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ABSTRACT The issues of admissibility and controller design for a class of extended T-S fuzzy discrete
singular systems (FDSSs) with distinct difference item matrices are discussed in this article. A new
augmented system which is the equivalent of the original system is introduced to convert these distinct
difference item matrices into the easy treatment form. On this basis, using the fuzzy Lyapunov function
(FLF), relaxed sufficient condition is given to ensure the admissibility of unforced systems. This condition
is described via strict linear matrix inequalities (LMIs), which facilitates to analyze the admissibility.
Meanwhile, the design methods of parallel and nonparallel distributed compensation (PDC and Non-PDC)
controllers are also proposed. Finally, the advantages of the developed admissibility and controller design
approach are illustrated by three examples.

INDEX TERMS PDC and Non-PDC controller, FDSSs, fuzzy Lyapunov function, distinct difference item
matrices, augmented system method.

I. INTRODUCTION
Since T-S fuzzy systems [1] are used as a nonlinear func-
tion approximation tool, such systems are the wide vari-
ety of applications for the control problems of nonlinear
systems. Stability is a prior condition of the control sys-
tem, so stability analysis and control problems of T-S fuzzy
continuous/discrete systems have attracted a lot of attention
[2]–[5]. Lyapunov stability theory [6]–[8] is the most effec-
tive method to solve the stability problems of nonlinear sys-
tems. So, using common Lyapunov function (CLF), stabil-
ity and stabilisation problems of fuzzy systems are solved
based on a series of LMIs [9]. But this approach falls into
conservatism as the reason that these LMIs need to find
common positive definite matrix. Then, fuzzy Lyapunov

The associate editor coordinating the review of this manuscript and
approving it for publication was Qi Zhou.

function (FLF) [10], as a useful tool to reduce the conser-
vatism, is introduced to analyze the stability of these systems.
Furthermore, PDC controller and Non-PDC controller which
are the two most important type of state feedback controller
are widely used for stabilisation problems.

Singular systems has been developed sufficiently in the
past several decade and some significant results have been
obtained [11]–[13]. They can better describe physical sys-
tems than the normal state-space systems and are widely
used in many fields such as power system, biological system,
economic system, restricted robot and so on. So, T-S fuzzy
singular models are defined via extending the normal forms
in [15]. And an example is introduced to intuitively show the
advantages of fuzzy singular system compared with fuzzy
normal system. Currently, the researches of T-S FDSSs can
be roughly classified into two categories based on difference
item matrices. One is the same difference item matrices in
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fuzzy rules [16]–[21]. In [16], a projection algorithm is given
to solve non-strict LMIs in the stability criteria of FDSSs.
In [17], theD-stability concept is promoted to fuzzy systems,
then the stability criteria of closed-loop FDSSs with delay is
proposed via LMIs. The sliding mode control design method
of FDSSs with delay and disturbances is given to ensure the
admissibility and H∞ performance in [18]. Using innovative
Lyapunov functions and designmethod, the relaxed sufficient
conditions is proposed such that the FDSSs with time delay
is admissible in [19]. Based on the novel approximation
method and weighting-based FLF, the admissibility and con-
troller design issues of uncertain FDSSs is discussed in [20].
In [21], robust controller design method for FDSSs described
by extended models under bounded parameter uncertainties
is presented.

The other one is the distinct difference item matrices in
fuzzy rules [22]–[25]. In [22], using quadratic/nonquadratic
Lyapunov functions, local stabilization conditions of FDSSs
with distinct derivative matrices are given. In [23], using
delayed Lyapunov functions, the novel method to design the
controller for nonlinear discrete systems based on fuzzy sys-
tem representation. But in [22], [23], the systematic demand

is that the compound difference item matrices
r∑
i=1

hi(ξ (k))Ei

must be invertible. In [24], based on the CLF, the admissi-
bility analysis and control issues for FDSSs with multiple
difference matrices Ei at locally models are discussed, which
increased the conservatism. An innovative predictor-based
control design method for FDSSs with distinct derivative
matrices is given based the augmented systemmethod in [25].
However the equivalent of augmented systems and origi-
nal systems will not be ensured when compound matrices
r∑
i=1

hi(ξ (k))Ei is not invertible. At present, the researches of

FDSSs with distinct derivative matrices are not plentiful and
the key issue is the way to convert these distinct difference
item matrices into the easy treatment form.

Through above analysis, the admissibility analysis and
controller design for extended FDSSs with distinct derivative
matrices is discussed based on FLF. Firstly, based on the new
augmented system method, a relaxed sufficient condition is
given for the admissibility of FDSSs via strict LMIs. Then,
considering the equivalence between the dual system and the
original system, the PDC controller and Non-PDC controller
design methods are given to ensure the admissibility for
closed-loop FDSSs. Finally, it is showed that the proposed
method is more effective and feasible by simulation exam-
ples. The contributions of this article are summarized below.

I) The admissibility analysis and synthesis issues for
extended fuzzy discrete singular models with distinct differ-
ence term matrices in the locally singular models are dis-
cussed. And this kind of systems can precisely describe a
large class of nonlinear discrete singular systems. Different
from the existing results, the new augmented system which is
admissibility equivalent to the original system is proposed to
deal with these difference term matrices.

II) Using fuzzy Lyapunov function and matrix inequality
method, a relaxed admissibility criteria for extended FDSSs
is given in terms of strict LMIs. The slack matrices are also
introduced into this criteria to reduce the conservatism. Then,
both PDC controller and Non-PDC controller designmethods
are further investigated. Using the equivalence between the
dual system and the original system and eliminating the
coupling relationship between the system matrix and fuzzy
Lyapunov matrix, the controller design becomes simple and
effective under the proposed approach.

Notations.
QT: transpose of Q;
Det(Q): determinant of the matrix Q
Q � 0/Q > 0: positive semi-definite/definite matrix;
Q � 0/Q < 0: negative semi-definite/definite matrix;
Rn: n-dimensional Euclidean space;
Deg(): degree of the polynomial.
Rank(Q): rank of the matrix Q.
Rm×n: m× n real matrices set;

II. PRELIMINARIES
Consider T-S fuzzy singular discrete models with IF-THEN
rules as follows.
Rκ : IF ς1(k) isM1κ , AND ς2(k) isM2κ , . . . , AND ςp(k)

isMpκ , Then{
Êκ x̂(k + 1) = Âκ x̂(k)+ B̂κu(k)
y(k) = Ĉκ x̂(k)+ D̂κu(k), κ = 1, 2, · · · , nr

(1)

whereMρκ (ρ = 1, 2, . . . , p) denotes the fuzzy set, nr is the
IF-THEN rule number, ς (k) = [ς1(k), ς2(k), . . . , ςp(k)]T

are premise variables, x̂(k) ∈ Rn and u(k) ∈ Rm denote the
state/input vector, y(k) ∈ Rp denotes the measurable output
vector; Âκ , B̂κ , Ĉκ , D̂κ , Êκ are matrices with appropriate
dimension and rank(Êκ ) = n1 ≤ n.
The overall fuzzy discrete models is given as
nr∑
κ=1

hκ (ς (t))Êκ x̂(k + 1) =
nr∑
κ=1

hκ (ς (k))[Âκ x̂(k)+ B̂κu(k)]

y(k) =
nr∑
κ=1

hκ (ς (k))[Ĉκ x̂(k)+ D̂κu(k)]

(2)

The following assumptions is given about difference item
matrices Êκ in system (1).
Assumption 1:

Êκ = Qκ Ē, κ = 1, 2, · · · , nr

where Qκ are invertible constant matrices.
Then, the augmented system can be given as

Ex(k + 1) =
nr∑
κ=1

hκ (ς (k))(Aκx(k)+ Bκu(k))

y(k) =
nr∑
κ=1

hκ (ς (k))(Cκx(k)+Dκu(k)) (3)
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where

E =

[
Ē 0
0 0

]
,

Aκ =

[
0 I
Âκ −Qκ

]
, Bκ =

[
0
B̂κ

]
,

Cκ =
[
Ĉκ 0

]
, Dκ = D̂κ , x(k) =

[
x̂(k)
xo(k)

]
For convenience, system (3) is rewritten as{

Eẋ(k) = Aςx(k)+ Bςu(k)
z(k) = Cςx(k)+Dςu(k)

(4)

Definition 2:
• System (2) is regular if

Det(zEς − Âς )

is not identically zero.
• System (2) is causal if

Deg(Det(zEς − Âς )) = Rank(Eς )

• System (2) is stable if

|λ(Eς , Âς )| < 1

where λ(E,A) = {z | Det(zE−A) = 0}.
• System (2) is admissible if it is regular, causal and stable.
Remark 1: Considering system (2)-(3), we can get

Det(zE−Aς )

= Det(z
[
Ē 0
0 0

]
−

nr∑
κ=1

hκ (ς (k))
[

0 I
Âκ Qκ

]
)

= Det(

 zĒ −I

−

nr∑
κ=1

hκ (ς (k))̂Aκ −

nr∑
κ=1

hκ (ς (k))Qκ

)
= Det(zÊς − Âς )

So, system (3) is admissibility equivalent to (2). However,
as in [25], the following augmented systemmethod is consid-
ered.

Ex(k + 1) =
nr∑
κ=1

hκ (ς (k))Aκx(k) (5)

where

E =

[
I 0
0

]
, Aκ =

[
0 I
Âκ −Êκ

]
x(k) =

[
x̂(k)
˙̂x(k)

]
Next, we have

Det(zE−Aς )

= Det(z
[
I 0
0 0

]
−

nr∑
κ=1

hκ (ς (k))
[

0 I
Âκ Êκ

]
)

= Det(

 zI −I

−

nr∑
κ=1

hκ (ς (k))̂Aκ −

nr∑
κ=1

hκ (ς (k))Êκ

)
= Det(

[
zI −I
−Âς Êς

]
)

Then, we can find that

DetÊςDet(zE−Aς ) = DetÊςDet(zÊς − Âς )

So, only when Êς is nonsingular, this system can be admis-
sibility equivalent to the original system. At this moment, this
system can only described the normal nonlinear system rather
than singular system.
Remark 2:As in [15], consider the following fuzzy discrete

singular model:
ne∑
ρ=1

µρ(ς (t))Êρ x̂(k + 1) =
nr∑
κ=1

hκ (ς (k))[Âκ x̂(k)+ B̂κu(k)]

the proposed method in the article can also used for these
systems as

Ex(k + 1) =
nr∑
κ=1

ne∑
ρ=1

hκ (ς (k))µρ(ς (k))(Aκρx(k)+ Bκu(k))

where

E =

[
Ē 0
0 0

]
, Aκρ =

[
0 I
Âκ −Qρ

]
, Bκ =

[
0
B̂κ

]
Then, the analysis and control problems of such systems

can be solved based on the framework of FDSSs with same
differential term matrices.
Lemma 3 [26]: Given matrices 8ij ∈ Rn×n, the following

two statements are equivalent.
a)

nr∑
ι=1

nr∑
κ=1

hι(φ(k))hκ (φ(k))8ικ > 0 (6)

b)

8ιι > 0, ι = 1, 2, · · · , nr , (7)
2

nr − 1
8ιι +8ικ +8κι > 0, 1 ≤ ι 6= κ ≤ nr (8)

III. MAIN RESULT
A. ADMISSIBILITY ANALYSIS
The admissibility theorem of FDSSs (4) is obtained as fol-
lows.
Theorem 4: System (4) is admissible if there exist sym-

metric matrices Pκ ∈ R2n×2n,Pκ > 0, Qiκκ ∈ R4n×4n, Qκ ∈
R(2n−n1)×(2n−n1),W i

κρ ∈ R4n×4n and matrices Qiκρ ∈ R4n×4n,
Mκ ∈ R2n×2n, Hκ ∈ R2n×2n, and such that the following
LMIs hold.

W i
κκ

> 0, i, κ = 1, 2, · · · , nr (9)
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2
nr − 1

W i
κκ +W

i
κρ +W

i
ρκ

> 0, i, ρ, κ = 1, 2, · · · , nr , ρ 6= κ (10)

2i
κκ +W

i
κκ

< Qiκκ , κ, i = 1, 2, · · · , nr
2i
κρ +2

i
ρκ +W

i
κρ +W

i
ρκ

< Qiκρ + (Qiκρ)
T, ρ > κ, κ, ρ, i = 1, 2, · · · , nr

Qi11 ∗ · · · ∗

Qi12 Qi22
...

...
. . . ∗

Qi1nr · · · Qi(nr−1)nr Qinrnr


< 0, i = 1, 2, · · · , nr (11)

where

2i
κρ =

[
−ETPκE−MT

%Aκ −AT
κMρ ∗

−HT
ρAκ +Mρ Pi + Hρ + HT

ρ

]
Pi = Pi − E⊥Qi(E⊥)T

and full-column rank matrix E⊥ satisfies ETE⊥ = 0
Proof: Based on Lemma 3 and inequalities (9-11),

we get

�

=

[
−ETPςE−MT

ςAς −AT
ςMς ∗

−HT
ς A

T
ς +Mς P+ς + Hς + H

T
ς

]

=

nr∑
i=1

h+i (ς (k))(
nr∑
κ=1

h2κ (ς (k))2
i
κκ

+

nr∑
κ=1

nr∑
ρ>κ

hκ (ς (k))hρ(ς (k))(2i
κρ +2

i
ρκ ))

<

nr∑
i=1

h+i (
nr∑
κ=1

h2κ (ς (k))2
i
κκ

+

nr∑
κ=1

nr∑
ρ>κ

hκ (ς (k))hρ(ς (k))(2i
κρ +2

i
ρκ )

+

nr∑
i=1

h+i

nr∑
κ=1

nr∑
ρ=1

hκhρW i
κρ

<

nr∑
i=1

h+i (
nr∑
κ=1

h2κ (ς (k))(2
i
κκ +W

i
κκ )

+

nr∑
κ=1

nr∑
ρ>κ

hκ (ς (k))hρ(ς (k))(2i
κρ +2

i
ρκ +W

i
κρ +W

i
ρκ )

<

nr∑
i=1

h+i (
nr∑
κ=1

h2κ (ς (k))(ς (k))Q
i
κκ

+

nr∑
κ=1

nr∑
ρ>κ

hκ (ς (k))hρ(ς (k))(Qiκρ + (Qiκρ)
T) < 0

Then pre-multiply and post-multiply � with 5 =
[
I ATς

]
and 5T respectively, we can get

ATςP
+
ς Aς − E

TPςE < 0 (12)

Next, two nonsingular matricesU andV can be given such
that

UEV =
[
In1 0
0 0

]
.

Accordingly, take

V−TPκVT
=

[
P1κ P2κ
PT2κ P4κ

]
,UAκV =

[
A1κ A2κ
A3κ A4κ

]
V−TE+ =

[
0
I

]
W

whereW ∈ R(2n−n1)×(2n−n1) is the nonsingular matrix.
Further, pre-multiplying and post-multiplying (12)with

VT and V, respectively, it can be obtained by

UAκV =

[
? ?

? AT
4ςWQςW

TA4ς

]
< 0

Thus A4ς is non-singular, then system (4) is regular and
causal.

Next, choose the FLF as

V(x(k)) = xT(k)ETPςEx(k) (13)

ByPκ = Pκ−(E⊥)TQiE⊥ and Pκ > 0, we getETPςE =

ETPςE ≥ 0.
Define

4V(x(k)) = V(x(k + 1))− V(x(k))

Then, we have

4V(x(k)) = xT(k + 1)ETP+ς Ex(k + 1)

− xT(k)ETPςEx(k)

= xT(k)[AT
ςP
+
ς Aς − E

TPςE]x(k)

= xT(k)[AT
ςP
+
ς Aς − E

TPςE]x(k) < 0

Therefore, system (4) is stable. Together with the result that
system (4) is regular and causal, it follows that the system (4)
is admissible.
Remark 3: By the proposed augmented system method,

the time-varying problem of global system matrix
nr∑
κ=1

hκ (ς (t))Êκ caused by distinct differential term matrices is
solved. Then, combining with fuzzy Lyapunov function,
the admissibility theorem of this kind of system is given
via strict Lmis. By introducing the new slack matrices W i

κρ ,
the conservatism of the admissibility theorem is reduced.
Meanwhile, the proposed theorem can also be directly applied
to the stability analysis of FDSSs with same differential term
matrices.
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B. FUZZY CONTROLLER DESIGN
In this section, PDC controller design issue for nonlin-
ear system (2) is solved. Based on the PDC method,
the state-feedback controller is obtained by

u(k) =
nr∑
κ=1

hκ (ς (k))K̂κ x̂(k)

=

nr∑
κ=1

hκ (ς (k))Kκx(k) = Kςx(k) (14)

where Kκ = [K̂κ , 0].
Then, the closed-loop model is

Ex(k + 1) = (Aς + BςKς )x(k) (15)

Since

Det(zET
− (Aς + BςKς )T) = Det(zE− (Aς + BςKς ))

the dual system is equivalent to the original system under the
concern of admissibility.

Then, replacing (E,Aς ) by (ET, (Aς + BςKς )T) and

selecting Mκ =

[
Y αY
M21 M12

]
,Hκ =

[
βY γY
H21 H22

]
in Theo-

rem 5, the following theorem is obtained directly.
Theorem 5: System (15) is admissible if there exist scalars

α > 0, β > 0, γ > 0, symmetric matrices Pκ ∈
R2n×2n,Pκ > 0, Qiκκ ∈ R4n×4n, Qκ ∈ R(2n−n1)×(2n−n1),
W i
κρ ∈ R4n×4n, and matrices Qiκρ ∈ R4n×4n, Mκ =[
Y αY
M21 M12

]
∈ R2n×2n, Hκ =

[
βY γY
H21 H22

]
∈ R2n×2n, such

that the following LMIs hold.

W i
κκ

> 0, i, κ = 1, 2, · · · , nr (16)
2

nr − 1
W i
κκ +W

i
κρ +W

i
ρκ

> 0, i, ρ, κ = 1, 2, · · · , nr , ρ 6= κ (17)

2i
κκ +W

i
κκ

< Qiκκ , κ, i = 1, 2, · · · , nr
2i
κρ +2

i
ρκ ++W

i
κρ +W

i
ρκ

< Qiκρ + (Qiκρ)
T, ρ > κ, κ, ρ, i = 1, 2, · · · , nr

Qi11 ∗ · · · ∗

Qi12 Qi22
...

...
. . . ∗

Qi1nr · · · Qi(nr−1)nr Qinrnr


< 0, i = 1, 2, · · · , nr (18)

where

2i
κρ =

[
−EPκET

−8−8T
∗

−HTAT
κ + Ī

TSTρ BT
κ +M Pi + H + HT

]
Pi = Pi − E†Qi(E†)T

8 = MTAT
κ + Î

TSTρ BT
κ

Ī = [I , αI ], Î = [βI , γ I ]

and full-column rank matrix E† satisfies EE†
= 0.

Next, Non-PDC controller is consider as

u(k) =
nr∑
κ=1

hκ (ς )K̂κM
−1
ς11x̂(k)

=

nr∑
κ=1

hκ (ς )Kκ

[
Mς11 0
Mς21 Mς22

]−1
x(k)

= KςM−1ς x(k) (19)

where Kκ = [K̂κ , 0].
Then, the closed-loop model is

Ex(k + 1) = (Aς + BςKςM−1ς )x(k) (20)

Next, replacing (E,Aς ) by (ET, (Aς + BςKςM−1ς )T) and

selectingHκ = αMκ andMκ =

[
Mκ11 0
Mκ21 Mκ22

]
in Theorem 4,

the following result can be obtained directly.
Theorem 9: System (20) is admissible if there exist a scalar

α > 0, symmetric matrices Pκ ∈ R2n×2n,Pκ > 0, Qiκκ ∈
R4n×4n,Qiκκ < 0, Qκ ∈ R(2n−n1)×(2n−n1),W i

κρ ∈ R4n×4n and

matrices Qiκρ ∈ R4n×4n, Mκ =

[
Mκ11 0
Mκ21 Mκ22

]
∈ R2n×2n,

Hκ = αMκ ∈ R2n×2n, such that the following LMIs hold.

W i
κκ

> 0, i, ρ = 1, 2, · · · , nr (21)
2

nr − 1
W i
κκ +W

i
κρ +W

i
ρκ

> 0, i, ρ, κ = 1, 2, · · · , nr , ρ 6= κ (22)

2i
κκ +W

i
κκ

< Qiκκ , κ, i = 1, 2, · · · , nr
2i
κρ +2

i
ρκ +W

i
κρ +W

i
ρκ

< Qiκρ + (Qiκρ)
T, ρ > κ, κ, ρ, i = 1, 2, · · · , nr

Qi11 ∗ · · · ∗

Qi12 Qi22
...

...
. . . ∗

Qi1nr · · · Qi(nr−1)nr Qinrnr


< 0, i = 1, 2, · · · , nr (23)

where

2i
κρ =

[
−EPκET

−8−8T
∗

−α8+Mρ Pi + αMρ + αMT
ρ

]
Pi = Pi − E†Qi(E†)T

8 = MT
ρAT

κ + K
T
ρ BT

κ

Kκ = [K̂κ , 0]

and full-column rank matrix E† satisfies EE†
= 0.
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IV. ILLUSTRATIVE EXAMPLES
Example 6: Consider the following 2-rules fuzzy singular
model:

2∑
κ=1

hκ (ς (t))Êκ x̂(k + 1) =
2∑
κ=1

hκ (ς (k))Âκ x̂(k) (24)

where

Ê1 =

 2 1 0
0 1 0
0 0 0

 , Ê2 =

 1 0 0
1 1 0
0 0 0


Â1 =

−0.5 −0.9 −0.8

1 0.4
1
3
(a− 1)

0.4 0 1



Â2 =


1
4
(b− 1) −0.6 0.5

0.4 0.2 0.4
0.4 0.5 1


Choosing a series of values (a, b) with a ∈ [−6,−3] and

b ∈ [−2, 4] and comparing the admissibility conditions of
[21], [24] and Theorem 4, the feasible area is shown in Fig.1.
It can be intuitively seen that the feasible region of theorem
4 is much larger than the existing results in [21] and [24].

FIGURE 1. Compare feasible area with Theorem 4 (◦), [21](∗) and [24] (�).

Example 7: The fuzzy discrete singular model with two
fuzzy rules is given by

2∑
κ=1

hκ (ς (t))Êκ x̂(k + 1) =
2∑
κ=1

hκ (ς (k))[Âκ x̂(k)+ B̂κu(k)]

(25)

where

Ê1 =

 1 1 0
0 1 0
0 0 0

 , Ê2 =

 1 0 0
0 1 0
0 0 0

 ,
Â1 =

−0.1 0.2 0.6
0 −0.2 0.3
0.1 0.2 1



Â2 =

 a 0.1 0.2
0.2 −0.3 0.2
0.1 0 1


B̂1 =

 0.1
0.1
0.2

 , B̂2 =

 b
0.2
0.1


Comparing PDC controller design conditions of [24] and

Theorem 5 with a ∈ [−1, 2] and b ∈ [−1, 1], the feasible
area is shown in Fig.2. From Figure 2, it can be concluded
that theorem 5 is less conservative than the result in [24].

FIGURE 2. Compare feasible area with Theorem 5 (◦) and [24] (∗).

Example 8 [27]: The inverted pendulum is controlled by
DC motor through gear train in Fig.3-4. Meanwhile, the sys-
tem parameters are given by

g = 9.8m/s2,Km = 0.1Nm/A,M = 1kg

L = 1m,Ra = 1�,N = 10,Kb = 0.1Vs/rad

Then, choosing state variables

x1 = θp(t), x2 = θ̇p(t), x3(t) = Ia(t)

this physical system can be given by the following model:

ẋ1 = x2
ẋ2 = 9.8sinx1 + x3
ẋ3 = −2x2 − 2x3 + 2u(t)

FIGURE 3. Controlled inverted pendulum.
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FIGURE 4. Armature-controlled DC motor.

Considering sampling time T = 0.1 and x4(k) =

9.8 T sinx1(k), the following nonlinear discrete singular sys-
tem is obtained.

x1(k + 1) = x1(k)+ Tx2(k)

x2(k + 1) = x2(k)+ Tx3(k)+ x4(k)

x3(k + 1) = (1− 2T )x3(k)+ T (−2x2(k)+ 2u(k))

0 = T9.8sinx1(k)− x4(k)

Next, this system can be translated into the following FDSS
with x1(k) ∈ [−π, π].

Ex(k + 1) =
2∑
κ=1

hκ (ς (k))[Aκx(k)+ Bκu(k)]

E =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0



A1 =


1 0.1 0 0
0 1 0.1 1
0 −0.2 0.8 0

0.98 0 0 −1



A1 =


1 0.1 0 0
0 1 0.1 1
0 −0.2 0.8 0
0 0 0 −1



B1 = B2 =


0
0
0.2
0

 (26)

and two fuzzy membership functions are shown in Fig.5. To
check PDC controller design condition, the following con-
troller parameter is given by solving the LMIs of Theorem 5.

K1 =
[
−60.2613 −26.6432 −5.7393 −12.8987

]
K2 =

[
−58.4214 −26.0505 −5.6461 −12.6253

]
Next, based on Theorem 9, the parameters of Non-PDC

controller can be obtained as

K1 =
[
0.1379 0.8969 6.9924 −1.6801

]
K2 =

[
−0.4490 2.1484 7.3582 −1.0013

]

FIGURE 5. Fuzzy membership functions.

FIGURE 6. State x3(t): under PDC controller.

FIGURE 7. State x1(t), x2(t), x4(t): under PDC controller.

Considering initial state x1(0) = 2, x2(0) = 4 and x3(0) =
0.5, the state response of the closed-loop system under PDC
controller is given in Fig. 6-7 and under Non-PDC controller
is given in Fig. 8-9.

Then, the closed-loop system under PDC controller and
under Non-PDC controller are stable.
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FIGURE 8. State x3(t): under Non-PDC controller.

FIGURE 9. State x1(t), x2(t), x4(t): under Non-PDC controller.

V. CONCLUSION
In this article, the admissibility analysis and synthesis issues
for a class of FDSSs with distinct difference itemmatrices has
been studied. Based on the augmented system method, this
kind of systems has been transformed into the fuzzy singular
model with the same difference item matrices, which has
been adapted for further admissibility analysis and controller
design. The obvious characteristic is that this augmented sys-
tem is equivalent to the original system under the concern of
admissibility. Then, combining with FLF and LMIs technol-
ogy, a novel and relaxed sufficient condition has been given
to ensure the admissibility of such systems. On this basis,
the design method of PDC an Non-PDC controller has been
proposed via strict LMIs. Compared with the existing results,
the advantages of the proposed method have been verified
through three examples. It should be noted that the proposed
method can also effectively solve the related control issues
for fuzzy discrete singular systems with distinct difference
item matrices, such as robust control, passive control, output
feedback controller design and so on. If the difference item
matrices are time varying, the corresponding control issues

become more complicated challenging ones. These topics
leave for future study.
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