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Abstract In extreme heat transfer environments, functionally graded materials (FGMs)
have aroused great concern due to the excellent thermal shock resistance. With the
development of micro-scale devices, the size-dependent effect has become an important
issue. However, the classical continuum mechanical model fails on the micro-scale due to
the influence of the size-dependent effect. Meanwhile, for thermoelastic behaviors limited
to small-scale problems, Fourier’s heat conduction law cannot explain the thermal wave
effect. In order to capture the size-dependent effect and the thermal wave effect, the
nonlocal generalized thermoelastic theory for the formulation of an FGM microbeam
is adopted in the present work. For numerical validation, the transient responses for
a simply supported FGM microbeam heated by the ramp-type heating are considered.
The governing equations are formulated and solved by employing the Laplace transform
techniques. In the numerical results, the effects of the ramp-heating time parameter, the
nonlocal parameter, and the power-law index on the considered physical quantities are
presented and discussed in detail.
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1 Introduction

Functionally graded materials (FGMs)[1–3] are advanced composite materials whose con-
stituents vary smoothly and continuously along certain directions. The FGM structures are
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designed to meet the expected functional requirements, based on the flexible design principles
of component parameters and mechanical properties to satisfy the application requirements for
many engineering problems. Meanwhile, the booming development of micro/nano science mo-
tivates widespread applications of micro/nano electromechanical systems, in which micro- and
nano-scale structures such as microbeam, nanotube, and graphene sheet have been widely used
as resonators[4], switches[5], sensors[6], actuators[7], and probes[8] due to low weight, small size,
and high durability. In the micro/nano engineering communities, FGM micro/nano-structures
have also been utilized in micro/nano electromechanical systems to improve thermal resistance
and crack resistance. So far, many studies on the mechanical responses of FGMs such as
buckling[9–10], bending[11–12], and vibration[13–14] have been conducted.

As proved by the experimental tests[15–22], for micro/nano structures, the size-dependent
effect plays an important role in their mechanical performances. The classical continuum me-
chanics is the most common theory to study the response of structural mechanics. Nevertheless,
because the constitutive equation lacks the scale parameter of materials, the classical continuum
mechanics cannot capture the size-dependent effect in the micro/nano-structures[23]. In order
to describe such a size-dependent effect simply and accurately, the classic continuum mechanics
theory has been extended to new theories, for instance, Eringen’s nonlocal theory[24], Aifantis’s
strain gradient theory[25], and Yang’s modified couple stress theory[26]. Among them, Eringen’s
nonlocal theory is the most mature and widely used one, which holds that the stress at one
point relies on the strains at all points in the body, and such correlation decreases with the
distance. In this theory, the nonlocal parameter was introduced to quantify the contribution
of the strain at each point in the deformed body to the stress at a certain point. Peddieson et
al.[27] showed that Eringen’s nonlocal theory could be potentially employed in nanotechnology.
So far, scholars have done many studies on the vibration, bending, and wave propagation of
micro- and nano-scale structures in the deformation field[28–33]. They concluded that Eringen’s
nonlocal theory plays an important role in the design of micro/nano structures. From the afore-
mentioned literature review, it can be realized that the size-dependent related investigations
were mainly conducted under the case of single elastic deformation field, lacking the thermoe-
lastic coupling investigations under the case of interactions between the displacement field and
the variable temperature field. Nevertheless, it is more important for micro/nano devices to
consider the thermal induced stress and deformation in the heat transfer environments.

For elastic structures subject to transient heating loads, the thermal-induced deformation
and stress may cause them to be unstable and even damaged. To describe the thermoelastic
interactions, the classical coupled thermoelastic theory proposed by Biot[34] predicts that heat
transports at an infinite speed due to the nature of Fourier’s law. However, it is not consistent
with the experimental results[35]. To eliminate such a paradox, based on the Cattaneo-Vernotte
(C-V) thermal wave model[36] and the classic elastic relationship, the generalized thermoelastic
theories have been subsequently developed by Lord and Shulman[37], Green and Lindsay[38],
and Green and Naghdi[39–40]. Based on these theories, a number of works on the thermoelastic
dynamic responses[41–43], the mass diffusion[44–46], the wave propagation[47–48], and the mag-
netic field effect[49–50] have been contributed. Specifically, Ma and He[51] analyzed the dynamic
characteristic of an FGM piezoelectric rod heated by a moving heat source. Meanwhile, Li and
He[52] studied the dynamic response for an FGM semi-infinite rod subject to an ultrashort laser
heat source.

Although many studies are available on the static mechanical behaviors for size-dependent
FGM micro/nano-structures in the single deformation field[9–14], no work has completely stud-
ied the dynamic response of thermoelastic coupling problems. Nevertheless, it is inevitable
for micro/nano-structures suffering a changeable temperature. As a consequence, the thermal-
induced stress or deformation occurs, which are worth being fully concerned. This work aims at
studying a transient thermoelastic behavior of an FGM microbeam under the nonlocal general-
ized thermoelasticity. At the left end of the microbeam, the medium is heated by a ramp-type
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heating load. The corresponding governing equations are formulated and then solved by the
Laplace transformation method. In calculation, the distribution of the dimensionless tempera-
ture, stress, deflection, and displacement with the change of the ramp-heating time parameter,
the nonlocal parameter, and the power-law index are examined and discussed in detail.

2 Theoretical formulations

2.1 Nonlocal continuum mechanics model
In the nonlocal elasticity theory[24], the stress-strain relation can be written as

σij(x) =
∫

V

K(x, x′, χ)σ′ij(x
′)dV (x′), (1)

σ′ij(x
′) = λε′kk(x′)δij + 2µε′ij(x

′), (2)

ε′ij(x
′) =

1
2

(∂u′j(x
′)

∂x′i
+

∂u′i(x
′)

∂x′j

)
, (3)

where σij(x) and σ′ij(x
′) are the nonlocal and classical stress components, respectively. ε′ij(x

′)
is the classical strain component, ε′kk is the local cubic dilation, u′j(x

′) is the local displacement
component, and λ and µ are Lamé’s constants. The kernel function K(x, x′, χ) depends on the
distance ∆ = ‖x−x′‖ and the material constant χ = e0a/l, where a is the internal characteristic
length scale, l is the external feature length scale, e0 is a material-dependent constant, and e0a
is the nonlocal parameter.

The integral constitutive equation (1) may be simplified as follows[24]:

(1− (e0a)2∇2)σij(x) = σ′ij(x
′), (4)

where ∇2 is the Laplacian operator. If a is neglected, Eq. (4) reduces to the constitutive
equation in the classical thermoelastic theory.
2.2 Nonlocal generalized thermoelastic model

The basic equations based on nonlocal generalized thermoelasticity[53] are as follows.
The motion equation is

σij,j = ρüi, (5)

where ρ is the density.
The nonlocal constitutive equation of stress is

(1− (e0a)2∇2)σij = 2µεij + λεkkδij − (3λ + 2µ)αTθδij , (6)

where θ is the temperature above the uniform reference temperature T0, αT is the coefficient
of linear thermal expansion, and δij is the Kronecker delta.

The displacement-strain relation is

εij =
1
2
(ui,j + uj,i), (7)

where ui is the displacement component. Lamé’s constants can be expressed as

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
, (8)

in which E is the elastic modulus, and ν is Poisson’s ratio.
Combining Eqs. (8) and (6) leads to

(1− (e0a)2∇2)σij =
E

1 + ν
εij +

Eν

(1 + ν)(1− 2ν)
εkkδij − EαT

1− 2ν
θδij . (9)
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The non-Fourier thermal conduction equation is[37]

κ∇2θ =
(
1 + τ0

∂

∂t

)
(ρcEθ̇ + βT0ε̇kk), (10)

where κ is the thermal conductivity, τ0 is the thermal relaxation time, cE is the specific heat,
and β = EαT/(1− 2ν).

3 Structure modeling

3.1 Problem formulation
As displayed in Fig. 1, an FGM microbeam with a rectangular cross section with length

l, width b, and height h is considered, whose cross-sectional area is A = b × h. The (x, y, z)
coordinate system is set, where the xy-plane is placed on the neutral surface of the microbeam,
and the origin of the coordinate system is located at the centroid of the left end. The x-axis
is along the axial direction, the y-axis is along the width direction, and the z-axis is along
the thickness direction. Assume that the displacements along the x- and y-directions and the
deflection along the z-direction are u, v, and w, respectively.

ZrO2

Si

x(u )
Oh y

z

b

z(w )

O

Fig. 1 Coordinates and dimensions of the FGM microbeam

3.2 Material properties of the FGM microbeam
FGM microbeams are usually made of metal-like materials and ceramic. Assume that the

volume fractions of FGM beams vary continuously in the thickness direction by power functions.
The volume V in which the volume fraction of metal-like materials Vm and ceramic Vc can be
written as

Vm(z) =
(h− 2z

2h

)n

, Vc(z) = 1− Vm(z), (11)

where n is the power-law index (0 6 n < ∞), which can measure the gradient characteristics
by controlling the distributions of constituents in FGM microbeams. When n = 0, FGM
microbeams degenerate into pure metal-like microbeams, and when n → ∞, they become
homogenous ceramic material microbeams.

The power-law index dependence of the metal-like material component Vm in the FGM
microbeam on various in-planes is shown in Fig. 2, such as the geometric midplane z = 0,
the plane z = h/4, and the plane z = −h/4. The larger index n leads to a decrease in the
component of the metal-like material. As a consequence, the material properties of metal-like
material can be continuously changed in the thickness direction. Therefore, the elastic-plastic,
thermo-mechanical property of the FGM microbeam changes continuously from one surface to
another.

In the linear rule of mixture, the mechanical property P (z) of FGM microbeams can be
written as

P (z) = (Pm − Pc)Vm(z) + Pc, (12)

where Pm and Pc denote the mechanical properties of metal-like materials and ceramic, respec-
tively. The ceramic material considered is ZrO2, and the metal-like material is Si. On one
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Fig. 2 Power-law index dependence of metal-like component Vm in FGM microbeams (color online)

hand, the metal-like material can increase the electrical and thermal conductivities. On the
other hand, the addition of ceramic can improve the corrosion resistance and thermal shock
resistance of FGM microbeams.
3.3 Fundamental equations

In the Euler-Bernoulli beam theory, the cross sections remain plane and normal to the
longitudinal axis. The displacements can be given by[54–56]

ux = −z
∂w

∂x
, uy = 0, uz = w(x, t). (13)

Referring to Eq. (7), the strains are

εx = −z
∂2w

∂x2
, εy = 0, εz = 0. (14)

Combining Eqs. (9) and (14) and neglecting Poisson’s effect, we can obtain

(
1− (e0a)2

∂2

∂x2

)
σx = Eεx − EαTθ = −Ez

∂2w

∂x2
− EαTθ. (15)

Similar to the classical beam theory that M =
∫ h/2

−h/2
σxbzdz, multiplying Eq. (15) by 12bz/h3

and integrating it with respect to z from −h/2 to h/2, we can obtain the bending moment

M(x, t) = (e0a)2
∂2M

∂x2
− EI

(∂2w

∂x2
+ αTMT

)
, (16)

where I = bh3/12 is the inertial moment of the cross-section, and MT is the thermal moment
defined by

MT =
12
h3

∫ h/2

−h/2

θ(x, z, t)zdz. (17)

The motion equation takes the expression as[56]

∂2M

∂x2
= ρA

∂2w

∂t2
. (18)

Substituting Eq. (18) into Eq. (16) yields

M(x, t) = (e0a)2ρA
∂2w

∂t2
− EI

(∂2w

∂x2
+ αTMT

)
. (19)
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Combining Eqs. (18) and (19), the motion equation is obtained as

( ∂4

∂x4
+

ρA

EI

∂2

∂t2

(
1− (e0a)2

∂2

∂x2

))
w + αT

∂2MT

∂x2
= 0. (20)

Combining Eqs. (10) and (14), the energy equation is written as

κ
(∂2θ

∂x2
+

∂2θ

∂z2

)
=

(
1 + τ0

∂

∂t

)(
ρcE

∂θ

∂t
− βT0z

∂

∂t

(∂2w

∂x2

))
. (21)

For a microbeam, assume that the temperature varies in terms of sin(pz) along the thickness
direction (p = π/h), that is,

θ(x, z, t) = Θ(x, t) sin(pz). (22)

Substituting Eq. (22) into Eqs. (19) and (20) yields

M(x, t) = (e0a)2ρA
∂2w

∂t2
− EI

(∂2w

∂x2
+

24αT

π2h
Θ(x, t)

)
, (23)

( ∂4

∂x4
+

ρA

EI

∂2

∂t2

(
1− (e0a)2

∂2

∂x2

))
w +

24αT

π2h

∂2Θ
∂x2

= 0. (24)

Combining Eqs. (21) and (22), multiplying Eq. (21) by means of 12z/h3, and integrating it with
respect to z through the microbeam thickness from −h/2 to h/2, we can obtain

κ
( ∂2

∂x2
− p2

)
Θ =

(
1 + τ0

∂

∂t

)(
ρcE

∂Θ
∂t

− βT0π
2h

24
∂

∂t

(∂2w

∂x2

))
. (25)

The following dimensionless variables are introduced for normalization:





(x∗, u∗, w∗, z∗, L∗, h∗, b∗) = cη(x, u, w, z, L, h, b), (t∗, t∗0, τ
∗
0 ) = c2η(t, t0, τ0),

(e0a)∗ = c2η2(e0a), Θ∗ =
Θ
T0

, σ∗x =
σx

E
, M∗ =

M

cηEI
, c =

√
E

ρ
, η =

ρcE

κ
.

(26)

Using the above dimensionless variables, Eqs. (15) and (23)–(25) can be expressed as (dropping
the superscript ‘∗’ for convenience)

(
1− (e0a)2

∂2

∂x2

)
σx = −z

∂2w

∂x2
−A6Θsin(pz), (27)

M = A3
∂2w

∂t2
− ∂2w

∂x2
−A2Θ, (28)

∂4w

∂x4
+ A1

∂2w

∂t2
−A3

∂4w

∂x2∂t2
+ A2

∂2Θ
∂x2

= 0, (29)
( ∂2

∂x2
−A4p

2
)
Θ =

(
1 + τ0

∂

∂t

)(∂Θ
∂t

−A5
∂

∂t

(∂2w

∂x2

))
, (30)

where

A1 =
12
h2

, A2 =
24T0αT

π2h
, A3 =

12(e0a)2

h
, A4 =

π2

h2
, A5 =

βπ2h

24κη
, A6 = αTT0.
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4 Initial and boundary conditions

The initial conditions have the following forms:




w(x, t)|t=0 = 0,
∂w(x, t)

∂t

∣∣∣∣
t=0

= 0,

Θ(x, t)|t=0 = 0,
∂Θ(x, t)

∂t

∣∣∣∣
t=0

= 0.

(31)

The microbeam is assumed to be simply supported at both ends. Thus, the boundary conditions
are

w(x, t)|x=0,L = 0,
∂2w(x, t)

∂x2

∣∣∣∣
x=0,L

= 0. (32)

The microbeam is assumed to be heated by the ramp-type heating at x = 0 and heat-insulated
at x = L,

Θ(x, t)|x=0 = θ0





0, t 6 0,

t

t0
, 0 < t < t0,

∂Θ
∂x

∣∣∣∣
x=L

= 0,

1, t > t0,

(33)

where θ0 is a constant representing the magnitude of the ramp heating, and t0 is the ramp-
heating time parameter.

5 Solutions in the Laplace domain

Applying the Laplace transformation

F (s) = L(f(t)) =
∫ ∞

0

e−stf(t)dt, Re(s) > 0 (34)

to Eqs. (27)–(30), the following equations are obtained:

(
1− (e0a)2

d2

dx2

)
σx =

(
− z

d2w

dx2
−A6Θsin(pz)

)
, (35)

M = −
( d2

dx2
−A3s

2
)
w −A2Θ, (36)

( d4

dx4
−A3s

2 d2

dx2
+ A1s

2
)
w = −A2

d2Θ
dx2

, (37)
( d2

dx2
−B1

)
Θ = −B2

d2w

dx2
, (38)

where s is the Laplace transform factor, and

B1 = A4 + s(1 + τ0s), B2 = A5s(1 + τ0s). (39)

In the Laplace domain, the boundary conditions can be obtained as




w(x, s)|x=0,L = 0,
d2w(x, s)

dx2

∣∣∣∣
x=0,L

= 0,

Θ(x, s)x=0 = θ0

(1− e−t0s

t0s2

)
= g(s),

∂Θ
∂x

∣∣∣∣
x=L

= 0.

(40)
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Combining Eqs. (37) and (38), we can obtain

Θ = − 1
A2B1

( d4

dx4
−A3s

2 d2

dx2
+ A1s

2 −A2B2
d2

dx2

)
w. (41)

Substituting Eq. (41) into Eq. (37) and eliminating Θ, one can obtain

( d6

dx6
− a∗

d4

dx4
+ b∗

d2

dx2
− c∗

)
w = 0, (42)

where
a∗ = A3s

2 + A2B2 + B1, b∗ = A1s
2 + B1A3s

2, c∗ = A1B1s
2. (43)

Similarly, Θ satisfies ( d6

dx6
− a∗

d4

dx4
+ b∗

d2

dx2
− c∗

)
Θ = 0. (44)

Then, Eqs. (42) and (44) can be factorized as

((D2 − k2
1)(D

2 − k2
2)(D

2 − k2
3))(w, Θ) = 0, (45)

where D2 = d2/dx2, and k1, k2, and k3 are the roots with positive real parts of the characteristic
equation

k6 − a∗k4 + b∗k2 + c∗ = 0, (46)

where

k1 =

√
1
3
(2p∗ sin q∗ + a∗), (47)

k2 =

√
1
3
p∗(−(

√
3 cos q∗ − sin q∗) + a∗), (48)

k3 =

√
1
3
p∗(
√

3 cos q∗ − sin q∗) +
1
3
a∗, (49)

p∗ =
√

a∗2 − 3b∗, q∗ =
1
3

arcsin
(−2a∗3 + 9a∗b∗ − 27c∗

2p∗3

)
. (50)

The solutions to Eqs. (42) and (44) take the forms of

w(x, s) =
3∑

j=1

(Cje−kjx + Cj+3ekjx), (51)

Θ(x, s) = −
3∑

j=1

mj(Cje−kjx + Cj+3ekjx), (52)

where

mj =
B2k

2
j

B1 − k2
j

. (53)

With the aids of Eqs. (51) and (52), from Eqs. (35) and (36), we can obtain

σx(x, s) =
3∑

j=1

(
− zk2

j + A6

3∑

j=1

mj sin(pz)
)
(Cje−kjx + Cj+3ekjx)/(1− (e0a)2k2

j ), (54)

M(x, s) = −
3∑

j=1

(k2
j −A3s

2 + A2mj)(Cje−kjx + Cj+3ekjx). (55)
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With the help of Eq. (51), from Eq. (13), one can obtain

u(x, s) = −z
dw

dx
= z

3∑

j=1

kj(Cje−kjx − Cj+3ekjx). (56)

Substituting Eqs. (51) and (52) into Eq. (40) yields




C1 + C2 + C3 + C4 + C5 + C6 = 0,

C1e−k1L + C2e−k2L + C3e−k3L + C4ek1L + C5ek2L + C6ek3L = 0,

k2
1(C1 + C4) + k2

2(C2 + C5) + k2
3(C3 + C6) = 0,

k2
1(C1e−k1L + C4ek1L) + k2

2(C2e−k2L + C5ek2L) + k2
3(C3e−k3L + C6ek3L) = 0,

m1(C1 + C4) + m2(C2 + C5) + m3(C3 + C6) = g(s),

m1(−k1C1e−k1L + k1C4ek1L) + m2(−k2C2e−k2L + k2C5ek2L)

+ m3(−k3C3e−k3L + k3C6ek3L) = 0.

(57)

Then, Eq. (57) can be solved to get the coefficients Cj and Cj+3 (j = 1, 2, 3). Due to the lengthy
expressions, they are not presented here.

6 Solutions in the time domain

Because the obtained solutions have lengthy and complex expressions in the Laplace domain,
it is difficult to invert them analytically. Alternatively, the numerical inversion can be realized
by the algorithm of numerical inversion of the Laplace transform proposed by Brancik[57].

7 Results and discussion

The necessary material properties are specified in Table 1.

Table 1 Material constants of ZrO2 and Si[58–59]

Material ρ/(kg · m−3) E/GPa κ/(W ·m−1 ·K−1) CE/(J · kg−1 ·K−1) αT/K−1 ν

ZrO2 3 657 244.27 1.71 2.74 12.77× 10−6 0.29
Si 2 330 169 156 713 2.59× 10−6 0.22

The dimensionless geometric variables[60] are L = 1, L/h = 10, and b/h = 0.5.
In calculation, the effects of the ramp-heating time parameter, the nonlocal parameter,

and the power-law index on the dimensionless temperature, the stress, the deflection, and the
displacement are examined, respectively.
7.1 The effect of ramp-heating time parameter

In this case, the influence of the ramp-heating time parameter t0 on the considered variables
is examined. In calculation, three different values t0 = 0.01, t0 = 0.05, and t0 = 0.1 are
specified, while the nonlocal parameter, the power-law index, and the thermal relaxation time
are set as e0a = 0, n = 0, and τ0 = 0.02, respectively. The obtained results at t = 0.05 are
illustrated in Figs. 3–6.

Figure 3 shows that the non-zero region of the dimensionless temperature is bounded. Along
the x-axis, the dimensionless temperature gradually decreases and approaches zero. Since the
time is specified as t = 0.05, this means that it takes at most the ramp-heating time parameter
t0 = 0.05 for the ramp heating to approach its maximum value θ0 = 1. For a larger ramp-
heating time parameter (t0 > t > 0), i.e., t0 = 0.1, the maximum value of the dimensionless
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temperature is 0.5 which coincides with the thermal boundary condition, while for smaller
ramp-heating time parameters (t > t0), i.e., t0 = 0.01 and t0 = 0.05, the maximum value of the
dimensionless temperature is 1. With the increase in the ramp-heating time parameter t0, the
maximum value of the dimensionless temperature decreases.

Figure 4 demonstrates that the dimensionless stress goes up from zero, reaches a positive
peak value around x = 0.05, afterwards, goes down to the negative peak value around x = 0.2,
and goes up till zero. A larger t0 increases the value of the dimensionless stress, which is obvious
at the peaks of the curves.

Figure 5 displays that the dimensionless deflection keeps zero at x = 0 and x = 1, which is
consistent with the simply supported boundary condition. The deflection goes up from zero,
then reaches a peak value around x = 0.1, and afterwards, goes down till zero. With the increase
in the ramp-heating time parameter t0, the value of the dimensionless deflection decreases.

Figure 6 illustrates that the dimensionless displacement goes up from a negative value to a
positive value, reaches the peak value, and then goes down till zero. The value of the dimen-
sionless displacement decreases with the increase in the ramp-heating time parameter t0.

The present work can be reduced to Ref. [61] when e0a = 0 and n = 0. In Ref. [61], the
thermoelastic response of the nanobeam subject to a ramp-type heating based on the generalized
thermoelasticity was solved by the Laplace transform and eigenvalue approach. Although the
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solving method in the present work is different from that in Ref. [61], the distributions in
Figs. 3–6 are basically consistent with those in Ref. [61].
7.2 The effect of the nonlocal parameter

In this case, the influence of the nonlocal parameter e0a on the considered variables is
concerned. We refer to the selection of nonlocal parameters in Refs. [62]–[64], in which the
reasonable selection range of the nonlocal parameter is 0 6 e0a 6 0.1. In calculation, three
different values e0a = 0 (without the nonlocal effect), e0a = 0.05, and e0a = 0.1 are specified
while the ramp-heating time parameter, the power-law index, and the thermal relaxation time
are set as t0 = 0.05, n = 0, and τ0 = 0.02, respectively. The obtained results at t = 0.1 are
illustrated in Figs. 7–10.

Figure 7 shows that the nonlocal parameter has no effect on the variation of the dimensionless
temperature. In Fig. 8, the peak value of the dimensionless stress decreases with the increase
in the nonlocal parameter. Meanwhile, it can be concluded that the nonlocal parameter has
a significant effect on the peak value of the dimensionless stress, that is, weakening the stress.
This is because the larger lattice constant of a acts to increase the nonlocal effect parameter
e0a, which indicates that the influence of the nonlocal effect on the safety design in micro-scale
cannot be ignored.

In Figs. 9 and 10, the peak values of the dimensionless deflection and displacement decrease
with the increase in the nonlocal parameter. That is, the nonlocal effect decreases the deforma-
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tion of the microbeams. Similar viewpoint can be found in the nonlocal hardening model[65–68].
7.3 The composition effect of FGM
7.3.1 The effect of the power-law index n

In this case, the effect of n on the considered variables is considered. In calculation, seven
different values n = 0, n = 0.1, n = 0.2, n = 0.5, n = 1, n = 2, and n = 5 are specified while
the ramp-heating time parameter, the thermal relaxation time, and the nonlocal parameter are
set as t0 = 0.05, τ0 = 0.02, and e0a = 0.05, respectively. The obtained results at t = 0.1 are
illustrated in Figs. 11–13.
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Figures 11–13 show that with the increase in the power-law index n, the displacement u,
the deflection w, and the stress σx decrease. This is because as the index n increases, the
composition of Si decreases and the composition of ZrO2 increases. Due to the increase in the
bending stiffness in the FGM microbeam, the load-bearing capacity of the FGM microbeam is
greater. Therefore, the ability to resist the thermal-induced stress and deformation is enhanced.
7.3.2 The effect of the power-law index n on the peak values of considered variables

In this case, the effects of the index n on the peak values of considered variables are examined.
In calculation, the stress peak position x = 0.05, the deflection peak position x = 0.1, and the
displacement peak position x = 0 are specified, while the ramp-heating time parameter, the
thermal relaxation time, and the nonlocal parameter are set as t0 = 0.05, τ0 = 0.02, and
e0a = 0.05, respectively. The obtained results at t = 0.1 are illustrated in Figs. 14–16.
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Figures 14–16 show that when n < 1, the dimensionless stress, the deflection, and the
displacement sharply decrease. As n gradually increases, the curves tend to be smooth. Because
the addition of ceramic component suddenly increases, the bending stiffness of the homogeneous
Si material microbeam increases. Meanwhile, with the gradual increase in n, the bending
stiffness gradually approaches a certain value and is close to the elastic deformation of ceramic.

8 Conclusions

The dynamic thermoelastic response of an FGM beam in micro-scale, heated by a ramping
type heating at the left end, is investigated in the nonlocal generalized thermoelasticity. From
the obtained results, the following conclusions can be drawn.

(i) At a given time, the non-zero regions of the considered variables are bounded, which
demonstrates that the thermal wave propagates at a finite speed.

(ii) The nonlocal parameter has no effect on the dimensionless temperature. Meanwhile,
it is seen that the stress, deflection, and displacement are reduced due to the existence of the
nonlocal parameter. This indicates that the influence of the nonlocal effect on the safety design
of microbeam in the thermal environment cannot be ignored.

(iii) As the index n increases, the composition of ceramic increases, and the stiffness and
stability of the FGM microbeam increase. Thus, the FGM microbeam with an appropriate
amount of ceramic can improve the stiffness and stability of the FGM microbeam.
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