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Abstract
A more comprehensive orthogonal turning model is developed in order to further study the influence of feed velocity on 
frictional chatter. Nonlinear dynamic behavior of the cutting tool in two directions is presented by using bifurcation diagram, 
phase portrait, and Poincaré section. It can be found that the cutting tool has a variety of dynamic behaviors at different feed 
velocity and cutting velocity, such as periodic motion, quasi-periodic motion, and chaotic motion. Furthermore, the vibration 
displacement of the cutting tool is affected by the feed velocity, especially for relatively high feed velocity which will result 
in the cutting tool vibration displacement increase in the cutting direction but a decrease in the feed direction. In addition, 
it is clear that the stick–slip phenomenon only appears in the cutting direction in our work.
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1  Introduction

Chatter vibration has been studied for a long time because of 
its serious impact on the productivity and machining accu-
racy. Self-excited vibrations will directly affect cutting pro-
cess, they can reduce efficiency, affect the surface finish, dra-
matically affect tool life, and reduce production efficiency.

As we all know, regenerative chatter, frictional chatter, 
mode coupling chatter, and thermo-mechanical chatter are 
mainly caused by self-excitation vibration [1]. The friction 
and regenerative factors are the main cause of chatter. Fric-
tional chatter is mainly induced by the nonlinear friction 
force that exists between the cutting tool, the workpiece, 
and the chip [2–4]. Regenerative chatter is mainly due to the 
mutative cutting force that determined by the position of the 
cutting tool at the current time and the last time [5–8]. The 
presence of mode coupling chatter is due to the relatively 
coupled motion of the cutting system in multiple directions 

[9]. Thermo-mechanical chatter is caused by the temperature 
change and plastic deformation of the cutting system in the 
cutting process [10]. As early as 1800s, Taylor studied chat-
ter and realized that chatter would affect the cutting process 
to limit production efficiency [11], then, Arnold first applied 
negative damping effect to explain the occurrence of chatter 
in the cutting process [12], moreover, Grabec established the 
two degrees of freedom nonlinear dynamic model of cutting 
process who investigated the frictional chatter where the cut-
ting force is determined by the relative velocity between the 
cutting tool, workpiece, and the chip [13], and many of the 
nonlinear dynamic models of the cutting process have been 
proposed. The typical factors that can influence the nonlin-
ear dynamic model are the cutting tool and the workpiece 
separated from each other [14], the nonlinear friction coef-
ficient [15], and the workpiece and tool geometry [15, 16]. 
Especially, the nonlinear dynamic model considers loss of 
contact between the tool and workpiece was established by 
Wiercigroch [10]. In the past, many researchers have ana-
lyzed the stability and dynamic response characteristics of 
the cutting process [17–25].

In recent years, Rusinek et al. established a frictional 
chatter model in which the cutting force of the cutting sys-
tem consists of the normal force and the frictional force 
between the tool, workpiece, and the chip. In their work, 
the influence of many different parameters on the nonlinear 
dynamics of the cutting system was studied. Such as, effect 
of the specific cutting force coefficient, cutting velocity, and 
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the ratio of the stiffness has been studied through bifurcation 
diagrams [3, 18]. However, a very important factor influenc-
ing the turning process, feed velocity is not involved in their 
model. In order to further investigate the influence of feed 
velocity on the dynamic characteristics of cutting system, 
a more novel and comprehensive two degrees of freedom 
orthogonal turning model considering the influence of feed 
velocity is established in this work. Meanwhile, aiming 
at improving the stability of cutting process, the dynamic 
responses of the cutting tool under the influence of feed 
velocity for different cutting velocity are investigated.

2 � Modeling for a Turning System

In the orthogonal turning system the normal force under 
consideration, the normal force applied to both surfaces of 
the cutting tool is presented in Fig. 1., the cutting tool can 
be described as a two degrees of freedom system vibrat-
ing in the X and Y directions, meanwhile the workpiece is 
treated as a rigid body that does not vibrate. Hence, vibration 
response of the cutting tool motion in the X and Y directions 
can be written as follows

where, m is the tool equivalent mass, cx and cy,are equiv-
alent damper coefficients, kx and ky are equivalent spring 

(1)
mẍ + cxẋ + kxx = Fx + Nx

mÿ + cyẏ + kyy = Fy + Ny

coefficients in the X and Y directions, respectively. x and y 
stands for the cutting tool vibration displacement in the X 
and Y directions, respectively. A cutting force consists of 
two parts, the normal force applied to the cutting tool and the 
frictional forces exists in the workpiece, tool, and the chip.

Normally, The normal forces can be presented as [3, 17, 
18]

where Q means the specific cutting force modulus, h means 
the instantaneous chip thickness, c is a constant associ-
ated with the cutting force,K means the contact stiffness, 
vx means the relative velocity between the cutting tool and 
the workpiece, and H(.) represents the Heaviside function.

In a real cutting process, the frictional forces always exist 
between the workpiece, cutting tool, and the chip. It can be 
expressed as

where �x and �y are the static coefficient of friction between 
the workpiece and the cutting tool, and the chip and the 
cutting tool, respectively. ax,�x,ay,and �y are constants that 
determine the characteristics of the dry friction force,vy is 
the relative velocity between the chip and the cutting tool, 
and sgn(.) represents the sign function.

More specifically, the instantaneous chip thickness h and 
the workpiece revolution period � can be expressed in the 
following form

The relative velocity between the workpiece and the cut-
ting tool vx , between the chip and the cutting tool vy can be 
written as

(2)
Nx = Qh(c(vx − 1)2 + 1)H(h)H(vx)

Ny = KhH(h)

(3)
Fx = Ny�x(sgn(vx) − axvx + �xv

3
x
)

Fy = Nx�y(sgn(vy) − ayvy + �yv
3
y
)

(4)h = vf � − y, � = 2�∕Ω

(5)vx = vc − ẋ, vy = vx tan𝜑 + vf − ẏ

Fig. 1   The two degrees of freedom model of orthogonal turning pro-
cess, where m is the equivalent mass of the cutting tool,kx and ky,cx 
and cy are equivalent spring coefficients and equivalent damper coef-
ficients in the X and Y directions, respectively,h is the instantaneous 
chip thickness,� is the shear angle of the workpiece material,vc is the 
nominal cutting velocity,vf  is feed velocity of the cutting tool,vx is the 
relative velocity of the cutting tool and the workpiece, and vy is rela-
tive velocity between the cutting tool and the chip,Nx,Ny and Fx,Fy are 
the normal forces and the dry friction forces applied to the cutting 
tool surfaces, respectively

Fig. 2   Bifurcation diagram of the cutting tool vibration displacement 
x and y versus feed velocity vf  from 0.2 to 1 when the spindle veloc-
ity Ω = 2
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where vc means the nominal cutting velocity, and vc = ΩR

,vf  is the velocity of the feed,� means the shear angle of the 
workpiece material, here Ω is the angular velocity of the 
workpiece,R is the radius of the workpiece.

For clarity, the cutting tool vibration Eq.  (6) and the 
dimensionless vibration Eq. (7) are put in the appendix.

3 � Details of the Dynamic Response 
of the Cutting Tool

Firstly, the complicated dynamic response of the cutting 
tool will be revealed with the help of the numerical simula-
tion method. Feed velocity vf  is chosen as the bifurcation 

parameter that the values choose from 0.2 to 1. It is con-
venient to use the Poincaré section to locate the periodic 
and chaotic solutions, therefore, the bifurcation diagrams 
correspond to the maximum value of the vibration displace-
ment of the cutting tool in X and Y directions, respectively. 
There are many parameters in the above model, but this 
research mainly focuses on the impact of feed velocity on 
the dynamic response of the cutting tool for the three differ-
ent dimensionless spindle velocity Ω.

In the following simulation, the bifurcation diagram, 
phase portrait, and the Poincaré section are employed to 
study the cutting tool dynamic response in both directions. 
For the Poincaré section, we collected all of the points of 
intersection of the trajectory with the surface of section ẋ = 0 

Fig. 3   Phase portrait and Poincaré section of the vibration displacement of the cutting tool in the X and Y directions when the spindle velocity 
Ω = 2 , vf = 0.2
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when ẍ < 0 in three dimensions {x, y,ẋ }, and ẏ = 0 when ÿ < 0 
in three dimensions {y, x,ẏ }. Assuming the following initial 
conditions and parameters:

x = ẋ = 0 , y = ẏ = 0 , �x = �y = 0.01 , �x = �y = 0.3

,�x = �y = 0.1,�x = �y = 0.5,q = 0.9, tan� = 0.45,k = 0.5

,c = 0.3,� = 1,R = 0.1,Ω = 2,4,6, respectively.
Obviously, for the case of spindle velocity Ω = 2 , the 

dynamic responses of the vibration displacement of the 
cutting tool in two directions are very complicated. In the 
midst of chaos there are some windows of other period and 
some windows have an abrupt transition from chaos to order. 
All of this phenomenon can be observed in the Fig. 2. In 
addition, as shown in Fig. 3 and Fig. 4, there is period 1 

motion when vf = 0.2 , and chaotic motion can be observed 
at around vf = 0.8 in both directions. Similarly, a single 
point and many irregular points appearing in the Poincaré 
section can further determine that the type of tool dynamic 
response is periodic-1 motion and chaotic motion. Especially 
a period 2 motion appeared in the X direction, meanwhile a 
period 4 motion appeared in the Y direction at about vf = 1 
as shown in Fig. 5. In addition, the periodic motion can be 
confirmed by two points and four points on the Poincaré 
section. Moreover, there are very obvious stick–slip motion 
in the X direction but hardly appears in the Y direction as 
shown in the Fig. 3, 4 and 5.

Fig. 4   Phase portrait and Poincaré section of the vibration displacement of the cutting tool in the X and Y directions when the spindle velocity 
Ω = 2 , vf = 0.8
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Furthermore, for the case of spindle velocity Ω = 4 , the 
more interesting phenomenon is there is almost no chaotic 
motion when feed velocity continues to increase from 0.2 
to 1 as shown in Fig. 6. It can be seen from Figs. 7 and 8 
that with the increase of feed velocity, the motion of the 
cutting tool from period 7 to period 3 and then turn into 
period 1 in both directions, while feed velocity beyond 0.94, 
the motion of the cutting tool is still period 1 but period 2 
motion appears in the Y direction. Also, the Poincaré section 

Fig. 5   Phase portrait and Poincaré section of the vibration displacement of the cutting tool in the X and Y directions when the spindle velocity 
Ω = 2 , vf = 1

Fig. 6   Bifurcation diagram of the cutting tool vibration displacement 
x and y versus feed velocity vf  from 0.2 to 1 when the spindle veloc-
ity Ω = 4
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consists of the seven points and three points in Fig. 7 and 
Fig. 8, meaning the periodic-7 motion and periodic-3 motion 
of the cutting tool. Moreover, the cutting tool vibration dis-
placement is increased with feed velocity more than 0.94 
in the X direction, on the contrary, the cutting tool vibra-
tion displacement decreases in the Y direction. Similarly, 
stick–slip phenomenon only appears in the X direction.

While for the case of Ω = 6 , bifurcation diagram shown 
in Fig. 9, it is readily distinguished that there exist compli-
cated dynamics motions with feed velocity changed. The 
cutting tool motions experience quasi-periodic and peri-
odic motions in both directions. It can be seen from Fig. 10, 
the response of the cutting tool is quasi-periodic motion in 
both directions. The Poincaré section in Fig. 10 means that 
the motion of the tool is quasi-periodic because it consists 

of a large number of points falling on a closed curve. Fur-
thermore, with the feed rate over 0.83 as shown in Fig. 11, 
period 1 and period 2 motions appear in the X and Y direc-
tions, respectively. The Poincaré section in Fig. 11 consists 
of one point and two point, confirming the periodic-1 and 
periodic-2 motion of the cutting tool. Similar behavior is 
presented in Fig. 9, vibration displacement of the cutting 
tool increases in the X direction but decreases in the Y direc-
tion when feed velocity is greater than 0.83. Similar to the 
above two cases, stick–slip phenomenon still appears in the 
X direction.

The effect of feed velocity on the vibration displacement 
of the cutting tool and the system dynamics under three dif-
ferent cutting velocity is shown in Fig. 2, Fig. 6, and Fig. 9. 
It is turned out that the relatively high cutting velocity 

Fig. 7   Phase portrait and Poincaré section of the vibration displacement of the cutting tool in the X and Y directions when the spindle velocity 
Ω = 4 , vf = 0.2
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results in smaller vibration displacement while feed veloc-
ity seriously affects the dynamic response of the cutting tool. 
Besides, for relatively high feed velocity, the cutting tool 
vibration displacement increases in the X direction while the 
vibration displacement of the cutting tool decreases in the 
Y direction. Therefore, it is very important to choose a rea-
sonable cutting velocity and feed velocity for stable cutting.

Fig. 8   Phase portrait and Poincaré section of the vibration displacement of the cutting tool in the X and Y directions when the spindle velocity 
Ω = 4 , vf = 0.26

Fig. 9   Bifurcation diagram of the cutting tool vibration displacement 
x and y versus feed velocity vf  from 0.2 to 1 when the spindle veloc-
ity Ω = 6
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4 � Conclusions

In this paper, a two degrees of freedom orthogonal turn-
ing model is proposed based on friction model proposed 
by other scholars. The novelty of our model is to consider 
the effect of cutting velocity and feed velocity on dynamic 
frictional force in turning process. The nonlinear dynamic 
behavior of the cutting system is analyzed by using the feed 
rate as the bifurcation parameter. It can be found that the 
response of cutting tool has periodic motion, quasi-periodic 
motion, and chaotic motion with the different feed velocity. 
In addition, the stick–slip phenomenon is only found in the 
cutting direction. Based on the model in this study, both the 
cutting velocity and feed velocity have a significant effect on 

the vibration displacement and dynamic response of the cut-
ting tool, especially for relatively high feed velocity which 
will result in the cutting tool vibration displacement increase 
in the cutting direction but decrease in the feed direction. 
For the cutting process, the phenomenon of increased vibra-
tion displacement of the cutting tool is a harmful behav-
ior. Therefore, it is important to choose reasonable cutting 
parameters during cutting process. Furthermore, related 
experiments and analytical method are a very useful research 
methods to further validate theoretical research. Similarly, 
based on current research work, relevant research on effec-
tive control of chatter can be conducted in the future.

Fig. 10   Phase portrait and Poincaré section of the vibration displacement of the cutting tool in the X and Y directions when the spindle velocity 
Ω = 6 , vf = 0.25
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Appendix

Substituting Eqs. 2,3,4 and 5 into Eq. (1), we obtain the 
vibration response of the cutting tool motion in both 
directions

(6)

mẍ + cxẋ + kxx = K(2𝜋vf∕Ω − y)H(2𝜋vf∕Ω − y)𝜇x(sgn(ΩR − ẋ)

− ax(ΩR − ẋ) + 𝛽x(ΩR − ẋ)3) + Q(2𝜋vf∕Ω − y)(c(ΩR − ẋ − 1)2 + 1)

H(2𝜋vf∕Ω − y)H(ΩR − ẋ)

mÿ + cyẏ + kyy = Q(2𝜋vf∕Ω − y)(c(ΩR − ẋ − 1)2 + 1)

H(2𝜋vf∕Ω − y)H(ΩR − ẋ)𝜇y(sgn((ΩR − ẋ)

tan𝜑 + vf − ẏ) − ay((ΩR − ẋ) tan𝜑 + vf − ẏ) + 𝛽y((ΩR − ẋ) tan𝜑 + vf − ẏ)3)

+ K(2𝜋vf∕Ω − y)H(2𝜋vf∕Ω − y)

In order to reduce the number of parameters, Eq. (6) is 
simplified as the following dimensionless equation.

Fig. 11   Phase portrait and Poincaré section of the vibration displacement of the cutting tool in the X and Y directions when the spindle velocity 
Ω = 6 , vf = 0.9
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