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The in°uence maximization problem in social networks aims to select a subset of most in-

°uential nodes, denoted as seed set, to maximize the in°uence di®usion of the seed nodes. The
majority of existing works on this problem would ignite all the seed nodes simultaneously at

the beginning of the di®usion process and let the in°uence di®uses passively in the network.

However, it cannot depict the practical dynamics exactly of viral marketing campaigns in

reality and fails to provide driving policies to control over the di®usion. In this paper, we focus
on the dynamic in°uence maximization problem with limited budget to study the scheduling

strategies including which in°uential node is to be seeded during the di®usion process and

when to seed it at the right time. A time-dependent seed activating feedback scheme is
modeled ¯rstly by considering the time factor and its impact on the in°uence obligation in

di®usion process. Then a scheduling heuristic based on determinate and latent margin is

proposed to evaluate the marginal return of candidate nodes and activate the right seed node

to promote the viral marketing. Extensive experiments on four social networks show that the
proposed algorithm achieves signi¯cantly better results than a typical static in°uence maxi-

mization algorithm based on swarm intelligence and can improve the in°uence propagation

under the time-dependent di®usion model comparing with the centrality-based scheduling

heuristics.
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1. Introduction

With the rapid development of Web2.0, social networks including Facebook,

Twitter, Googleþ, WeChat, etc., have found their irreplaceable applications in in-

formation di®usion, viral marketing, epidemic inhibition and crowd-sourcing.1–3 The

underlying actuator of these fundamental applications is the social in°uence, which

can be utilized to reshape one's emotions, opinions and even the behaviors. As one of

the interesting research topics of social network analysis, the in°uence maximization

problem, which was ¯rst modeled by Domingos and Richardson4 and then elegantly

formulated as a discrete optimization problem by Kempe and Kleinberg,5 aims to

select a subset of k in°uential nodes, denoted as seed set, such that the number of

activated nodes triggered by the seed nodes through an in°uence di®usion model is

maximal.

The majority of existing works on in°uence maximization generally select the

targeted number of in°uential seed nodes and ignite them \simultaneously" at the

beginning of the in°uence di®usion process, during which the in°uence is di®used

passively in the network.6,7 A toy example is the viral marketing, the marketing

sponsors tend to expose all the discount or free products to a set of most in°uential

consumers to pro¯t maximal marginal return by leveraging the e®ect of \word of

mouth". However, the idealized in°uence di®usion models cannot well depict the

sophisticated in°uence di®usion scenarios in reality for the signi¯cant role of mar-

keting sponsors, of which the goal is to control over the di®usion process optimally of

the marketing campaigns, is always overlooked. Therefore, the results achieved by

conventional in°uence maximization algorithms usually turn out to be unsatisfac-

tory, especially on large-scale heterogeneous social networks, where consumers are

always exposed to the social phenomenon of information overload. To make full use

of the limited budget resource and take control of the vital marketing process,

marketers have to proactively exert external operations to prolong the product

promoting campaign to pro¯t from the consumers in practical marketing scenarios.

An alternative way is to estimate and activate the seed nodes well-timed

according to the dynamic marginal return of the candidate nodes during the di®usion

process. This advanced in°uence di®usion was ¯rstly formulated as scheduling in-

°uence maximization problem by Chierichetti et al.8 and Lin et al.9 pointed out that

social network providers play an important role in deciding when the information

should be brought to the attention of individual users especially when the user

attention is limited. Samadi et al.10 addressed that the duration of activation and re-

activation of seeds are important in many real-world viral marketing situations, and

therefore the decision-makers planning for long campaigns need not only initiate the

seed spreaders but also control the information process over time to achieve maximal

impact at special time point. To better understand the dynamics of the in°uence

di®usion in practical scenarios and study the strategies for evaluating and scheduling

seed nodes with constraint of limited budget, this paper ¯rstly analyzes the traits of

two typical time-independent in°uence di®usion models, independent cascade model
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2150079-2

In
t. 

J.
 M

od
. P

hy
s.

 C
 2

02
1.

32
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 C

H
IN

E
SE

 A
C

A
D

E
M

Y
 O

F 
SC

IE
N

C
E

S 
on

 0
6/

02
/2

2.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



and linear threshold model, under the limited user attention paradigm and herd

behavior e®ect, and a time-dependent in°uence di®usion model is then presented to

sketch the dynamics in real-world scenarios. Finally, a seed scheduling in°uence

maximization algorithm comes with a seed activating strategy is proposed, and its

performance is validated on four social networks.

The contribution of this work can be summarized along the following two axes:

. A time-dependent seed activating feedback (TSAF) model is presented to depict

the dynamics of practical information spreading process with limited budget re-

source constraint. In the model, the latent e®ect of in°uence in the IC model and

the accumulation characteristic of in°uence in the LT model are both inherited.

. A seed scheduling heuristic based on determinate and latent margin (SDLM) is

proposed to solve the scheduling in°uence maximization problem under the time-

dependent model. To improve the in°uence di®usion, a determinate and latent

margin (DLM) scheme is conceived to estimate the expected in°uence margin of a

node and seed the in°uential node with the most DLM score in the right time

stamp. Extensive experiments are conducted on four social networks to validate

the performance of the proposed algorithm.

The organization of the reminder of this paper is structured as follows. An overview

of related work on static in°uence maximization problem and the e®orts on sched-

uling in°uence maximization problem are given in Sec. 2. Section 3 formulates a

time-dependent in°uence di®usion model and proposes a seed scheduling in°uence

maximization heuristic. The performance of the proposed scheduling algorithm is

validated by conducting experiments on four social networks in Sec. 4. Section 5

concludes this paper with future work.

2. Related Work

The existing studies on in°uence maximization problem can be categorized into two

typical classes including static in°uence maximization and dynamic scheduling in-

°uence maximization according to the strategies for activating the seed nodes.

2.1. Works on static in°uence maximization problem

According to the conventional framework for in°uence maximization formulated by

Domingos and Richardson,4 once the k most in°uential nodes are activated, their

in°uence would di®uses passively during the whole process and ends when there are

no more new activated nodes. To obtain the seed nodes, Kempe et al.5 transformed

the viral marketing into a mathematical optimization problem by idealizing the

information di®usion dynamics in social network, and proposed a greedy algorithm

which features a theoretical bound of ð1� 1
e � �Þ on the optimal solution. However,

the simple heuristic turns out to be computationally challenging on large-scale

networks. Subsequent researches following the seminal work mainly focus on

A sequential seed scheduling heuristic based on determinate and latent margin
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developing e®ective and e±cient algorithms for the estimation and identi¯cation of

in°uential nodes.11–13 Goyal et al.14 presented an e®ective way to promote the simple

greedy algorithm to be scalable to large-scale networks by reordering the candidate

nodes according to the marginal return of each node, which can dramatically reduce

the number of Monte–Carlo (MC) simulation times. To avoid the MC simulation

mechanism for estimating the marginal return of candidate nodes, Tang et al.15

treated each node in the network topology as a virtual bat individual and proposed a

discrete bat algorithm by rede¯ning the evolutionary rules for the bat population to

optimize the candidate seed set. Experiments show that it is a promising way to solve

in°uence maximization problem in large-scale networks based on swarm intelligence.

To identify the most in°uential nodes e±ciently in large-scale networks, Shang

et al.16 suggested to partition the whole network into independent communities by

assuming that the information di®usion between communities is sparse.

In addition, variant in°uence maximization problem has been explored in many

works. Mohamadi et al.17 emphasized that trust aspect of the di®usion process plays

a major role in reshaping the dynamics of the networks, and a trust-based latency

aware in°uence maximization model was proposed by considering time and trust

aspects simultaneously. Morone and Makse18 indicated that speci¯c structural nodes,

which hinge on the frame of social network and whose interconnections are usually

sparse, play a signi¯cant role in the spreading of information and proposed to

identify a minimal set of in°uential nodes to maximize the in°uence di®usion. Li

et al.19 took the location information of the viral marketing promotion into consid-

eration and assumed that each user in the social network has di®erent preferences on

di®erent locations, a location-aware in°uence maximum arborescence model was

conceived to estimate the marginal return of candidate nodes. Lü et al.20 gave an

informative overview of the related works on the identi¯cation of vital nodes.

However, empirical results of in°uence maximization in practical scenarios show

that the performance of existing methods tends to be unsatisfactory due to the role

played by the seed activation scheduling in enhancing the marginal return of in°u-

ence di®usion is overlooked in the studies on the static in°uence maximization

problem.21 Therefore, the interesting problems that how to depict the di®usion

cascading behaviors of in°uential nodes' in°uence in the practical marketing sce-

narios in a more accurately way and what external operations can be exerted to

unfold the in°uence propagation actively in the social networks and control over the

in°uence di®usion processes dynamically need to be further explored and addressed.

2.2. Dynamic scheduling in°uence maximization problem

Activating the seed nodes in multiple stages is an alternative solution to control over

the di®usion of node in°uence in the social network. Jankowski et al.22 analyzed how

the ratio of seeds used in the initialization of the di®usion process a®ects the per-

formance in terms of number of activated nodes and its duration. The experimental

results showed that minimizing the number of seeds in the ¯rst beginning stage

J. Tang et al.
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would increases the duration of the di®usion process. Ni23 pointed out that marketers

have to make sequential decisions in reality to optimize the in°uence spread as the

di®usion situation evolves and varies. Under the constraint condition of minimizing

the complete in°uence di®usion time, the author formulated the sequential seeding

problem as a Markov decision process.

Sela et al.24 are among the ¯rst to investigate the problem of ¯nding not only

which nodes to be seeded but also when to seed them when taking into account the

timing aspect under the constraint of limited budget. Furthermore, for the situation

that people from social networks can only accept limited amount of information due

to the limited strength of mind, which has been discovered as an intrinsic physio-

logical property of human by social science, the authors addressed that the in°uence

di®usion characteristics of the activated nodes in the independent cascade model or

the linear threshold model cannot well depict the di®usion dynamics in practical viral

marketing scenarios. The targeted k in°uential nodes were identi¯ed and scheduled

sequentially according to the evolutionary status of the in°uence di®usion, and the

experimental results proved that the proposed scheduling approach by taking into

account the timing aspect can improve the rates of the in°uence spread by over 23%

compared to conventional seeding methods. Furthermore, Sela et al.21 believed that

the adoption of promotional products in real-world commercial activities relies on

continuous active promotion e®orts by the marketer, and presented a novel active

viral marketing model to specify the dynamics of the in°uence di®usion over the

social network. By analyzing the stochastic dynamics, diminishing social e®ect and

the state-dependent seeding properties of the commonly used contagion models ex-

perimentally, Goldenberg et al.25 validated the e®ectiveness of scheduled seeding

approach, which selects in°uential nodes in right time stamp, over the conventional

static in°uence maximization approaches. Samadi et al.26 studied the strategies to

identify the seed nodes based on a blogger-centric problem on a two-level network

over a given time horizon, and proposed a partial parallel cascade model to estimate

the timing of seed activation by paying the prominent bloggers under a given budget

constraint. Tang and Yuan27 studied the adaptive in°uence maximization problem

to balance the delay and performance tradeo®, and proposed a novel adaptive policy

with bounded approximation ratio by adjusting a controlling parameter.

Extensive experimental results of the previous literatures have proved the e®ec-

tiveness and necessity of scheduling seeds activation by exerting external operations

on the in°uence di®usion process. However, the presented dynamic activating models

and approaches to seeding in°uential nodes need to be further explored to better

depict the dynamics of the in°uence di®usion process in reality. In this paper, we

focus on the advanced scheduling in°uence maximization problem by integrating the

in°uence decaying factor with the timing aspect and limited budget constraint into a

time-dependent in°uence di®usion model, and a scheduling in°uence maximization

algorithm by utilizing the activation knowledge of the di®usion process is developed

to provide the marketer an ability to gain a higher activation rate as the process

unfolds.

A sequential seed scheduling heuristic based on determinate and latent margin
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3. Problem Formulation and the Proposed Method

3.1. Time-dependent seed activating feedback model

Limited user attention paradigm. The majority of existing in°uence maximization

algorithms simulate the information di®usion behaviors mainly based on the inde-

pendent cascade (IC) model and linear threshold (LT) model, in which there are two

states for each node, active and inactive and inactive nodes can be activated by active

nodes and switched into active nodes, but not vice versa. In the IC model, an active

node activated in time t has only one opportunity to in°uence its inactive neighbors

with a successful probability p in the next time step tþ 1. In the LT model, an

inactive node u turns to be active when the total in°uence accumulated from its

active neighbors exceeds its critical activation threshold �u, and node u remains

active till the di®usion process ends. The above two models are both time-indepen-

dent and assume that node's in°uence never diminishes or decays with time during

the di®usion process. Whereas, nodes from social networks in real-world are usually

exposed to overloaded information, such as various promotional products and other

marketing campaigns, which is far beyond one's processing capabilities. So, it is very

important and necessary to determine the right time to seed the in°uential nodes in

the overloaded information circumstances, especially when the node's attention is

limited, a well-documented psychological and cognitive concept from social science,

of which the role in a®ecting people's behaviors and their interactions in social media

has been con¯rmed by recent researches.28,29 Under the limited user attention par-

adigm, nodes can only pay transitory attention and processing capabilities to the

received information.28 The timing aspect in the limited attention paradigm has

emerged as an essential and necessary factor in modeling the time-dependent

behaviors of information di®usion.

Herd e®ect. As addressed above, each node's attention in the social network is

limited, so an e®ective way to capture one's attention is through the creation of social

hypes, which was termed as herd behavior tendency by Sela et al.24 In the herd

e®ect, the herd messages received from adjacent time periods would potentially ignite

a cascade di®usion process by leveraging the e®ect of \word-of-mouth" in viral

marketing.

Latent marginal return. As illustrated in Refs. 30 and 31, social proximity is

believed to be an e®ective model to predict the tendencies of nodes in social networks.

According to the mechanism formulated in the LT model, the in°uence on one

inactive node from its surround active neighbors will be accumulated for a certain

period until the current node is activated, and during the period, the node is more

likely to purchase the recommended product with the number of its active neighbors

increases, and the other is the opposite. Therefore, seeding the nodes with more

latent marginal return in the right time is a more realistic setting.

Limited budget constraint. In general, the limited adverting budget that the

marketing sponsors could a®ord is a crucial factor that should be considered in

identifying in°uential nodes, as well as in selecting an in°uential individual as a seed

J. Tang et al.
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node to promote the di®usion of information in the viral marketing campaign. And

the cooperation costs are always in proportion to the number of friendships of the

candidate node. Therefore, a time-dependent in°uence di®usion model with limited

budget constraint can better simulate the di®usion process of information.

Based on the above statements, a novel TSAF model is conceived in this paper. In

the TSAF model, each node in the topology has one of the following three states,

including Noninfected, Infected & Infectious and Infected & Noninfectious at time t.

Noninfected node can be selected as a seed node and its state will be turned into

Infected & Infectious state, in which the node has chances to infect its noninfected

neighbors in the following oblivion O time period. With time elapsing, more and

more neighbor nodes around a Noninfected node u are infected or seeded, and the

Noninfected node will be activated once the number of its neighbor nodes which are

infectious is up to the prede¯ned infection threshold C, such that
P�tþO

t¼�t Iv;u � �u,

where node v is an Infected & Infectious node from the neighbor set �u of u and Iv;u is

de¯ned as the in°uence on node u from node v. The in°uence di®usion process ends

when there are no more nodes could be infected after the limited budget B is

worn out.

Based on the TSAF model, we de¯ne the scheduling in°uence maximization

problem as follows.

De¯nition 1. Given a social networkG ¼ ðV ; EÞ, where V is the set of nodes and E

is the set of edges, the time-dependent seed activating feedback model and limited

budget B, scheduling in°uence maximization problem is targeted to seed a subset of

in°uential nodes into the seed set S at the right timing during the di®usion process,

where seeding an in°uential node needs one idealized unit budget, such that the

in°uence di®usion is maximum when the di®usion process ends.

3.2. A scheduling in°uence maximization algorithm

As addressed above, the presented TSAF model inherits the traits of the IC model

and the LT model. However, unlike the IC model, in which an infected node has only

one chance to activate its uninfected neighbors, in the TSAF model, a node in the

state of Infected & Infectious is permitted to di®use its in°uence within a prede¯ned

oblivion O time period. Meanwhile, similarly to the \accumulation e®ect" of LT

model, Noninfected nodes in the TSAF model will be infected once the number of its

neighbors in the state of Infected & Infectious is up to the prede¯ned activation

threshold C, which is enlightened by the herd e®ect. Consequently, the required

conditions for seeding a node is that a proportional of its neighbors have been in the

state of Infected & Infectious.

A toy example illustrating the di®usion processes of node in°uence based on

di®erent seeding strategies is shown in Fig. 1. There are seven nodes tied by eight

edges in the arti¯cial social network, and the related parameters B, O and C are set

to 3, 2 and 2, respectively. In Fig. 1(a), the high degree centrality-based heuristic is

A sequential seed scheduling heuristic based on determinate and latent margin
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adopted to select in°uential nodes with the highest degree value into the seed set S to

promote the in°uence propagation. Along the description of the TSAF model, two

nodes C andD are seeded initially to ignite the di®usion process, however, additional

node(s) would be infected only when the third alternative node E is seeded at time

t ¼ 2, then the state of activated nodes C and D will become Infected & Noninfec-

tious at time t ¼ 3 and the di®usion process stops because the limited budget is

exhaust. However, the performance of the in°uence di®usion is brilliant when an

external e®ect is exerted on the dynamic process. As illustrated in Fig. 1(b), if we

initially select nodes E and G as the seed at time t ¼ 0, node D will be activated

for there are two infectious nodes within its direct neighbors at time t ¼ 1.

Meanwhile, if we seed B as an in°uencer at time t ¼ 1, then nodes C and D will be

activated separately at time t ¼ 2. At time t ¼ 3, node A will be infected by its two

infectious neighbor nodes B and C, then the di®usion process stops for there are no

uninfected nodes in the network. Therefore, it is of great signi¯cance to make

further exploration on the scheduling in°uence maximization problem so as to

better understand the di®usion dynamics behaviors in the evolution and control of

social networks.

Comparing with the conventional in°uence maximization algorithms that acti-

vate the targeted seed nodes simultaneously at the beginning of the di®usion process

and let the in°uence di®uses passively in the networks, scheduling in°uence maxi-

mization algorithms need external e®ort to ¯nd not only the best nodes to be seeded

but also the right timing to perform these seedings e®ectively to maximize the

di®usion scale of the in°uence.

For simplicity, we denote that

. The state of node v at time t as �tðvÞ ¼
0 Noninfected;

1 Infected & Infectious;

2 Infected & Noninfectious:

8<
:

. U t
X ¼ fuju 2 V ^ �tðvÞ ¼ Xg as the set of nodes which are in state X at time t.

(a) High degree centrality

(b) A laten-based scheduling heuristic

Fig. 1. (Color online) Comparisons on di®usion processes under di®erent seed nodes activating strategies.

J. Tang et al.
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. �ðvÞ ¼ fujðu; vÞ 2 Eg as the neighbors of node v.

. � t
XðvÞ ¼ �ðvÞ \ V t

X as the neighbors of node v which are in state X at time t.

To seed the nodes at the right time under the TSAF model, an estimator naming

Determinate-Latent Margin (DLM for short) is conceived to evaluate and identify

seed nodes. More speci¯cally, the marginal return can be evaluated by the DLM

estimator according to the following two parts: � Determinate marginal return.

According to the di®usion dynamics of the TSAF model, for a Noninfected node

u, when the number of neighbors, of which the state is being X ¼ 1 at time t, is up to

the critical activation threshold C, node u will be activated spontaneously. If the

number of infectious neighbors equals C � 1, then selecting an infected node v that is

one of the neighbors of node u can bring a determinate margin including itself,

denoted as in Eq. (1).

DMðuÞ ¼ 1þ
X

v2Nð1ÞðU t
X¼1

Þ
ðjðu; vÞjjðu; vÞ 2 EÞ: ð1Þ

� Latent marginal return. Besides the determinate margin, seeding node u can

bring a latent in°uence di®usion margin, as addressed in Sec. 3.1. A direct way to

estimate the latent margin is the number of Noninfected nodes that are adjacent to

the infectious nodes at time t. Meanwhile, taking account of the in°uence decay of

the infectious nodes, a coe±cient is adopted to prune the latent margin. So the latent

margin of seeding node u can be calculated by Eq. (2), where parameter � is a tunable

exponent factor with a constant value � ¼ O in this paper

LMðuÞ ¼ 1

C�

X
w2N ð1ÞðuÞ=fvjðu;vÞ2E;v2N ð1ÞðU t

X¼1
Þg
ðjðu;wÞjjðu;wÞ 2 EÞ: ð2Þ

Algorithm 1. A DLM-based seed scheduling influence maximization algorithm
Input: Social network G = (V,E), budget B, threshold C, oblivion time O.
Initialize: t ← 0, S ← Φ
1: select and ignite an initial seed node s0 based on DC centrality
2: b ← 1
3: while b <= B do
4: t ← t + 1
5: update the state of u, where |Γt

X=1(u)| ≥ C

6: sb+1 ← arg max(DLM(v)), where Γt
X=1(u) = C − 1

7: S ← S ∪ sb+1

8: b ← b + 1
9: update the state of sb+1 according to the Ot

i

10: end while
11: return The seed set S to be scheduled.

A sequential seed scheduling heuristic based on determinate and latent margin
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Therefore, the mathematical returned margin by the DLM estimator can be

evaluated according to Eq. (3).

DLMðuÞ ¼ DMðuÞ þ LMðuÞ: ð3Þ
As described above, the framework of the scheduling in°uence maximization

heuristic is described in Algorithm 1.

4. Experiments and Statistical Analysis

4.1. Preliminary

4.1.1. Datasets and statistical characteristics

To simulate the di®usion dynamics of the presented TSFA model and validate the

performance of the proposed scheduling in°uence maximization heuristic, simulative

experiments on in°uence di®usion are conducted on four undirected social networks

selected from SNAP.a Table 1 shows the statistical characteristics of the four social

networks. The node degree distribution of the four social networks is illustrated in

Fig. 2, respectively.

4.1.2. Baseline algorithms

To simulate and show the performance of SDLM on in°uence di®usion, three seed

scheduling methods, including the novel SSH algorithm,21 classical degree centrality

and the random heuristic method, and a novel in°uence maximization algorithm32

are employed to conduct the compared experiments on the four social networks.

. Scheduled Seeding Heuristic (SSH) recommends seeding the in°uential nodes

with the most utility score based on a novel Active Viral Marketing model at each

time step.

Table 1. Statistical characteristics of the four social networks.

jV j and jEj represent the number of nodes and edges in the net-
work, respectively. hki is the average node degree, �d is the average

shortest path distance, C represents the average clustering coef-

¯cient, and AC represents the assortativity coe±cient.

Networks jV j jEj hki �d C AC

HepPh 10680 24316 4.554 7.486 0.440 0.238

Astroph 18772 198110 21.107 4.194 0.677 0.205

CondMat 23133 186936 16.162 5.352 0.055 0.135
Deezer 54573 846915 31.038 3.609 0.071 0.172

ahttp://snap.stanford.edu/snap/index.htm.

J. Tang et al.
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. Degree Centrality (DC), a topology-based method, seeds the unactivated node

with the highest out-degree value from the network as the current most in°uential

node to propagate the in°uence.

. Random method (RD) seeds a node that is uniformly drawn from the network

topology and has not yet been selected into the seed set or not activated in pre-

vious time steps.

. Discrete Shu®led Frog-Leaping Algorithm (DSFLA) is a meta-heuristic popula-

tion-based evolution algorithm that selects the targeted seed nodes e®ectively and

e±ciently by optimizing an expected in°uence di®usion function without using

Monte–Carlo simulations. DSFLA is a typical static algorithm that activates

all the seed nodes simultaneously at the beginning of the in°uence propagation

process.

(a) HepPh (b) Astroph

(c) CondMat (d) Deezer

Fig. 2. (Color online) Node degree distribution of the four di®erent social networks.

A sequential seed scheduling heuristic based on determinate and latent margin
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4.2. Experimental simulations and performance analysis

4.2.1. Comparison on in°uence di®usion of the ¯ve algorithms

In this phase, we mainly focus on the in°uence di®usion dynamics and the total

number of activated nodes in the network under di®erent budget constraints be-

tween advanced scheduling in°uence maximization algorithms and the static seed

selecting algorithm. For the parameter settings of SDLM, the bounded budget is set

to 100, the critical activation threshold C and oblivion time O are set to 2, respec-

tively, and the number of initialized seed is set to 1. The simulation in the experi-

ments of SSH runs 400 times for each combination, the recursion depth is set to 2, the

activation threshold �v and the infection time are set to 3 and 10, respectively. As to

the DSFLA algorithm, all the parameter setting strategies are set according to the

original literature, and the propagation probability p under the IC model is set to

0.05.

Figure 3 shows the comparison on the in°uence di®usion between scheduling

in°uence maximization algorithms and the static metaheuristic DSFLA on the four

di®erent social networks. As illustrated in Fig. 3, we can see that there is distinct

di®erence in the size of activated nodes between the two kind of seed selecting

algorithms. The activated size shows that all the four scheduling algorithms are

superior to the static in°uence maximization algorithm DSFLA, though it achieves

satisfying in°uence di®usion at a large propagation probability p ¼ 0:05.

More speci¯cally, when the targeted seed set size is small, DSFLA performs better

than the scheduling algorithms and achieves satis¯ed in°uence di®usion needing only

limited seed nodes under the large propagation probability. On the contrary, the

scheduling algorithms can only activate few nodes restrained by the activating

threshold and the decaying oblivion time of node in°uence. However, the size of

activated nodes by the seeded nodes of the scheduling algorithms improves with the

increase of budget and is signi¯cantly larger than DSFLA. Obviously, the super-

performance of the scheduling algorithms bene¯ts from the time-dependent in°uence

di®usion model and the scheduling in°uence maximization heuristics.

In addition, we can see that the proposed SDLM outperforms the SSH algorithm

under di®erent budget constraint scenarios. The highest proportion of activated

nodes in the network achieved by the SSH algorithm is as high as 48%, as shown in

Fig. 3(b), on the four social networks, while the SDLM algorithm activates almost

82% of the nodes in the network.

4.2.2. Performance on variable number of initialized seeds

The simulations depicted in Fig. 3 also show that there are distinct di®erence among

the four scheduling in°uence maximization algorithms, and the proposed SDLM

achieves the best performance comparing to the other three scheduling heuristics. So,

the e®ect of variable number of initialized seeds on the performance of the three

scheduling heuristics, including SDLM, DC and RD, is further investigated under the

same TSAF model in this phase. For simpli¯cation, we simulate the in°uence

J. Tang et al.
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di®usion of the three scheduling heuristics under the initialized number of seeds at

scenarios where I ¼ 1 and I ¼ 2, respectively.

Figure 4 shows the in°uence di®usion simulation of the three scheduling heuristics

at di®erent number of initialized seeds. We can see from Fig. 4 that SDLM performs

as the best scheduling algorithm at both of the two parameter setting scenarios

comparing to the other two heuristics. The random method, which seeds a node that

is uniformly drawn from the network topology and has not been selected into the seed

set or not activated in previous time steps, achieves the worst in°uence di®usion

according to the activated node size on the four social networks. More specially, when

the number of initialized seed nodes is set to I ¼ 1, the three scheduling heuristics

can only di®use the in°uence to merely few adjacent infectious nodes of the seed

nodes. Then the size of activated nodes rises exponentially with the increase of the

budget, and increases slowly when most of the nodes in the networks are activated.

(a) HepPh (b) Astroph

(c) CondMat (d) Deezer

Fig. 3. (Color online) Performance comparison on the in°uence di®usion between scheduling in°uence
maximization algorithms and the static metaheuristic DSFLA on the four di®erent social networks.

A sequential seed scheduling heuristic based on determinate and latent margin
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At the scenario I ¼ 2, all the three algorithms infect fewer nodes at initial stages

than the former scenario. The reason for the inferiority is that the initialized seed

nodes selected according to the heuristic metrics are scattered into the network, so it

needs consume more budget to meet the activation threshold. However, all the three

heuristics can still achieve comparable activated size to the ¯rst scenario where the

number of initialized seed nodes is set to 1.

4.2.3. Performance on variable combinatorial scheduling parameter settings

The simulations depicted in Figs. 3 and 4 show that there are distinct di®erence

among the three scheduling in°uence maximization algorithms, and the proposed

SDLM achieves the best performance comparing to the other scheduling heuristics

under the TSAF model. Therefore, the e®ectiveness of variable combinatorial pa-

rameter setting schemes on the performance of SDLM is further explored in this

(a) HepPh (b) Astroph

(c) CondMat (d) Deezer

Fig. 4. (Color online) Performance of the scheduling heuristic SDLM comparing to the DC and RD
methods under variable number of initialized seeds on the social networks.
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phase. According to the correlated relation among the three dominating parameters

including node's in°uence oblivion time O, activation threshold C and the number of

initialized seed I, three typical parameter setting strategies ((i) I ¼ 1, O ¼ 2, C ¼ 2.

(ii) I ¼ 1, O ¼ 3, C ¼ 2. (iii) I ¼ 1, O ¼ 2, C ¼ 3) are conceived to simulate the

in°uence di®usion of SDLM.

The illustrations shown in Fig. 5 prove that variable parameter setting strategies

have remarkable e®ect on the performance of SDLM. It is observed that larger

oblivion time would contribute more activated nodes during the in°uence di®usion

process. Consequently, the SDLM under the second parameter setting strategy

performs the most satis¯ed in°uence di®usion. Instead, when the infectious threshold

is larger, it needs more in°ected and infectious nodes from adjacent neighborhood to

infect the current uninfected node, so it would result in the phenomenon that the

(a) HepPh (b) Astroph

(c) CondMat (d) Deezer

Fig. 5. (Color online) Performance of the SDLM under variable combinatorial parameter setting strat-

egies on the four social networks.

A sequential seed scheduling heuristic based on determinate and latent margin
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infected and infectious nodes become noninfectious ones before their in°uence decays

to 0, as particularly shown in Figs. 5(a) and 5(c).

Though the experimental results show that parameter setting strategies in the

scheduling in°uence maximization algorithms based on the seed activating feedback

model play an important role in promoting the di®usion of node in°uence in the

network, the extensive experiments conducted on the four social networks prove that

the scheduling in°uence maximization algorithms show their superior performance

to conventional ones that activate all the seed nodes simultaneously at the beginning

of the in°uence di®usion process. It is a promising way to make further exploration

on the scheduling in°uence maximization problem to better understand the in°uence

di®usion dynamics, customer behavior modeling and control over the cascading

process such as in active viral marketing and information di®usion prediction of

practical scenarios, etc.

5. Conclusions

In the static in°uence maximization problem that would activate all the selected seed

nodes simultaneously and let the in°uence di®uses passively in the network without

any external intervention, it is hard to depict precisely the di®usion dynamics in

reality where the marketers usually impose interventions to control the di®usion

process. To better model the user behaviors and control over the in°uence di®usion

process, this paper presents a time-dependent seed activating feedback model by

considering the in°uence oblivion factor and the budget constraint to depict the

in°uence di®usion dynamics performed in the network. And a scheduling in°uence

maximization heuristic is proposed based on the determinate and latent margin of

the candidate seed nodes to optimize the scheduling seed set. Extensive experiments

on four social networks show that the proposed SDLM outperforms typical cen-

trality-based scheduling heuristics and the conventional in°uence maximization

algorithms. It provides positive chance to control the in°uence di®usion over the

network such as in active viral marketing campaigns and information di®usion

prediction of practical scenarios by implementing scheduling seed activation

strategies.
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