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Abstract: In this paper, we study the following nonlinear magnetic Schrödinger-Poisson type equation
( ε
i∇ − A(x)

)2
u + V(x)u + ϵ−2(|x|−1 * |u|2)u = f (|u|2)u in R3,

u ∈ H1(R3,C),

where ϵ > 0, V : R3 → R and A : R3 → R3 are continuous potentials. Under a local assumption on the
potential V, by variational methods, penalization technique, and Ljusternick-Schnirelmann theory, we prove
multiplicity and concentration properties of nontrivial solutions for ε > 0 small. In this problem, the function
f is only continuous, which allow to consider larger classes of nonlinearities in the reaction.
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1 Introduction and main results
In this paper, we are concerned with multiplicity and concentration results for the following Schrödinger-
Poisson type equation ( ε

i∇ − A(x)
)2
u + V(x)u + ϵ−2(|x|−1 * |u|2)u = f (|u|2)u in R3, (1.1)

where u ∈ H1(R3,C), ε > 0 is a parameter, V : R3 → R is a continuous function, f ∈ C(R,R), the magnetic
potential A : R3 → R3 is Hölder continuous with exponent α ∈ (0, 1], and the convolution potential is
de�ned by |x|−1 * |u|2 =

∫
R3 |x − y|−1|u(y)|2dy.

Problem (1.1) arises in quantummechanics, abeliangauge theories, plasmaphysics, and soonwhich canbe
used to simulate themutual interactions of many particles. In fact, the linear Schrödinger equation describes
the behavior of a single particle. However, the interaction among particles can be simulated by adding a
nonlinear term f . Moreover, the convolution potential is a solution of Poisson equationwhich implies that the
particles move in their own gravitational �eld generated by the probability density of particles via classical
Newton �eld equation. Therefore, problem (1.1) can be regarded as the coupling of the Schrödinger equation
and Poisson equation.
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There is a vast literature concerning the existence and multiplicity of solutions for nonlinear equation
without magnetic �eld. We notice that Fiscella, Pucci and Zhang [16] studied the existence of solutions for p-
fractional Hardy-Schrödinger-Kirchho� systems with critical nonlinearities, Ji and Radulescu [17] considered
the multiplicity of multi-bump solutions for quasilinear elliptic equations with variable exponents and criti-
cal growth in RN , for more results, we refer to the Monograph [25]. Recently, by using the method of Nehari
manifold and Ljusternik-Schnirelmann theory, He [21] proved the multiplicity and concentration of solutions
of problem (1.1) for f ∈ C1(R,R) and the potential satisfying a global condition introduced byRabinowitz [26].
In [22], on the similar assumptions, He and Zou studied the existence and concentration behavior of ground
state solutions for a class of Schrödinger-Poisson system with critical the nonlinearity f ∈ C1(R,R). Then,
under a local assumption introduced by del Pino and Felmer [14], He and Zou [23] studied the multiplicity of
concentrating positive solutions for Schrödinger-Poisson equations with critical nonlinear f ∈ C1(R,R). For
further results about existence and nonexistence of solutions, multiplicity of solutions, ground states, semi-
classical limit and concentrations of solutions for Schrödinger-Poisson system(see [1–4, 11, 12, 27, 28, 31, 35]
and the references therein).

On the other hand, the magnetic nonlinear Schrödinger equation (1.1) has been extensively investigated
by many authors applying suitable variational and topological methods (see [5–7, 9, 10, 13, 15, 18–20, 32–34]
and references therein). It is well known that the �rst result involving the magnetic �eld was obtained by
Esteban and Lions [15]. They used the concentration-compactness principle and minimization arguments to
obtain solutions for ε > 0 �xed. In [34], Xiang, Rădulescu and Zhang studied multiplicity and concentration
of solutions for magnetic relativistic Schrödinger equations, Xia [32] studied a critical fractional Choquard-
Kirchho� problem with magnetic �eld. In particular, due to our scope, we want to mention [36] where the
authors studied a Schrödinger-Poisson type equation with magnetic �eld by using the method of the Nehari
manifold, the penalization method and Ljusternik-Schnirelmann category theory for subcritical nonlinearity
f ∈ C1. If f is only continuous, then the arguments in [36] failed.

In this paper, motivated by [23, 29, 36], for the case f is only continuous, we intend to prove multiplicity
and concentration of nontrivial solutions for problem (1.1). We note that, due to the appearance of magnetic
�eld A(x), problem (1.1) will be more di�cult in employing the methods and some estimates. On the other
hand, due to the nonlocal term |x|−1 * |u|2, some estimates are also more complicated.

Throughout the paper, we make the following assumptions on the potential V:
(V1)There exists V0 > 0 such that V(x) ≥ V0 for all x ∈ R3;
(V2)There exists a bounded open set Λ ⊂ R3 such that

V0 = min
x∈Λ

V(x) < min
x∈∂Λ

V(x).

Observe that
M := {x ∈ Λ : V(x) = V0} ≠ ∅.

Moreover, let the nonlinearity f ∈ C(R,R) be a function satisfying:
(f1) f (t) = 0 if t ≤ 0, and limt→0+

f (t)
t = 0;

(f2)there exists q ∈ (4, 6) such that
lim
t→+∞

f (t)
t
q−2
2

= 0;

(f3)there is a positive constant θ > 4 such that

0 < θ2F(t) ≤ tf (t), ∀ t > 0, where F(t) =
t∫

0

f (s)ds;

(f4) f (t)t is strictly increasing in (0,∞).
The main result of this paper is the following:

Theorem 1.1. Assume that V satis�es (V1), (V2) and f satis�es (f1)–(f4). Then, for any δ > 0 such that

Mδ := {x ∈ R3 : dist(x,M) < δ} ⊂ Λ,
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there exists εδ > 0 such that, for any 0 < ε < εδ, problem (1.1) has at least catMδ (M) nontrivial solutions.
Moreover, for every sequence {εn} such that εn → 0+ as n → +∞, if we denote by uεn one of these solutions of
problem (1.1) for ε = εn and ηεn ∈ R3 the global maximum point of |uεn |, then

lim
εn→0+

V(ηεn ) = V0.

The paper is organized as follows. In Section 2 we introduce the functional setting and give some prelimi-
naries. In Section 3, we study the modi�ed problem. We prove the Palais-Smale condition for the modi�ed
functional and provide some tools which are useful to establish a multiplicity result. In Section 4, we study
the autonomous problem associated. It allows us to show the modi�ed problem has the multiple soutions.
Finally, in Section 5, we give the proof of Thereom 1.1.

Notation

• C, C1, C2, . . . denote positive constants whose exact values are inessential and can change from line to
line;

• BR(y) denotes the open disk centered at y ∈ R3 with radius R > 0 and BcR(y) denotes the complement of
BR(y) in R3;

• ‖ · ‖, ‖ · ‖q, and ‖ · ‖L∞(Ω) denote the usual norms of the spaces H1(R3,R), Lq(R3,R), and L∞(Ω,R),
respectively, where Ω ⊂ R3.

2 Abstract setting and preliminary results
In this section, we present the functional spaces and some useful preliminary remarks which will be useful
for our arguments.

For u : R3 → C, let us denote by
∇Au :=

(∇
i − A

)
u,

and
D1
A(R3,C) := {u ∈ L6(R3,C) : |∇Au| ∈ L2(R3,R)}.

and
H1
A(R3,C) := {u ∈ D1

A(R3,C) : u ∈ L2(R3,C))}.

The space H1
A(R3,C) is an Hilbert space endowed with the scalar product

〈u, v〉 := Re
∫
R3

(
∇Au∇Av + uv

)
dx, for any u, v ∈ H1

A(R3,C),

where Re and the bar denote the real part of a complex number and the complex conjugation, respectively.
Moreover we denote by ‖u‖A the norm induced by this inner product.

On H1
A(R3,C) we will frequently use the following diamagnetic inequality (see e.g. [24, Theorem 7.21])

|∇Au(x)| ≥ |∇|u(x)||. (2.1)

Moreover, making a simple change of variables, we can see that (1.1) is equivalent to(1
i ∇ − Aε(x)

)2
u + Vε(x)u + (|x|−1 * |u|2)u = f (|u|2)u in R3, (2.2)

where Aε(x) = A(εx) and Vε(x) = V(εx).
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Let Hε be the Hilbert space obtained as the closure of C∞c (R3,C) with respect to the scalar product

〈u, v〉ϵ := Re
∫
R3

(
∇Aεu∇Aε v + Vε(x)uv

)
dx

and let us denote by ‖ · ‖ε the norm induced by this inner product.
The diamagnetic inequality (2.1) implies that, if u ∈ H1

Aε (R
3,C), then |u| ∈ H1(R3,R) and ‖u‖ ≤ C‖u‖ε.

Therefore, the embedding Hε ↪→ Lr(R3,C) is continuous for 2 ≤ r ≤ 6 and the embedding Hε ↪→ Lrloc(R3,C)
is compact for 1 ≤ r < 6.

By using the continuous embedding H1(R3,R) ↪→ Lr(R3,R) for 2 ≤ r ≤ 6, we can see that

H1(R3,R) ↪→ L
12
5 (R3,R). (2.3)

For any u ∈ Hε, we get |u| ∈ H1(R3,R), and the linear functional L|u| : D1,2(R3,R)→ R given by

L|u|(v) =
∫
R3

|u|2vdx

is well de�ned and continuous in view of the Hölder inequality and (2.4). Indeed, we can see that∣∣∣L|u|(v)
∣∣∣ ≤ (∫

R3

|u|
12
5 dx

) 5
6
(∫
R3

|v|6dx
) 1

6 ≤ C‖u‖2D1,2‖v‖D1,2 , (2.4)

where
‖v‖2D1,2 =

∫
R3

(|x|−1 * |v|2)|v|2dx =
∫
R3

∫
R3

|x − y|−1|u(x) − u(y)|2dxdy.

Then, by the Lax-Milgram Theorem, there exists a unique ϕ|u| ∈ D1,2(R3,R) such that

−∆ϕ|u| = |u|2, in R3.

Therefore we obtain the following t-Riesz formula

ϕ|u|(x) = c
∫
R3

|x − y|−1|u(y)|2dy.

In the sequel, we will omit the constant for simplicity. The function ϕ|u| possesses the following properties.

Lemma 2.1. For any u ∈ Hε, we have
(i) ϕ|u| : H1(R3,R)→ D1,2(R3,R) is continuous and maps bounded sets into bounded sets;
(ii) if un ⇀ u in Hε, then ϕ|un| ⇀ ϕ|u| in D1,2(R3,R), and

lim inf
n

∫
R3

ϕ|un|2 |un|
2dx ≤

∫
R3

ϕ|u|2 |u|
2dx;

(iii) ϕ|ru| = r2ϕ|u| for all r ∈ R and ϕ|u(·+y)| = ϕ|u|(x + y);
(iv) ϕ|u| ≥ 0 for all u ∈ Hε and we have

‖ϕ|u|‖D1,2 ≤ C‖u‖2
L
12
5 (R3)

≤ C‖u‖2ε , and
∫
R3

ϕ|u||u|2dx ≤ C‖u‖4L 12
5 (R3)

≤ C‖u‖4ε .

The proof of Lemma 2.1 is similar to one in [27, 35], so we omit it.
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3 The modi�ed problem
To study problem (1.1), or equivalently (2.2) by variational methods, we shall modify suitably the nonlinearity
f so that, for ε > 0 small enough, the solutions of such modi�ed problem are also solutions of the original
one. More precisely, we choose K > 2. By (f4) there exists a unique number a > 0 verifying Kf (a) = V0, where
V0 is given in (V1). Hence we consider the function

f̃ (t) :=
{
f (t), t ≤ a,
V0/K, t > a.

Now we introduce the penalized nonlinearity g : R3 ×R→ R

g(x, t) := χΛ(x)f (t) + (1 − χΛ(x))f̃ (t), (3.1)

where χΛ is the characteristic function on Λ and G(x, t) :=
t∫

0

g(x, s)ds.

In view of (f1)–(f4), we have that g is a Carathéodory function satisfying the following properties:
(g1 ) g(x, t) = 0 for each t ≤ 0;
(g2 ) limt→0+

g(x,t)
t = 0 uniformly in x ∈ R3, and there exists q ∈ (4, 6) such that

lim
t→+∞

g(x, t)
t
q−2
2

= 0 uniformly in x ∈ R3;

(g3 ) g(x, t) ≤ f (t) for all t ≥ 0 and uniformly in x ∈ R3;
(g4 ) 0 < θG(x, t) ≤ 2g(x, t)t, for each x ∈ Λ, t > 0;
(g5 ) 0 < G(x, t) ≤ g(x, t)t ≤ V0t/K, for each x ∈ Λc, t > 0;
(g6 ) for each x ∈ Λ, the function t 7→ g(x,t)

t is strictly increasing in t ∈ (0, +∞) and for each x ∈ Λc, the
function t 7→ g(x,t)

t is strictly increasing in (0, a).
Then we consider themodi�ed problem(1

i ∇ − Aε(x)
)2
u + Vε(x)u + (|x|−1 * |u|2)u = g(εx, |u|2)u in R3. (3.2)

Note that, if u is a solution of problem (3.2) with

|u(x)|2 ≤ a for all x ∈ Λcε , Λε := {x ∈ R3 : εx ∈ Λ},

then u is a solution of problem (2.2).
The functional associated to problem (3.2) is

Jε(u) := 1
2

∫
R3

(|∇Aεu|
2 + Vε(x)|u|2)dx + 1

4

∫
R3

(|x|−1 * |u|2)|u|2dx − 1
2

∫
R3

G(εx, |u|2)dx

de�ned in Hε. It is standard to prove that Jε ∈ C1(Hε ,R) and its critical points are the weak solutions of the
modi�ed problem (3.2).

We denote byNε the Nehari manifold of Jε, that is

Nε := {u ∈ Hε\{0} : J′ε(u)[u] = 0},

and de�ne the number cε by
cε = inf

u∈Nε
Jε(u).

Let H+
ε be open subset Hε given by

H+
ε = {u ∈ Hε : |supp(u) ∩ Λε| > 0},
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and S+ε = Sε ∩ H+
ε , where Sε is the unit sphere of Hε. Note that S+ε is a non-complete C1,1-manifold of codi-

mension 1, modeled on Hε and contained in H+
ε . Therefore, Hε = TuS+ε

⊕
Ru for each u ∈ TuS+ε , where

TuS+ε = {v ∈ Hε : 〈u, v〉ϵ = 0}.
Now we show that the functional Jε satis�es the Mountain Pass Geometry.

Lemma 3.1. For any �xed ε > 0, the functional Jε satis�es the following properties:
(i) there exist β, r > 0 such that Jε(u) ≥ β if ‖u‖ε = r;
(ii) there exists e ∈ Hε with ‖e‖ε > r such that Jε(e) < 0.

Proof. (i) By (g3), (f1) and (f2), for any ζ > 0 small, there exists Cζ > 0 such that

G(εx, |u|2) ≤ ζ |u|4 + Cζ |u|q for all x ∈ R3.

By the Sobolev embedding it follows

Jε(u) ≥ 12

∫
R3

(|∇Aεu|
2 + Vε(x)|u|2)dx − ζ2

∫
R3

|u|4dx −
Cζ
2

∫
R3

|u|qdx

≥ 12‖un‖
2
ε − C1ζ‖un‖4ε − C2Cζ ‖un‖qε .

Hence we can choose some β, r > 0 such that Jε(u) ≥ β if ‖u‖ε = r since q > 4.
(ii) For each u ∈ H+

ε and t > 0, by the de�nition of g and (f3), one has

Jε(tu) ≤ t
2

2

∫
R3

(|∇Aεu|
2 + Vε(x)|u|2)dx + t

4

4

∫
R3

(|x|−1 * |u|2)|u|2dx − 1
2

∫
Λε

G(εx, t2|u|2)dx,

≤ t
2

2 ‖u‖
2
ε +

t4
4

∫
R3

(|x|−1 * |u|2)|u|2dx − C1tθ
∫
Λε

|u|θdx + C2|supp(u) ∩ Λε|.

Since θ > 4, we can get the conclusion.

Since f is only continuous, the next results are very important because they allow us to overcome the non-
di�erentiability ofNε and the incompleteness of S+ε .

Lemma 3.2. Assume that (V1)–(V2) and (f1)–(f4) are satis�ed, then the following properties hold:
(A1)For any u ∈ H+

ε , let gu : R+ → R be given by gu(t) = Jε(tu). Then there exists a unique tu > 0 such that
g′u(t) > 0 in (0, tu) and g′u(t) < 0 in (tu ,∞);

(A2)There is a τ > 0 independent on u such that tu ≥ τ for all u ∈ S+ε . Moreover, for each compactW ⊂ S+ε there
is such that tu ≤ CW, for all u ∈W;

(A3)The map m̂ε : H+
ε → Nε given by m̂ε(u) = tuu is continuous and mε = m̂ε|S+ε is a homeomorphism between

S+ε andNε. Moreover, m−1ε (u) = u
‖u‖ε ;

(A4)If there is a sequence {un} ⊂ S+ε such that dist(un , ∂S+ε )→ 0, then ‖mε(un)‖ε →∞ and Jε(mε(un))→∞.

Proof. (A1) As in the proof of Lemma 3.1, we have gu(0) = 0, gu(t) > 0 for t > 0 small and gu(t) < 0 for
t > 0 large. Therefore, maxt≥0 gu(t) is achieved at a global maximum point t = tu verifying g′u(tu) = 0 and
tuu ∈ Nε. From (f4), the de�nition of g and |supp(u)∩Λε| > 0, wemay obtain the uniqueness of tu. Therefore,
maxt≥0 gu(t) is achieved at a unique t = tu so that g′u(t) = 0 and tuu ∈ Nε.
(A2) For ∀ u ∈ S+ε , we have

tu + t3u
∫
R3

(|x|−1 * |u|2)|u|2dx =
∫
R3

g(εx, t2u|u|2)tu|u|2dx.

From (g2), the Sobolev embeddings and q > 4, we get

tu ≤ ζt3u
∫
R3

|u|4dx + Cζ tq−1u

∫
R3

|u|qdx ≤ C1ζt3u + C2Cζ tq−1u ,
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which implies that tu ≥ τ for some τ > 0. If W ⊂ S+ε is compact, and suppose by contradiction that there is
{un} ⊂ W with tn := tun → ∞. Since W is compact, there exists a u ∈ W such that un → u in Hε. Moreover,
using the proof of Lemma 3.1(ii), we have that Jε(tnun)→ −∞.

On the other hand, let vn := tnun ∈ Nε, from (g4), (g5), (g6) and θ > 4, it yields that

Jε(vn) =Jε(vn) − 1
θ J

′
ε(vn)[vn]

≥
(1
2 −

1
θ

)
‖vn‖2ε + (

1
4 −

1
θ )
∫
R3

(|x|−1 * |vn|2)|vn|2dx

+
∫
Λcε

(1
θ g(εx, |vn|

2)|un|2 − 1
2G(εx, |vn|

2)
)
dx

≥
(1
2 −

1
θ

)(
‖vn‖2ε −

1
K

∫
R3

V(εx)|vn|2dx
)

≥
(1
2 −

1
θ

)
(1 − 1

K )‖vn‖
2
ε .

Thus, substituting vn := tnun and ‖vn‖ε = tn, we obtain

0 <
(1
2 −

1
θ

)
(1 − 1

K ) ≤
Jε(vn)
t2n

≤ 0

as n →∞, which yields a contradiction. This proves (A2).
(A3) First of all, we note that m̂ε, mε and m−1ε are well de�ned. Indeed, by (A2), for each u ∈ H+

ε , there is
a unique m̂ε(u) ∈ Nε. On the other hand, if u ∈ Nε, then u ∈ H+

ε . Otherwise, we have |supp(u) ∩ Λε| = 0 and
by (g5) we have

‖u‖2ε ≤ ‖u‖2ε +
∫
R3

(|x|−1 * |u|2)|u|2dx =
∫
R3

g(εx, |u|2)|u|2dx

=
∫
Λcε

g(εx, |u|2)|u|2dx

≤ 1
K

∫
R3

V(εx)|u|2dx

≤ 1
K ‖u‖

2
ε

which is impossible since K > 1 and u ≠ 0. Therefore, m−1ε (u) = u
‖u‖ε ∈ S

+
ε is well de�ned and continuous.

From
m−1ε

(
mε(u)

)
= m−1ε (tuu) = tuu

tu‖u‖ε
= u, ∀u ∈ S+ε ,

we conclude that mε is a bijection. Now we prove m̂ε : H+
ε → Nε is continuous, let {un} ⊂ H+

ε and u ∈ H+
ε

such that un → u in Hε. By (A2), there is a t0 > 0 such that tn := tun → t0. Using tnun ∈ Nε, i.e.,

t2n‖un‖2ε + t2n
∫
R3

(|x|−1 * |un|2)|un|2dx =
∫
R3

g(εx, t2n|un|2)t2n|un|2dx, ∀n ∈ N,

and passing to the limit as n →∞ in the last inequality, we obtain

t20‖u‖2ε + t20
∫
R3

(|x|−1 * |u|2)|u|2dx =
∫
R3

g(εx, t20|u|2)t20|u|2dx,

which implies that t0u ∈ Nε and tu = t0. This proves m̂ε(un)→ m̂ε(u) in H+
ε . Thus, m̂ε andmε are continuous

functions and (A3) is proved.
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(A4) Let {un} ⊂ S+ε be a subsequence such that dist(un , ∂S+ε ) → 0, then for each v ∈ ∂S+ε and n ∈ N, we
have |un| = |un − v| a.e. in Λε. Therefore, by (V1), (V2) and the Sobolev embedding, there exists a constant
Ct > 0 such that

‖un‖Lt(Λε) ≤ inf
v∈∂S+ε

‖un − v‖Lt(Λε)

≤ Ct
(

inf
v∈∂S+ε

∫
Λε

(|∇Aεun − v|
2 + Vε(x)|un − v|2)dx

) 1
2

≤ Ct dist(un , ∂S+ε )

for all n ∈ N, t ∈ [2, 6]. By (g2), (g3) and (g5), for each t > 0, we have∫
R3

G(εx, t2|un|2)dx ≤
∫
Λε

F(t2|un|2)dx + t
2

K

∫
Λcε

V(εx)|un|2dx

≤ C1t4
∫
Λε

|un|4dx + C2tq
∫
Λε

|un|qdx + t
2

K ‖un‖
2
ε

≤ C3t4dist(un , ∂S+ε )4 + C4tqdist(un , ∂S+ε )q +
t2
K .

Therefore,
lim sup

n

∫
R3

G(εx, t2|un|2)dx ≤ t
2

K , ∀t > 0.

On the other hand, from the de�nition of mε and the last inequality, for all t > 0, one has

lim inf
n

Jε(mε(un)) ≥ lim inf
n

Jε(tun)

≥ lim inf
n
t2
2 ‖un‖

2
ε −

t2
K

= K − 22K t2,

this implies that

lim inf
n

1
2‖mε(un)‖2ε ≥

K − 2
2K t2, ∀ t > 0.

From the arbitrary of t > 0, it is easy to see that ‖mε(un)‖ε → ∞ and Jε(mε(un)) → ∞ as n → ∞. This
completes the proof of Lemma 3.2.

Now we de�ne the function
Ψ̂ε : H+

ε → R,

by Ψ̂ε(u) = Jε(m̂ε(u)) and denote by Ψε := (Ψ̂ε)|S+ε .

We may obtain the following result from Lemma 3.2 directly, and its proof is similar to that of Corollary 10
in [30], so we omit it.

Lemma 3.3. Assume that (V1)–(V2) and (f1)–(f4) are satis�ed, then
(B1)Ψ̂ε ∈ C1(H+

ε ,R) and

Ψ̂ ′
ε(u)v =

‖m̂ε(u)‖ϵ
‖u‖ϵ

J′ε(m̂ε(u))[v], ∀ u ∈ H+
ε and ∀ v ∈ Hε;

(B2)Ψε ∈ C1(S+ε ,R) and
Ψ ′
ε(u)v = ‖mε(u)‖ϵJ′ε(m̂ε(u))[v], ∀v ∈ TuS+ε ;
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(B3)If {un} is a (PS)c sequence of Ψε, then {mε(un)} is a (PS)c sequence of Jε. If {un} ⊂ Nε is a bounded (PS)c
sequence of Jε, then {m−1ε (un)} is a (PS)c sequence of Ψε;

(B4)u is a critical point of Ψε if and only if mε(u) is a critical point of Jε. Moreover, the corresponding critical
values coincide and

inf
S+ε
Ψε . = inf

Nε
Jε .

As in [30], we have the following variational characterization of the in�mum of Jε overNε:

cε = inf
u∈Nε

Jε(u) = inf
u∈H+

ε
sup
t>0

Jε(tu) = inf
u∈S+ε

sup
t>0

Jε(tu)

Lemma 3.4. Let c > 0 and {un} is a (PS)c sequence for Jε, then {un} is bounded in Hε.

Proof. Assume that {un} ⊂ Hε is a (PS)c sequence for Jε, that is, Jε(un) → c and J′ε(un) → 0. By using (g4),
(g5) and θ > 4, we have

d + on(1) + on(1)‖un‖ε ≥Jε(un) − 1
θ J

′
ε(un)[un]

=
(1
2 −

1
θ

)
‖un‖2ε + (

1
4 −

1
θ )
∫
R3

(|x|−1 * |un|2)|un|2dx

+
∫
R3

(1
θ g(εx, |un|

2)|un|2 − 1
2G(εx, |un|

2)
)
dx

≥
(1
2 −

1
θ

)
‖un‖2ε +

∫
Λcε

(1
θ g(εx, |un|

2)|un|2 − 1
2G(εx, |un|

2)
)
dx

≥
(1
2 −

1
θ

)
‖un‖2ε −

1
2

∫
Λcε

G(εx, |un|2)dx

≥
(1
2 −

1
θ

)
‖un‖2ε −

1
2K

∫
R3

V(εx)|un|2dx

≥
(1
2 −

1
θ −

1
2K
)
‖un‖2ε .

Since K > θ/(θ − 2), from the above inequalities we obtain that {un} is bounded in Hε.

The following result is important to prove the (PS)cε condition for the functional Jε.

Lemma 3.5. The functional Jε satis�es the (PS)c condition at any level c > 0.

Proof. Let (un) ⊂ Hε be a (PS)c for Jε. By Lemma 3.4, (un) is bounded in Hε. Thus, up to a subsequence,
un ⇀ u in Hε and un → u in Lrloc(R3,C) for all 1 ≤ r < 6 as n → +∞. Moreover, Lemma 2.1(ii) and the
subcritical growth of g imply that J′ε(u) = 0, and

‖u‖2ε +
∫
R3

(|x|−1 * |u|2)|u|2dx =
∫
R3

g(εx, |u|2)|u|2dx.

Let R > 0 be such that Λε ⊂ BR/2(0). We show that for any given ζ > 0, for R large enough,

lim sup
n

∫
BcR(0)

(|∇Aεun|
2 + Vε(x)|un|2)dx ≤ ζ . (3.3)

Let ϕR ∈ C∞(R3,R) be a cut-o� function such that

ϕR = 0 x ∈ BR/2(0), ϕR = 1 x ∈ BcR(0), 0 ≤ ϕR ≤ 1, and |∇ϕR| ≤ C/R
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where C > 0 is a constant independent of R. Since the sequence (ϕRun) is bounded in Hε, we have

J′ε(un)[ϕRun] = on(1),

that is

Re
∫
R3

∇Aεun∇Aε (ϕRun)dx +
∫
R3

Vε(x)|un|2ϕRdx +
∫
R3

(|x|−1 * |un|2)|un|2ϕRdx

=
∫
R3

g(εx, |un|2)|un|2ϕRdx + on(1).

Since∇Aε (unϕR) = iun∇ϕR + ϕR∇Aεun, using (g5), we have∫
R3

(|∇Aεun|
2 + Vε(x)|un|2)ϕRdx ≤

∫
R3

g(εx, |un|2)|un|2ϕRdx − Re
∫
R3

iun∇Aεun∇ϕRdx + on(1)

≤ 1
K

∫
R3

Vε(x)|un|2ϕRdx − Re
∫
R3

iun∇Aεun∇ϕRdx + on(1).

By the de�nition of ϕR, the Hölder inequality and the boundedness of (un) in Hε, we obtain(
1 − 1

K

)∫
R3

(|∇Aεun|
2 + Vε(x)|un|2)ϕRdx ≤

C
R ‖un‖2‖∇Aεun‖2 + on(1) ≤

C1
R + on(1)

and so (3.3) holds.
Using un → u in Lrloc(R3,C), for all 1 ≤ r < 6 again, up to a subsequence, we have that

|un| → |u| a.e. in R3 as n → +∞,

then

g(εx, |un|2)|un|2 → g(εx, |u|2)|u|2 a.e. in R3 as n → +∞.

Moreover, from the subcritical growth of g and and the Lebesgue Dominated Convergence Theorem, we can
infer

lim
n

∫
BR(0)

∣∣∣g(εx, |un|2)|un|2 − g(εx, |u|2)|u|2∣∣∣dx = 0.

Now, by (g5) and (3.3) we have∫
BcR(0)

∣∣∣g(εx, |un|2)|un|2 − g(εx, |u|2)|u|2∣∣∣dx ≤ 2
K

∫
BcR(0)

(|∇Aεun|
2 + V(εx)|un|2)dx < 2ζ

K

for every ζ > 0.
Hence ∫

R3

g(εx, |un|2)|un|2dx →
∫
R3

g(εx, |u|2)|u|2dx as n → +∞.

Finally, since J′ε(u) = 0, we have

on(1) = J′ε(un)[un] = ‖un‖2ε +
∫
R3

(|x|−1 * |un|2)|un|2dx −
∫
R3

g(εx, |un|2)|un|2dx

= ‖un‖2ε +
∫
R3

(|x|−1 * |un|2)|un|2dx − ‖u‖2ε −
∫
R3

(|x|−1 * |u|2)|u|2dx + on(1).

Thus, fromLemma2.1, the sequence (un) strong converges to u inHε and
∫
R3 (|x|−1*|un|2)|un|2dx →

∫
R3 (|x|−1*

|u|2)|u|2dx as n →∞.
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Since f is only assumed to be continuous, the following result is required for themultiplicity result in the next
section.

Corollary 3.1. The functional Ψε satis�es the (PS)c condition on S+ε at any level c > 0.

Proof. Let {un} ⊂ S+ε be a (PS)c sequence for Ψε. Then Ψε(un) → c and ‖Ψ ′
ε(un)‖* → 0, where ‖ · ‖* is the

norm in the dual space (TunS+ε )*. By Lemma 3.3(B3), we know that {mε(un)} is a (PS)c sequence for Jε in Hε.
From Lemma 3.5, we know that there exists a u ∈ S+ε such that, up to a subsequence, mε(un)→ mε(u) in Hε.
By Lemma 3.2(A3), we obtain

un → u in S+ε ,

and the proof is complete.

Proposition 3.1. Assume that (V1)–(V2) and (f1)–(f4) hold, then problem (3.2) has a ground state solution
for any ϵ > 0.

Proof. Since
cε = inf

u∈Nε
Jε(u) = inf

u∈H+
ε
sup
t>0

Jε(tu) = inf
u∈S+ε

sup
t>0

Jε(tu),

by the Ekeland variational principle [37], we obtain a minimizing (PS)cε sequence on S+ε for the functional
Ψε. Moreover, by Corollary 3.1, we deduce the existence of a ground state u ∈ Hε for problem (3.2).

4 Multiple solutions for the modi�ed problem

4.1 The autonomous problem

For our scope, we need also to study the following limit problem

−∆u + V0u + (|x|−1 * |u|2)u = f (u2)u, u : R3 → R, (4.1)

whose associated C1-functional, de�ned in H1(R3,R), is

I0(u) :=
1
2

∫
R3

(|∇u|2 + V0u2)dx +
1
4

∫
R3

(|x|−1 * |u|2)|u|2dx − 1
2

∫
R3

F(u2)dx.

Let
N0 := {u ∈ H1(R3,R) \ {0} : I′0(u)[u] = 0}

and
cV0 := inf

u∈N0
I0(u).

Let S0 be the unit sphere of H0 := H1(R3,R) and is complete and smooth manifold of codimension 1.
Therefore, H0 = TuS0

⊕
Ru for each u ∈ TuS0, where TuS0 = {v ∈ H0 : 〈u, v〉0 = 0}.

Lemma 4.1. Let V0 be given in (V1) and suppose that (f1)–(f4) are satis�ed, then the following properties
hold:
(a1)For any u ∈ H0\{0}, let gu : R+ → R be given by gu(t) = I0(tu). Then there exists a unique tu > 0 such that

g′u(t) > 0 in (0, tu) and g′u(t) < 0 in (tu ,∞);
(a2)There is a τ > 0 independent on u such that tu > τ for all u ∈ S0. Moreover, for each compactW ⊂ S0 there

is such that tu ≤ CW, for all u ∈W;
(a3)The map m̂ : H0\{0} → N0 given by m̂(u) = tuu is continuous and m0 = m̂0|S0 is a homeomorphism

between S0 andN0. Moreover, m−1(u) = u
‖u‖0 .
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The proof of Lemma 4.1 is similar to that of Lemma 3.2, we omit it.

Lemma 4.2. Let V0 be given in (V1) and suppose that (f1)–(f4) are satis�ed, then
(b1)Ψ̂0 ∈ C1(H0\{0},R) and

Ψ̂ ′
0(u)v =

‖m̂(u)‖0
‖u‖0

I′0(m̂(u))[v], ∀ u ∈ H0\{0} and ∀v ∈ H0;

(b2)Ψ0 ∈ C1(S0,R) and
Ψ ′
0(u)v = ‖m(u)‖0I′0(m̂(u))[v], ∀v ∈ TuS0;

(b3)If {un} is a (PS)c sequence of Ψ0, then {m(un)} is a (PS)c sequence of I0. If {un} ⊂ N0 is a bounded (PS)c
sequence of I0, then {m−1(un)} is a (PS)c sequence of Ψ0;

(b4)u is a critical point of Ψ0 if and only if m(u) is a critical point of I0. Moreover, the corresponding critical
values coincide and

inf
S0
Ψ0 = inf

N0
I0.

The proof of Lemma 4.2 can be found in the proofs of Proposition 9 and Corollary 10 of Szulkin andWeth [30],
so we omit it.

Similar to the previous argument, we have the following variational characterization of the in�mum of I0
overN0:

cV0 = inf
u∈N0

I0(u) = inf
u∈H0\{0}

sup
t>0

I0(tu) = inf
u∈S0

sup
t>0

I0(tu)

The next result is useful in later arguments.

Lemma 4.3. Let {un} ⊂ H0 be a (PS)c sequence for I0 such that un ⇀ 0. Then, one of the following alternatives
occurs:
(i) un → 0 in H0 as n → +∞;
(ii) there are a sequence {yn} ⊂ R3 and constants R, β > 0 such that

lim inf
n

∫
BR(yn)

|un|2dx ≥ β.

Proof. Assume that (ii) does not hold. Then, for every R > 0, we have

lim
n

sup
y∈R3

∫
BR(y)

|un|2dx = 0.

Being {un} bounded in H0, by the Lion’s lemma [37], it follows that

un → 0 in Lr(R3,R), 2 < r < 6.

From the subcritical growth of f , we have∫
R3

F(u2n)dx = on(1) =
∫
R3

f (u2n)u2ndx.

Moreover, from I′0(un)[un]→ 0, it follows that∫
RN

(|∇un|2 + V0u2n)dx +
∫
R3

(|x|−1 * |un|2)|un|2dx =
∫
R3

f (u2n)u2ndx + on(1) = on(1).

Thus (i) holds.
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Remark 4.1. From Lemma 4.3 we see that if u is the weak limit of (PS)cV0 sequence {un} of the functional I0,
then we have u ≠ 0. Otherwise we have that un ⇀ 0 and if un ↛ 0, from Lemma 4.3 it follows that there are a
sequence {yn} ⊂ R3 and constants R, β > 0 such that

lim inf
n

∫
BR(yn)

|un|2dx ≥ β > 0.

Then set vn(x) = un(x + zn), it is easy to see that {vn} is also a (PS)cV0 sequence for the functional I0, it is
bounded, and there exists v ∈ H0 such that vn ⇀ v in H0 with v = ̸ 0.

Lemma 4.4. Assume that V satis�es (V1), (V2) and f satis�es (f1)–(f4), then problem (4.1) has a positive
ground state solution.

Proof. First of all, it is easy to show that cV0 > 0. Moreover, if u0 ∈ N0 satis�es I0(u0) = cV0 , then m−1(u0) ∈
S0 is a minimizer of Ψ0, so that u0 is a critical point of I0 by Lemma 4.2. Now, we show that there exists a
minimizer u ∈ N0 of I0|N0 . Since infS0 Ψ0 = infN0 I0 = cV0 and S0 is a C1 manifold, by Ekeland’s variational
principle, there exists a sequence ωn ⊂ S0 with Ψ0(ωn)→ cV0 and Ψ ′

0(ωn)→ 0 as n →∞. Put un = m(ωn) ∈
N0 for n ∈ N. Then I0(un)→ cV0 and I′0(un)→ 0 as n →∞ by Lemma 4.2(b3). Similar to the proof of Lemma
3.4, it is easy to know that {un} is bounded inH0. Thus,we have un ⇀ u inH0, un → u in Lrloc(R3,R), 1 ≤ r < 6
and un → u a.e. in R3, thus I′0(u) = 0. From Remark 4.1, we know that u ≠ 0. Moreover, by Lemma 2.1,

cV0 ≤ I0(u) = I0(u) −
1
θ I

′
0(u)[u]

=
(1
2 −

1
θ

)
‖u‖20 + (

1
4 −

1
θ )
∫
R3

(|x|−1 * |u|2)|u|2dx +
∫
R3

(1
θ f (u

2)u2 − 1
2F(u

2)
)
dx

≤ lim inf
n

{(1
2 −

1
θ

)
‖un‖20 + (

1
4 −

1
θ )
∫
R3

(|x|−1 * |un|2)|un|2dx +
∫
R3

(1
θ f (un)u

2
n −

1
2F(u

2
n)
)
dx
}

= lim inf
n

{
I0(un) −

1
θ I

′
0(un)[un]

}
= cV0 ,

thus, u is a ground state solution. From the assumption of f , u ≥ 0, moreover, by [8, Proposition 6 and Propo-
sition 7], we know that u(x) > 0 for x ∈ RN . The proof is complete.

Lemma 4.5. Let (un) ⊂ N0 be such that I0(un)→ cV0 . Then (un) has a convergent subsequence in H0.

Proof. Since (un) ⊂ N0, from Lemma 4.1(a3), Lemma 4.2(b4) and the de�nition of cV0 , we have

vn = m−1(un) = un
‖un‖0

∈ S0, ∀n ∈ N,

and
Ψ0(vn) = I0(un)→ cV0 = inf

u∈S0
Ψ0(u).

Since S0 is a complete C1 manifold, by Ekeland’s variational principle, there exists a sequence {ṽn} ⊂ S0
such that {ṽn} is a (PS)cV0 sequence for Ψ0 on S0 and

‖ṽn − vn‖0 = on(1).

Similar to the proof of Lemma 4.4, we may obtain the conclusion of this lemma.

4.2 The technical results

In this subsection, we prove a multiplicity result for the modi�ed problem (3.2) using the Ljusternik-
Schnirelmann category theory. In order to get it, we �rst provide some useful preliminaries.
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Let δ > 0 be such thatMδ ⊂ Λ, ω ∈ H1(R3,R) be a positive ground state solution of the limit problem (4.1),
and η ∈ C∞(R+, [0, 1]) be a nonincreasing cut-o� function de�ned in [0, +∞) such that η(t) = 1 if 0 ≤ t ≤ δ/2
and η(t) = 0 if t ≥ δ.
For any y ∈ M, let us introduce the function

Ψε,y(x) := η(|εx − y|)ω
( εx − y

ε

)
exp

(
iτy
( εx − y

ε

))
,

where

τy(x) :=
3∑
i
Ai(y)xi .

Let tε > 0 be the unique positive number such that

max
t≥0

Jε(tΨε,y) = Jε(tεΨε,y).

Note that tεΨε,y ∈ Nε.
Let us de�ne Φε : M → Nε as

Φε(y) := tεΨε,y .

By construction, Φε(y) has compact support for any y ∈ M.
Moreover, the energy of the above functions has the following behavior as ε → 0+.

Lemma 4.6. The limit
lim
ε→0+

Jε(Φε(y)) = cV0
holds uniformly in y ∈ M.

Proof. Assume by contradiction that the statement is false. Then there exist δ0 > 0, (yn) ⊂ M and εn → 0+
satisfying ∣∣∣Jεn (Φεn (yn)) − cV0 ∣∣∣ ≥ δ0.
For simplicity, we write Φn, Ψn and tn for Φεn (yn), Ψεn ,yn and tεn , respectively.
Similar to the proof of Lemma 3.4 in [36], by the Lebesgue Dominated Convergence Theorem, we have that

‖Ψn‖2εn →
∫
R3

(|∇ω|2 + V0ω2)dx as n → +∞. (4.2)

∫
R3

(|x|−1 * |Ψn|2)|Ψn|2dx →
∫
R3

(|x|−1 * |ω|2)|ω|2dx as n → +∞. (4.3)

Since J′εn (tnΨn)(tnΨn) = 0, by the change of variables z = (εnx − yn)/εn, observe that, if z ∈ Bδ/εn (0), then
εnz + yn ∈ Bδ(yn) ⊂ Mδ ⊂ Λ,we have

‖Ψn‖2εn + t2n
∫
R3

(|x|−1 * |Ψn|2)|Ψn|2dx =
∫
R3

g(εnz + yn , t2nη2(|εnz|)ω2(z))η2(|εnz|)ω2(z)dz

=
∫
R3

f (t2nη2(|εnz|)ω2(z))η2(|εnz|)ω2(z)dz

≥
∫

Bδ/(2εn )(0)

f (t2nω2(z))ω2(z)dz

≥
∫

Bδ/2(0)

f (t2nω2(z))ω2(z)dz

≥ f (t2nγ2)
∫

Bδ/2(0)

ω4(z)dz



Y. Liu et al., Multiplicity of concentrating solutions | 145

for all n large enough and where γ = min{ω(z) : |z| ≤ δ/2}. Moreover, we have

t−2n ‖Ψn‖2εn +
∫
R3

(|x|−1 * |Ψn|2)|Ψn|2dx ≥ f (t
2
nγ2)

f (t2nγ2)
γ2

∫
Bδ/2(0)

ω4(z)dz.

If tn → +∞, by (f4) we derive a contradiction.
Therefore, up to a subsequence, we may assume that tn → t0 ≥ 0.
If tn → 0, using the fact that f is increasing and the Lebesgue Dominated Convergence Theorem, we obtain
that

‖Ψn‖2εn + t2n
∫
R3

(|x|−1 * |Ψn|2)|Ψn|2dx =
∫
R3

f (t2nη2(|εnz|)ω2(z))η2(|εnz|)ω2(z)dz → 0, as n → +∞,

which contradicts (4.2). Thus, from (4.2) and (4.3), we have t0 > 0 and∫
R3(|∇ω|2+V0ω2)dx+t20

∫
R3 (|x|−1*|ω|2)|ω|2dx=

∫
R3 f (t0ω2)ω2dx

,

so that t0ω ∈ NV0 . Since ω ∈ NV0 , we obtain that t0 = 1 and so, using the Lebesgue Dominated Convergence
Theorem, we get

lim
n

∫
R3

F(|tnΨn|2)dx =
∫
R3

F(ω2)dx.

Hence
lim
n
Jεn (Φεn (yn)) = I0(ω) = cV0

which is a contradiction and the proof is complete.

Now we de�ne the barycenter map.
Let ρ > 0 be such that Mδ ⊂ Bρ and consider Υ : R3 → R3 de�ned by setting

Υ(x) :=
{
x, if |x| < ρ,
ρx/|x|, if |x| ≥ ρ.

The barycenter map βε : Nε → R3 is de�ned by

βε(u) := 1
‖u‖44

∫
R3

Υ(εx)|u(x)|4dx.

We have the following lemma.

Lemma 4.7. The limit
lim
ε→0+

βε(Φε(y)) = y

holds uniformly in y ∈ M.

Proof. Assume by contradiction that there exists κ > 0, (yn) ⊂ M and εn → 0 such that

|βεn (Φεn (yn)) − yn| ≥ κ. (4.4)

Using the change of variable z = (εnx − yn)/εn, we can see that

βεn (Φεn (yn)) = yn +

∫
R3

(Υ(εnz + yn) − yn)η4(|εnz|)ω4(z)dz

∫
R3

η4(|εnz|)ω4(z)dz
.
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Taking into account (yn) ⊂ M ⊂ Mδ ⊂ Bρ and the Lebesgue Dominated Convergence Theorem, we can obtain
that

|βεn (Φεn (yn)) − yn| = on(1),

which contradicts (4.4).

Now, we prove the following useful compactness result.

Proposition 4.1. Let εn → 0+ and (un) ⊂ Nεn be such that Jεn (un) → cV0 . Then there exists (ỹn) ⊂ R3 such
that the sequence (|vn|) ⊂ H1(R3,R), where vn(x) := un(x + ỹn), has a convergent subsequence in H1(R3,R).
Moreover, up to a subsequence, yn := εn ỹn → y ∈ M as n → +∞.

Proof. Since J′εn (un)[un] = 0 and Jεn (un)→ cV0 , arguing as in the proof of Lemma 3.4, we can prove that there
exists C > 0 such that ‖un‖εn ≤ C for all n ∈ N.
Arguing as in the proof of Lemma 3.2 and recalling that cV0 > 0, we have that there exist a sequence {ỹn} ⊂ R3

and constants R, β > 0 such that
lim inf

n

∫
BR(ỹn)

|un|2dx ≥ β. (4.5)

Now, let us consider the sequence {|vn|} ⊂ H1(R3,R), where vn(x) := un(x + ỹn). By the diamagnetic
inequality (2.1), we get that {|vn|} is bounded in H1(R3,R), and using (4.5), we may assume that |vn|⇀ v in
H1(R3,R) for some v = ̸ 0.
Let now tn > 0 be such that ṽn := tn|vn| ∈ NV0 , and set yn := εn ỹn.
By the diamagnetic inequality (2.1), we have

cV0 ≤ I0(ṽn) ≤ max
t≥0

Jεn (tun) = Jεn (un) = cV0 + on(1),

which yields I0(ṽn)→ cV0 as n → +∞.
Since the sequences {|vn|} and {ṽn} are bounded in H1(R3,R) and |vn| → ̸ 0 in H1(R3,R), then (tn) is also
bounded and so, up to a subsequence, we may assume that tn → t0 ≥ 0.
We claim that t0 > 0. Indeed, if t0 = 0, then, since (|vn|) is bounded, we have ṽn → 0 in H1(R3,R), that is
I0(ṽn)→ 0, which contradicts cV0 > 0.
Thus, up to a subsequence, we may assume that ṽn ⇀ ṽ := t0v = ̸ 0 in H1(R3,R), and, by Lemma 4.5, we can
deduce that ṽn → ṽ in H1(R3,R), which gives |vn| → v in H1(R3,R).
Now we show the �nal part, namely that {yn} has a subsequence such that yn → y ∈ M. Assume by contra-
diction that {yn} is not bounded and so, up to a subsequence, |yn| → +∞ as n → +∞. Choose R > 0 such that
Λ ⊂ BR(0). Then for n large enough, we have |yn| > 2R, and, for any x ∈ BR/εn (0),

|εnx + yn| ≥ |yn| − εn|x| > R.

Since un ∈ Nεn , using (V1) and the diamagnetic inequality (2.1), we get that∫
R3

(|∇|vn||2 + V0|vn|2)dx ≤
∫
R3

g(εnx + yn , |vn|2)|vn|2dx

≤
∫

BR/εn (0)

f̃ (|vn|2)|vn|2dx +
∫

BcR/εn (0)

f (|vn|2)|vn|2dx.
(4.6)

Since |vn| → v in H1(R3,R) and f̃ (t) ≤ V0/K, we can see that (4.6) yields

min
{
1, V0

(
1 − 1

K

)}∫
R3

(|∇|vn||2 + |vn|2)dx = on(1),

that is |vn| → 0 in H1(R3,R), which contradicts to v ≢ 0.
Therefore, we may assume that yn → y0 ∈ R3. Assume by contradiction that y0 ∈ ̸ Λ. Then there exists r > 0
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such that for every n large enough we have that |yn − y0| < r and B2r(y0) ⊂ Λ
c. Then, if x ∈ Br/εn (0), we have

that |εnx + yn − y0| < 2r so that εnx + yn ∈ Λc and so, arguing as before, we reach a contradiction. Thus,
y0 ∈ Λ.
To prove that V(y0) = V0, we suppose by contradiction that V(y0) > V0. Using the Fatou’s lemma, the change
of variable z = x + ỹn andmaxt≥0 Jεn (tun) = Jεn (un), we obtain

cV0 = I0(ṽ) <
1
2

∫
R3

(|∇ṽ|2 + V(y0)|ṽ|2)dx +
1
4

∫
R3

(|x|−1 * |ṽ|2)|ṽ|2dx − 1
2

∫
R3

F(|ṽ|2)dx

≤ lim inf
n

(1
2

∫
R3

(|∇ṽn|2 + V(εnx + yn)|ṽn|2)dx + 1
4

∫
R3

(|x|−1 * |ṽn|2)|ṽn|2dx − 1
2

∫
R3

F(|ṽn|2)dx
)

= lim inf
n

( t2n
2

∫
R3

(|∇|un||2 + V(εnz)|un|2)dz + t
4
n
4

∫
R3

(|x|−1 * |un|2)|un|2dx − 1
2

∫
R3

F(|tnun|2)dz
)

≤ lim inf
n

Jεn (tnun) ≤ lim inf
n

Jεn (un) = cV0

which is impossible and the proof is complete.

Let now
Ñε := {u ∈ Nε : Jε(u) ≤ cV0 + h(ε)},

where h : R+ → R+, h(ε)→ 0 as ε → 0+.
Fixed y ∈ M, since, by Lemma 4.6, |Jε(Φε(y)) − cV0 | → 0 as ε → 0+, we get that Ñε ≠ ∅ for any ε > 0 small
enough.

We have the following relation between Ñε and the barycenter map.

Lemma 4.8. We have
lim
ε→0+

sup
u∈Ñε

dist(βε(u),Mδ) = 0.

Proof. Let εn → 0+ as n → +∞. For any n ∈ N, there exists un ∈ Ñεn such that

sup
u∈Ñεn

inf
y∈Mδ

|βεn (u) − y| = inf
y∈Mδ

|βεn (un) − y| + on(1).

Therefore, it is enough to prove that there exists (yn) ⊂ Mδ such that

lim
n
|βεn (un) − yn| = 0.

By the diamagnetic inequality (2.1), we can see that I0(t|un|) ≤ Jεn (tun) for any t ≥ 0. Therefore, recalling that
{un} ⊂ Ñεn ⊂ Nεn , we can deduce that

cV0 ≤ max
t≥0

I0(t|un|) ≤ max
t≥0

Jεn (tun) = Jεn (un) ≤ cV0 + h(εn) (4.7)

which implies that Jεn (un)→ cV0 as n → +∞.
Then, Proposition 4.1 implies that there exists {ỹn} ⊂ R3 such that yn = εn ỹn ∈ Mδ for n large enough.
Thus, making the change of variable z = x − ỹn, we get

βεn (un) = yn +
∫
R3 (Υ(εnz + yn) − yn)|un(z + ỹn)|4dz∫

R3 |un(z + ỹn)|4dz
.

Since, up to a subsequence, |un|(·+ ỹn) converges strongly in H1(R3,R) and εnz+ yn → y ∈ M for any z ∈ R3,
we conclude.
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4.3 Multiplicity of solutions for problem (3.2)

Finally, we present a relation between the topology ofM and the number of solutions of themodi�ed problem
(3.2).

Theorem 4.1. For any δ > 0 such that Mδ ⊂ Λ, there exists ε̃δ > 0 such that, for any ε ∈ (0, ε̃δ), problem (3.2)
has at least catMδ (M) nontrivial solutions.

Proof. For any ϵ > 0, we de�ne the function πϵ : M → S+ε by

πϵ(y) = m−1ε (Φϵ(y)), ∀y ∈ M.

By Lemma 4.6 and Lemma 3.3(B4), we obtain

lim
ϵ→0

Ψϵ(πϵ(y)) = lim
ϵ→0

Jϵ(Φϵ(y)) = cV0 , uniformly in y ∈ M.

Hence, there is a number ϵ̂ > 0 such that the set S̃+ε := {u ∈ S+ε : Ψε(u) ≤ cV0 + h(ε)} is nonempty, for all
ϵ ∈ (0, ϵ̂), since πϵ(M) ⊂ S̃+ε . Here h is given in the de�nition of Ñε.

Given δ > 0, by Lemma 4.6, Lemma 3.2(A3), Lemma 4.7, and Lemma 4.8, we can �nd ε̃δ > 0 such that for
any ε ∈ (0, ε̃δ), the following diagram

M Φε−−→ Φε(M) m−1ε−−→ πϵ(M) mε−−→ Φε(M) βε−→ Mδ

is well de�ned and continuous. From Lemma 4.7, we can choose a function Θ(ϵ, z) with |Θ(ϵ, z)| < δ
2 uni-

formly in z ∈ M, for all ϵ ∈ (0, ϵ̂) such that βε(Φε(z)) = z+Θ(ϵ, z) for all z ∈ M. De�neH(t, z) = z+(1−t)Θ(ϵ, z).
Then H : [0, 1] ×M → Mδ is continuous. Clearly, H(0, z) = βε(Φε(z)), H(1, z) = z for all z ∈ M. That is, H(t, z)
is a homotopy between βε ◦ Φε = (βε ◦ mε) ◦ πϵ and the embedding ι : M → Mδ. Thus, this fact implies that

catπϵ(M)(πϵ(M)) ≥ catMδ (M). (4.8)

By Corollary 3.1 and the abstract category theorem [30], Ψε has at least catπϵ(M)(πϵ(M)) critical points on S+ε .
Therefore, from Lemma 3.3(B4) and (4.8), we have that Jε has at least catMδ (M) critical points in Ñε which
implies that problem (3.2) has at least catMδ (M) solutions.

5 Proof of Theorem 1.1
In this section we prove our main result. The idea is to show that the solutions uε obtained in Theorem 4.1
satisfy

|uε(x)|2 ≤ a for x ∈ Λcε
for ε small. The key ingredient is the following result.

Lemma 5.1. Let εn → 0+ and un ∈ Ñεn be a solution of problem (3.2) for ε = εn. Then Jεn (un)→ cV0 . Moreover,
there exists {ỹn} ⊂ RN such that, if vn(x) := un(x + ỹn), we have that {|vn|} is bounded in L∞(RN ,R) and

lim
|x|→+∞

|vn(x)| = 0 uniformly in n ∈ N.

We use the Moser iteration method to prove the theorem. Although there is more one term for problem, by
the calculation, it is easy to know this term does not a�ect the procedure. We may refer to [36] for the details,
so we omit it for simplicity.

Now, we are ready to give the proof of Theorem 1.1.
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Proof of Theorem 1.1. Let δ > 0 be such that Mδ ⊂ Λ. We want to show that there exists ε̂δ > 0 such that for
any ε ∈ (0, ε̂δ) and any uε ∈ Ñε solution of problem (3.2), it holds

‖uε‖2L∞(Λcε) ≤ a. (5.1)

We argue by contradiction and assume that there is a sequence εn → 0 such that for every n there exists
un ∈ Ñεn which satis�es J′εn (un) = 0 and

‖un‖2L∞(Λcεn ) > a. (5.2)

As in Lemma 5.1, we have that Jεn (un) → cV0 , and therefore we can use Proposition 4.1 to obtain a sequence
(ỹn) ⊂ R3 such that yn := εn ỹn → y0 for some y0 ∈ M. Then, we can �nd r > 0, such that Br(yn) ⊂ Λ, and so
Br/εn (ỹn) ⊂ Λεn for all n large enough.
Using Lemma 5.1, there exists R > 0 such that |vn|2 ≤ a in BcR(0) and n large enough, where vn = un(· + ỹn).
Hence |un|2 ≤ a in BcR(ỹn) and n large enough. Moreover, if n is so large that r/εn > R, then Λcεn ⊂ Bcr/εn (ỹn) ⊂
BcR(ỹn), which gives |un|2 ≤ a for any x ∈ Λcεn . This contradicts (5.2) and proves the claim.
Let now εδ := min{ε̂δ , ε̃δ}, where ε̃δ > 0 is given by Theorem 4.1. Then we have catMδ (M) nontrivial solutions
to problem (3.2). If uε ∈ Ñε is one of these solutions, then, by (5.1) and the de�nition of g, we conclude that
uε is also a solution to problem (2.2).
Finally, we study the behavior of the maximum points of |ûε|, where ûε(x) := uε(x/ε) is a solution to problem
(1.1), as ε → 0+.
Take εn → 0+ and the sequence (un) where each un is a solution of (3.2) for ε = εn. From the de�nition of g,
there exists γ ∈ (0, a) such that

g(εx, t2)t2 ≤ V0K t2, for all x ∈ RN , |t| ≤ γ.

Arguing as above we can take R > 0 such that, for n large enough,

‖un‖L∞(BcR(ỹn)) < γ. (5.3)

Up to a subsequence, we may also assume that for n large enough

‖un‖L∞(BR(ỹn)) ≥ γ. (5.4)

Indeed, if (5.4) does not hold, up to a subsequence, if necessary, we have ‖un‖∞ < γ. Thus, since J′εn (uεn ) = 0,
using (g5) and the diamagnetic inequality (2.1) that∫

R3

(|∇|un||2 + V0|un|2)dx ≤
∫
R3

g(εnx, |un|2)|un|2dx ≤ V0K

∫
R3

|un|2dx

and, being K > 1, ‖un‖ = 0, which is a contradiction.
Taking into account (5.3) and (5.4), we can infer that the globalmaximumpoints pn of |uεn | belongs to BR(ỹn),
that is pn = qn + ỹn for some qn ∈ BR. Recalling that the associated solution of problem (1.1) is ûn(x) =
un(x/εn), we can see that a maximum point ηεn of |ûn| is ηεn = εn ỹn + εnqn. Since qn ∈ BR, εn ỹn → y0 and
V(y0) = V0, the continuity of V allows to conclude that

lim
n
V(ηεn ) = V0.
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