydrate began to slowly dissociate
and finally release all of the gas contained inside after a certain period of time, implying
the end of entire experiment. Besides the initial dissociation properties, the total durations
of the dissociation processes were therefore also measured. As shown in Figure 8, the
dissociation durations were prolonged by the SDS solution. The averages of durations in
PW and SG/PW are almost the same (i.e., 101.66 and 107.68 min, respectively). With the
SDS solution, these values improved by about 50% (i.e., 157.30 min in SS and 159.84 min in
SG/SS), meaning that the gas-releasing efficiency of the hydrate under the self-preserving
state can be significantly lowered by the surfactant SDS. Figure 9 shows the relation
between the dissociation time (Figure 8) and IDR (Figure 7); that is, the dissociation time
significantly depends on the IDR. This superior inverse proportional correlation, R2 = 0.70,
means that along with disappearance of the self-preservation effect, the higher the initial
dissociation rate (IDR), the shorter the dissociation duration.
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In order to investigate the key influencing factor of the IDR, the final conversion rates
of liquid water during formations of the hydrate were calculated. Considering the fact that
the formed hydrates were all thoroughly frozen at negative temperatures, the calculation
results were then subtracted from 100% to characterize the ice content contained in the
frozen hydrates. Figure 10 shows the relation between the calculated ice content and IDR;
that is, the IDR presents an obvious dependence on the ice content in the frozen hydrate,
with an R2 = 0.67 of the fitted linear equation. This positive proportional correlation means
the higher the ice content in the frozen hydrate, the greater the IDR.
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4. Discussion

Through an X-ray diffraction experiment and an analysis carried by Yakushev et al. [24,25],
the formation of the self-preservation effect was explained to be due to an as-formed ice shell
outside the hydrate crystals (i.e., the ice shell theory). According to this theory, the IDR, when
the effect begins disappearing, should present a reverse proportional correlation with the ice
content contained in frozen hydrates, but our research shows exactly the opposite pattern
(Figure 10). In our research, compared with the IDT in PW, that in the other three media was
significantly reduced (Figure 6), which indicates that hydrate dissociation can be efficiently
achieved via SDS effectively. In fact, as is known, the surfactant SDS utilized in this study is
only one kind of dynamic additive for the hydrate formation, which does not transform the
thermodynamic equilibrium conditions of hydrates [48–50]. This promotion action is carried
out by improving water molecule activities and then by gas dissolution capabilities [51]. Hence,
the freezing point of water is also not changed by SDS. Logically, the hydrate dissociation
properties with the self-preservation effect should not be influenced by SDS addition. Therefore,
the ice shell theory cannot reasonably illustrate our experimental results, and the formation
mechanism was hence further supplemented.

We suggest that the self-preservation effect is a complicated process that is not thor-
oughly caused by ice shells (Figure 11B). One important reason is that hydrate dissociation
is limited by the transport of guest molecules across a thin interface, and this diffusivity
of guest molecules adjacent to the hydrate is extremely low [52]. In the ice region the
diffusivity is reduced further, and the water structure in the interface is even more rigid.
Moreover, in contrast to the liquid water region, the hydrate surface must be structured
relative to ice in terms of partial charges on the surfaces of the hydrate and ice (more rigid
compared to liquid water). Undoubtedly, within these interfaces between the hydrate
and ice structures, there are some nonenclathrated liquid water [53] and gas molecules
dissolved inside (Figure 11C). SDS is one kind of macromolecular organic matter that
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can improve water molecule activities and thereafter the dissolution capabilities of gas
molecules [54]. During the hydrate formation processes, SDS cannot enter into the clathrate
structures and is only dissolved in the nonenclathrated liquid water outside the solid
hydrate crystals (Figure 11B). In addition to the continuous consumption of liquid water
induced by the formation of clathrate structures, SDS concentration dissolved in the nonen-
clathrated liquid water is continuously improved. As a consequence, once the hydrate
clathrate structures begin to lose their stability during the heating process, these trapped
gas molecules are snatched away by adjacent SDS molecules (Figure 11C). IDTs in the
SS and SG/SS are therefore significantly brought forward when compared to those in
PW (Figure 6). Moreover, owing to the possible existence of abundant ice-like defects
that dominate the transport rate of H-bonding guests inside hydrate crystalline structures
during dissociation process, this snatching behavior might be further augmented [55,56].
On the other hand, due to such enormous capillaries inside SG, water molecule activities
are significantly inhibited by capillary force. While being frozen, there is still an enormous
amount of unfrozen liquid water inside the SG media. With the enhancement in the gas
dissolution capability via low temperature, the inhibition in water activities caused by
the capillary force is then weakened, and thus, the lower the frozen temperature, the
lower the IDTs IDTs (Figure 6). In promoting the disappearance of the self-preservation
effect, SG performs a similar function IDTs (Figure 6). With the combination of SDS and
capillary force, the disappearance of the self-preservation effect can then be brought further
(Figure 6). Notably, this hypothesis currently only regards this nonenclathrated liquid
water appearing in a static state without consideration of the very complicated dynamic
state, under which specific segmented gas and liquid flow at low velocities along superficial
structures between the hydrate and ice at the microscale [57].
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In addition, due to the promotion function of SDS in gas dissolution and the similar
function of capillary force at low temperatures, it appears difficult for these dissolved
gas molecules to desorb from the solution [54], resulting in significantly lower IDRs in
other experimental media (Figure 7) when compared with that in the PW. The higher the
conversion rate of liquid water to hydrate, the higher the SDS concentration dissolved
in nonenclathrated liquid water. The IDR of self-preserving hydrates with the highest
conversion rates (Table S1) are hence the lowest, as shown by the temperatures 6.5 ◦C and
3.5 ◦C in Figure 6. Unlike the IDT (Figure 6), the frozen temperatures do not exhibit a
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dramatic influence on the IDRs (Figure 7). The reverse proportional correlation between
the IDR and total dissociation time shows that the subsequent dissociation significantly
depends on initial dissociation behaviors. For CO2 gas transportation relying on the
hydrate’s self-preservation effect, this investigation into the initial dissociation properties
when the effect begins disappearing is of considerable importance.

5. Conclusions

Some CO2 hydrates formed in various experimental conditions and media were frozen
in the self-preserving state and subsequently slowly dissociated through uniform heating
at a fixed rate. The initial dissociation behaviors as the self-preservation effect began to
disappear were investigated. The results show that compared with those of pure water
(PW), the initial dissociation temperatures (IDTs) (which are the temperatures at which
hydrates begin to lose their self-preservation effect) were reduced in the SDS solution
(SS), silica gel powder/pure water (SG/PW), and silica gel powder/SDS solution (SG/SS).
Similarly, the initial dissociation rates (IDRs) (characterizing the instantaneous gas flow rate
when the released amount of gas reaches 1 mol) were all reduced in the above latter three
media. In contrast with the conventional theory of the ice shell, elucidating the generation
mechanism of the self-preservation effect, another novel aspect—nonenclathrated liquid
water between the interfaces of the hydrate, ice structures, and gas molecules dissolved
inside—was supplemented into the generation mechanism. That is to say, considering
the disappearance process of the self-preservation effect promoted by SDS, we can affirm
that the initial dissociation properties when the effect begins disappearing should also
warrant attention, and we hope that this study can provide references for efficient CO2 gas
transportation while using the hydrate self-preservation effect.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/en14133909/s1, Figure S1: Picture of the silica gel powder mixed with pure water utilized
in the experiments; Figure S2: Relation between IDR and total dissociation time (With error bar);
Figure S3: Relation between IDR and calculated ice content contained in the frozen hydrates (With
error bar); Table S1: Specific experimental conditions and measurement results.
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