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Abstract: In this paper, we study the following nonlinear magnetic Schrédinger-Poisson type equation

(?V —A(x))zu + VOu + e 2(x ™ * uPu = f(lu/*)u  inR3,
ue H'(R?, 0),

where e > 0, V : R?> - Rand A : R?> — R? are continuous potentials. Under a local assumption on the
potential V, by variational methods, penalization technique, and Ljusternick-Schnirelmann theory, we prove
multiplicity and concentration properties of nontrivial solutions for € > 0 small. In this problem, the function
f is only continuous, which allow to consider larger classes of nonlinearities in the reaction.

Keywords: Schrédinger-Poisson system, Magnetic field, Multiple soutions, Variational methods

MSC: 35]60, 35]25

1 Introduction and main results

In this paper, we are concerned with multiplicity and concentration results for the following Schrédinger-
Poisson type equation

(6v- A(x))zu F VU + € 2(x ™ * uPu = f(uPu in R, (1.1)

where u € HY(R3?, C), £ > 0 is a parameter, V : R> — R is a continuous function, f € C(R, R), the magnetic
potential A : R®> — R3 is Holder continuous with exponent a € (0, 1], and the convolution potential is
defined by [x|™ * |u? = i x - y| " ju(y)dy.

Problem (1.1) arises in quantum mechanics, abelian gauge theories, plasma physics, and so on which can be
used to simulate the mutual interactions of many particles. In fact, the linear Schrédinger equation describes
the behavior of a single particle. However, the interaction among particles can be simulated by adding a
nonlinear term f. Moreover, the convolution potential is a solution of Poisson equation which implies that the
particles move in their own gravitational field generated by the probability density of particles via classical
Newton field equation. Therefore, problem (1.1) can be regarded as the coupling of the Schrodinger equation
and Poisson equation.
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There is a vast literature concerning the existence and multiplicity of solutions for nonlinear equation
without magnetic field. We notice that Fiscella, Pucci and Zhang [16] studied the existence of solutions for p-
fractional Hardy-Schrédinger-Kirchhoff systems with critical nonlinearities, Ji and Radulescu [17] considered
the multiplicity of multi-bump solutions for quasilinear elliptic equations with variable exponents and criti-
cal growth in RY, for more results, we refer to the Monograph [25]. Recently, by using the method of Nehari
manifold and Ljusternik-Schnirelmann theory, He [21] proved the multiplicity and concentration of solutions
of problem (1.1) for f € C1(R, R) and the potential satisfying a global condition introduced by Rabinowitz [26].
In [22], on the similar assumptions, He and Zou studied the existence and concentration behavior of ground
state solutions for a class of Schrédinger-Poisson system with critical the nonlinearity f € C (R, R). Then,
under a local assumption introduced by del Pino and Felmer [14], He and Zou [23] studied the multiplicity of
concentrating positive solutions for Schrédinger-Poisson equations with critical nonlinear f € C'(R, R). For
further results about existence and nonexistence of solutions, multiplicity of solutions, ground states, semi-
classical limit and concentrations of solutions for Schrédinger-Poisson system(see [1-4, 11, 12, 27, 28, 31, 35]
and the references therein).

On the other hand, the magnetic nonlinear Schrédinger equation (1.1) has been extensively investigated
by many authors applying suitable variational and topological methods (see [5-7, 9, 10, 13, 15, 18-20, 32-34]
and references therein). It is well known that the first result involving the magnetic field was obtained by
Esteban and Lions [15]. They used the concentration-compactness principle and minimization arguments to
obtain solutions for € > 0 fixed. In [34], Xiang, Radulescu and Zhang studied multiplicity and concentration
of solutions for magnetic relativistic Schrédinger equations, Xia [32] studied a critical fractional Choquard-
Kirchhoff problem with magnetic field. In particular, due to our scope, we want to mention [36] where the
authors studied a Schrédinger-Poisson type equation with magnetic field by using the method of the Nehari
manifold, the penalization method and Ljusternik-Schnirelmann category theory for subcritical nonlinearity
f e CL.If f is only continuous, then the arguments in [36] failed.

In this paper, motivated by [23, 29, 36], for the case f is only continuous, we intend to prove multiplicity
and concentration of nontrivial solutions for problem (1.1). We note that, due to the appearance of magnetic
field A(x), problem (1.1) will be more difficult in employing the methods and some estimates. On the other
hand, due to the nonlocal term |x|~! * |u|?, some estimates are also more complicated.

Throughout the paper, we make the following assumptions on the potential V:

(V1)There exists Vy > 0 such that V(x) = V, forall x € R3;
(V2)There exists a bounded open set A C R> such that

Vo = min V(x) < min V(x).
x€eA X€E0A
Observe that
M:={xecA:V(x)="Vy} #0.

Moreover, let the nonlinearity f € C(R, R) be a function satisfying:
(FUf(6) = 0if t < 0, and lim,_,o- X0 = 0;
(f2)there exists q € (4, 6) such that

lim fgi) =0;
t—+oo t=

(f3)there is a positive constant 6 > 4 such that

t
0< gF(t) < tf(b), Vt>0, whereF(t)= /f(s)ds;
0
(f4) &p is strictly increasing in (0, oo).
The main result of this paper is the following:

Theorem 1.1. Assume that V satisfies (V1), (V2) and f satisfies (f1)-(f4). Then, for any 6 > O such that

Mj := {x € R’ : dist(x, M) < 8§} C A,
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there exists €5 > O such that, for any 0 < € < &g, problem (1.1) has at least cat,(M) nontrivial solutions.
Moreover, for every sequence {en} such that €, — 0" as n — +oo, if we denote by u., one of these solutions of
problem (1.1) for € = £, and 1, € R> the global maximum point of |uc, |, then

lim V(ne,) = Vo.
£,—0*

The paper is organized as follows. In Section 2 we introduce the functional setting and give some prelimi-
naries. In Section 3, we study the modified problem. We prove the Palais-Smale condition for the modified
functional and provide some tools which are useful to establish a multiplicity result. In Section 4, we study
the autonomous problem associated. It allows us to show the modified problem has the multiple soutions.
Finally, in Section 5, we give the proof of Thereom 1.1.

Notation

e (,Cq,C,,...denote positive constants whose exact values are inessential and can change from line to
line;

e Bg(y) denotes the open disk centered at y € R? with radius R > 0 and B(y) denotes the complement of
Bgr(y) inR?;

® |-l llgs and || - || =(q) denote the usual norms of the spaces H*(R?,R), LY(R*, R), and L=(Q, R),
respectively, where Q ¢ R>.

2 Abstract setting and preliminary results

In this section, we present the functional spaces and some useful preliminary remarks which will be useful
for our arguments.
For u : R?> — C, let us denote by

Valu := (; —A)u,

and
Di(R3,C) := {u e L°(R?,C) : |Vu| € L*(R?, R)}.

and
Hi(R?,C) := {u € DA(R?,C) : u € L*(R?, C))}.

The space H}(R>, C) is an Hilbert space endowed with the scalar product

(u, vy := Re/(VAuVAv+uV)dx, foranyu,veH}l(R{(C),
]RB

where Re and the bar denote the real part of a complex number and the complex conjugation, respectively.
Moreover we denote by ||u||4 the norm induced by this inner product.
On H}1 (R?, C) we will frequently use the following diamagnetic inequality (see e.g. [24, Theorem 7.21])

[Vaulx)| = [V[u@)]l. (2.0

Moreover, making a simple change of variables, we can see that (1.1) is equivalent to

(%V —Ag(x))zu + VeOu+ (x| * uPu = f(uPu  inR3, (2.2

where A:(x) = A(ex) and Ve(x) = V(ex).
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Let He be the Hilbert space obtained as the closure of C3°(R3, C) with respect to the scalar product
(U, vye := Re/ <VA€uVAsv + Vg(x)uV) dx
R3

and let us denote by || - || the norm induced by this inner product.

The diamagnetic inequality (2.1) implies that, if u € H} (R, C), then [u| € H'(R?,R) and |[ul| < Cl[ulle.
Therefore, the embedding He — L'(R3, C) is continuous for 2 < r < 6 and the embedding He — LI’OC(R3, C)
is compactfor 1 <r < 6.

By using the continuous embedding H'(R?, R) — L"(R3, R) for 2 < r < 6, we can see that

H'R3,R) — L5 (R3,R). (2.3)

For any u € He, we get [u| € H'(R3, R), and the linear functional Loy : D%2(R?,R) — R given by

Ly (v) = / lu?vdx
R3

is well defined and continuous in view of the H6lder inequality and (2.4). Indeed, we can see that

)] ([ urFax)” ([ weax) < clubsvip, 24)
R3 R3

where
W = / (™! * v2)[v[2dx = / / x = y[ ) - u(y) dxdy.
R3

R3 R3

Then, by the Lax-Milgram Theorem, there exists a unique ¢, € D"*(R?, R) such that
~Adpy = ul>, in R’
Therefore we obtain the following t-Riesz formula
B0 - [ 1=y uw)ay.
R3

In the sequel, we will omit the constant for simplicity. The function ¢, possesses the following properties.

Lemma 2.1. For any u € H¢, we have
() ¢ :H LR3,R) — DY2(R3, R) is continuous and maps bounded sets into bounded sets;
(i) ifun — uin He, then ¢, — ¢y, in D**(R?, R), and

limninf/¢‘un|z|un|2dxs /¢‘u|z|u|2dx;
R R3

(111) ¢|ru\ = r2¢|u|for allr € Rand ¢‘u(,+y)‘ = ¢|u|(X+y),’
(iv) ¢y 2 0forallu € He and we have

2
1@ llpr2 < Cllul[ 22

L2 ) Cllullz, and /¢‘u‘|u| dx < C\|u||LQ < Cllul)?.

5 (R3)
R3

The proof of Lemma 2.1 is similar to one in [27, 35], so we omit it.
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3 The modified problem

To study problem (1.1), or equivalently (2.2) by variational methods, we shall modify suitably the nonlinearity
f so that, for € > 0 small enough, the solutions of such modified problem are also solutions of the original
one. More precisely, we choose K > 2. By (f4) there exists a unique number a > 0 verifying Kf(a) = V,, where
Vo is given in (V1). Hence we consider the function

Now we introduce the penalized nonlinearity g : R*> x R — R

g(x, £) == x20f () + (1 - x20F (O, (B.1)
t
where y, is the characteristic function on A and G(x, t) := / g(x, s)ds.

0
In view of (f1)-(f4), we have that g is a Carathéodory function satisfying the following properties:
(g)glx,t) =0foreacht < 0;
(g,) tlirg @ = 0 uniformly in x € R3, and there exists g € (4, 6) such that
0

glx, )

q-2
2

lim =0 uniformlyin x € R3;

(g,) g(x, t) < f(t) for all t > 0 and uniformly in x € R3;

(g,)0<0G(x, t) < 2g(x, t)t, foreach x € A, t > 0;

(g)0 < G(x, t) < glx, )t < Vot/K, for each x € A, t > O;

(g,) for each x € A, the function t — M is strictly increasing in t € (0, +oo) and for each x € A€, the
function t — M is strictly increasing in (0, a).

Then we consider the modified problem

2
(%V —Ag(x)) u+ Ve(x)u + (\x|’1 * |u|2)u = gl(ex, |u|2)u inR3, (3.2)
Note that, if u is a solution of problem (3.2) with
u)?<a forallx € AS, Ag:={xecR>:excA},

then u is a solution of problem (2.2).
The functional associated to problem (3.2) is

1 1 _ 1
Jetw) s= 5 [ATaul? + VeoOudx+ [ *uPuldx= 3 [ Gex, ulax
R3 R3 R3

defined in He. It is standard to prove that J: € C L(H¢, R) and its critical points are the weak solutions of the
modified problem (3.2).
We denote by N¢ the Nehari manifold of J¢, that is

Ne := {u € He\{0} : Jo(w)[u] = 0},

and define the number c,¢ by
ce = inf Je(u).
ueN,
Let H{ be open subset He given by

H; = {u € He : |supp(u) N A¢| > 0},
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and S} = Se N H, where S¢ is the unit sphere of He. Note that S} is a non-complete C'-manifold of codi-
mension 1, modeled on H. and contained in H;. Therefore, He = T.,S; @ Ru for each u € T,Si, where
TuS§ = {V € He : <u, V>e = 0}.

Now we show that the functional ], satisfies the Mountain Pass Geometry.

Lemma 3.1. For any fixed € > 0, the functional ] satisfies the following properties:
(i) thereexist B, r > O such that Jc(u) = Bif ||u|le = 1;
(ii) there exists e € H¢ with ||e||¢ > r such that J<(e) < O.

Proof. (i) By (gs3), (f1) and (f), for any ¢ > O small, there exists C¢ > O such that
Glex, [ul?) < Cul* + Celu|? forallx e R3.

By the Sobolev embedding it follows

1 C
Je(u) > 5/(|VAEu|2+Vg(x)|u|2)dx—g/|u|4dx—7(/\u\qu
R3 R3 R3

1
2 5||un||§ = C1§[unlz = C2Cellun|{.

Hence we can choose some S, r > 0 such that J¢(u) = B if ||u||s = r since g > 4.
(ii) For each u € H{ and t > 0, by the definition of g and (f3), one has

2 4
Je(tu) < %/(\VASMZ + Vg(x)\u|2)dx + %/(|x|_1 * \u|2)|u\2dx— % / G(ex, t2|u|2)dx,
R3 R3 Ae

¢ ¢ .
< G+ G [Ox * pPludr= Cae” [ uldx+ Colsupp( 0 Al
R3 Ag

Since 6 > 4, we can get the conclusion. O

Since f is only continuous, the next results are very important because they allow us to overcome the non-
differentiability of N and the incompleteness of S;.

Lemma 3.2. Assume that (V1)-(V2) and (f1)-(f4) are satisfied, then the following properties hold:

(A1)For any u € H{, let g, : R* — R be given by gu(t) = J¢(tu). Then there exists a unique t, > O such that
gu(®) >0in (0, ty) and g,,(t) < 0 in (ty, o0);

(A2)Thereis a T > 0 independent on u such that t, > T for allu € S¢. Moreover, for each compact W C S; there
is such that t, < Cy, forallu € 'W;

(A3)The map m¢ : Hf — N given by m¢(u) = tyu is continuous and mg = mg| s: is a homeomorphism between
St and Ne. Moreover, mz1(u) = ﬁ;

(Ad)If there is a sequence {un} C Si such that dist(un, 0St) — 0, then ||mg(un)||e — oo and Je(me(un)) — oo.

Proof. (A1) As in the proof of Lemma 3.1, we have g,(0) = 0, gu(t) > 0 for t > 0 small and g,(t) < O for
t > 0 large. Therefore, max.o gu(t) is achieved at a global maximum point ¢t = t, verifying g,,(t,) = 0 and
tyu € Ne. From (f4), the definition of g and [supp(u)NA¢| > 0, we may obtain the uniqueness of t,. Therefore,
max.o gu(t) is achieved at a unique t = t, so that g, (t) = 0 and t,u € N;.

(A2) ForVu € S§, we have

tu +t) /(|x|_1 * Ju|?)|ul?dx = /g(ex, t2|u|®)ty|u)*dx.
R3 R3

From (g2), the Sobolev embeddings and g > 4, we get

tu < (ta/\u|4dx+ cgtz*lf\u\qu < Cilty + CoCetd
R3 R3
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which implies that ¢, > T for some 7 > 0. If W C S is compact, and suppose by contradiction that there is
{un} ¢ Wwith ¢, := ty, — oo. Since W is compact, there exists a u € W such that u, — u in He. Moreover,
using the proof of Lemma 3.1(ii), we have that J¢(tnun) — —oo.

On the other hand, let v, := thun € Ng, from (g4), (g5), (g6) and 8 > 4, it yields that

Je(wn) ~Jevi) = 3 Jea)lval

1.1 2,1 1 A2 5
2(2 9>Hv"”5+(4 9)/(|X| [Vn|)[va|dx
R3

1 1
+/(§g(sx, alDlun? - 2 Glex, |vn|2))dx

Ag
(3 4) (e 4 [ v
R3
>(3-3)@- Pl

Thus, substituting vy := thnun and ||va||e = tn, we obtain

0< (1 _ %)(1 _ T1<)  Jelvn)

<0
2 t2

as n — oo, which yields a contradiction. This proves (A2).

(A3) First of all, we note that ¢, me and mz* are well defined. Indeed, by (A2), for each u € HZ, there is
a unique mg(u) € Ne. On the other hand, if u € Ng, then u € H. Otherwise, we have |supp(u) N A¢| = 0 and
by (g5) we have

ullZ < fJullz +/(|X|’1 * Jul?)ul?dx = /g(EX» [ul?)ul*dx
R3

R3

- / glex, lu)u2dx

1 2
<% V(ex)|u|“dx

which is impossible since K > 1 and u # 0. Therefore, mz'(u) = Hzil\lg € S is well defined and continuous.
From
tuu

=u, YuesS;
tullulle £

mg" (me(u)) = mg" (tuu) =

we conclude that m, is a bijection. Now we prove mg : Hf — N is continuous, let {un,} ¢ Hf and u € Hf
such that un — u in He. By (A2), there is a ty > O such that ¢, := ty, — to. Using tnun € Ng, i.e.,

t2||un||? +tﬁ/(|x|‘1 * [Un|?) un|>dx = /g(sx, taun|*)taun|*dx, Vne N,
R3 R3

and passing to the limit as n — oo in the last inequality, we obtain
B+ [(x *uPuldx - [ stex, Guleuldx,
R3 R3

which implies that tou € N, and t, = to. This proves mg(un) — me(u) in HS. Thus, m. and m; are continuous
functions and (A3) is proved.
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(A4) Let {un} C St be a subsequence such that dist(un, 0Sz) — 0, then for each v € dSf and n € N, we
have |un| = |un - v| a.e. in A¢. Therefore, by (V1), (V2) and the Sobolev embedding, there exists a constant
C: > O such that

lunllea,) < VIE%EZ [lun = VliLea,)

1
< Ct( inf /(|VAsun - v\z + Ve()|un - v|2)dx) :
vEDSE

“Ae

< C¢ dist(un, 0Sz)

foralln € N, t € 2, 6]. By (g2), (g3) and (g5), for each t > 0, we have

/G(sx, t2|un|2)dxs/F(t2|un\ )dx+—/V(sx)|un\ dx

R3 Az AC
4 4 t* 2
< Cqt /|un\ dx+C2t‘1/|un|qu+fHuan

2
< Cst*dist(un, 0S5)* + C4tdist(un, 0S5)9 + tK

Therefore,
2
limsup/G(ex, t2|un\2)dx < %, vt > 0.
n

R3

On the other hand, from the definition of m, and the last inequality, for all ¢ > O, one has

limninf]g(mg(un)) > lim inf]g(tun)

{2 £2
> 11m1nf Huan X
K- Zt
- 2K
this implies that
N | K- 2
l1mnlnf5||mg(un)|\§ 2 St , VE>0.

From the arbitrary of t > 0, it is easy to see that ||me(un)||e¢ — oo and Je(me(un)) — oo asn — oo. This
completes the proof of Lemma 3.2. O

Now we define the function
Y. :H >R,

by We(u) = J(e(u)) and denote by We := (¥e)]s:.

We may obtain the following result from Lemma 3.2 directly, and its proof is similar to that of Corollary 10
in [30], so we omit it.

Lemma 3.3. Assume that (V1)-(V2) and (f1)-(f4) are satisfied, then
(B1)¥, € CY(H!,R) and

P(u)v = ””{f(ﬁ)uek(ms(u))[ vl, Yu e Hf and Vv € Hg;

(B2)¥: € CY(S¢,R) and
YWV = |me(W)||eJe(me))V], Vv € TuSt;
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(B3)If {un} is a (PS)¢ sequence of We, then {m¢(un)} is a (PS). sequence of J¢. If {un} C N¢ is a bounded (PS)¢
sequence of J, then {mz*(un)} is a (PS). sequence of ¥e;
(B4)u is a critical point of V¢ if and only if m¢(u) is a critical point of J.. Moreover, the corresponding critical
values coincide and
inf lpg. = inf]g.
St N
As in [30], we have the following variational characterization of the infimum of J. over Ng:
ce = inf Je(u) = inf supJe(tu) = inf sup Je(tu)
UEN, UEH! 50 ues; 0
Lemma 3.4. Let ¢ > 0 and {un} is a (PS). sequence for ], then {un} is bounded in He.

Proof. Assume that {u,} C H; is a (PS)¢ sequence for J, that is, Je(un) — ¢ and Jz(un) — 0. By using (g4),
(g5) and 6 > 4, we have

d + 0n(1) + 0n(D)tnle 2Telutn) ~ g J4(utn)lun]

= 1_1 2 1_1 -1 2 2
(3 g)unl+ G =) [ Ot * e
R3
1 2 2 1 2
+/(ég(gxy|un| )|Un| _EG(SX,‘Un| ))dX

1 1
- g)lunli+ [ (Gatex, huPunf? - 3 6ex, un ) d

A€

£

1 1
(3~ 5) lunl =3 [ 6ex, unax
AC
1 1
(3~ ) lunl? - 5 [ Vieiundx
R3
1. 1_1 2
2(5 0 2K)””"”€'
Since K > 6/(6 - 2), from the above inequalities we obtain that {u,} is bounded in He. O

The following result is important to prove the (PS)., condition for the functional J..
Lemma 3.5. The functional J¢ satisfies the (PS). condition at any level ¢ > 0.

Proof. Let (un) C Hg be a (PS). for J.. By Lemma 3.4, (un) is bounded in H,. Thus, up to a subsequence,
up — uin He and un — uin LI’OC(R3, C)foralll < r < 6 asn — +oo, Moreover, Lemma 2.1(ii) and the
subcritical growth of g imply that J,(u) = 0, and

Jul + [ * P - [ glex, juPul*dx.
R3 R3
Let R > 0 be such that A C Bg/,(0). We show that for any given ¢ > 0, for R large enough,
lim sup / (|VAEun|2 + Vg(x)|un\2)dx < (. (3.3)
n
B(0)
Let ¢ € C=(R3,R) be a cut-off function such that

$r=0 Xx€Bg,(0), ¢r=1 xecBR(0), O<¢r<1, and [V¢g|<C/R
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where C > 0 is a constant independent of R. Since the sequence (¢pun) is bounded in He, we have
]/s(un)[¢Run] = on(1),
that is

Re/VAsunVAs(¢Run)dX+/VS(X)\un|2¢RdX+/(|x|‘1*\un|2)\un|2¢RdX

R3 R3 R3
= /g(sx, \un|2)\un|2¢Rdx+on(l).
]R3

Since V4, (Ung) = iUn Vg + prVa, un, using (g5), we have

/(\VAEun|2 + Ve()|un|?)prdx < /g(ex, |un|2)|un\2¢Rdx—Re/ilTnVAEunV¢Rdx+on(l)
3 R3 R3
< %/Vg(x)|un\2¢Rdx—Re/ilTnVAsuan.’)Rdx+on(l).
R3 R3

By the definition of ¢y, the Holder inequality and the boundedness of (un) in He, we obtain

1 C C
(1 - R) /(\VASun|2 + Ve(x)|un|?)Pprdx < §||un||2||VAsun||2 +0n(1) < fl +0n(1)
]RS

and so (3.3) holds.
Using un, — uin L{OC(R3, C), for all 1 < r < 6 again, up to a subsequence, we have that

|un| — |u| a.e.in R> as n — +oo,
then
glex, [un)®)|un)® — glex, [u)?)|ul? a.e.in R> as n — +oo.

Moreover, from the subcritical growth of g and and the Lebesgue Dominated Convergence Theorem, we can
infer

i | [stex, s a2 - gex, | dx .
n
Br(0)

Now, by (g5) and (3.3) we have

2 2
/ ’g(ex, |un|®)un|? - glex, \u\2)|u|2‘dx <% / (|VAEun\2 + V(ex)|un|?)dx < ?(
B$(0) B3(0)

for every { > 0.
Hence

/g(sx, |un | un|?dx — / glex, |ul®)|ul*dx as n — +oo.
R3 R3
Finally, since J,(u) = 0, we have
on(1) = J(um)lutn] = uunué+/(|x|*1*|un|2)|un|2dx—/g(ex,|un|2)|un|2dx
R3 R3
= [Jun|? + / (17" * Jun|*) [un|*dx - || - / (xI7* Ju®)ul*dx + on(1).
R3 R3

Thus, from Lemma 2.1, the sequence (un) strong converges to u in He and [ (x| ™ *|un|*)|un|*dx — [ (|x|7**
[u|?)|ul*dx as n — oo. O
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Since f is only assumed to be continuous, the following result is required for the multiplicity result in the next
section.

Corollary 3.1. The functional ¥ satisfies the (PS). condition on S§ at any level ¢ > 0.

Proof. Let {un} C Si be a (PS). sequence for W,. Then ¥,(un) — ¢ and | ¥.(un)||« — 0, where || - ||« is the
norm in the dual space (Ty,S;)". By Lemma 3.3(B3), we know that {m.(un)} is a (PS). sequence for J¢ in He.
From Lemma 3.5, we know that there exists a u € S; such that, up to a subsequence, mg(un) — me(u) in He.
By Lemma 3.2(A3), we obtain

un — u in S,

and the proof is complete. O

Proposition 3.1. Assume that (V1)-(V2) and (f1)-(f4) hold, then problem (3.2) has a ground state solution
forany e > 0.

Proof. Since

ce = inf Je(u) = inf supJe(tu) = inf sup Je(tu),
ueN, ucH} ¢s0 UESE >0

by the Ekeland variational principle [37], we obtain a minimizing (PS)., sequence on S; for the functional
Y¥.. Moreover, by Corollary 3.1, we deduce the existence of a ground state u € H, for problem (3.2).

O
4 Multiple solutions for the modified problem
4.1 The autonomous problem
For our scope, we need also to study the following limit problem
“Au+Vou+ (x| * ufPu=fw?u, u:R> >R, (4.1

whose associated C!-functional, defined in H*(R3, R), is

Ip(u) := %/(|Vu|2 + Vou?)dx + % /(|x\"1 * |u|2)|u|2dx - % /F(uz)dx.
R3 R3 R3

Let
No := {u € H'(R?,R)\ {0} : Io(w)[u] = 0}

and

cy. := inf Iy(u).
Vo ueNoo()

Let So be the unit sphere of Hy := H'(R?, R) and is complete and smooth manifold of codimension 1.
Therefore, Hy = TuSo € Ru for each u € T,So, where Ty,So = {v € Ho : {(u, v)o = 0}.

Lemma 4.1. Let V, be given in (V1) and suppose that (f1)-(f4) are satisfied, then the following properties

hold:

(al)Forany u € Hp\{0}, let gy : R* — R be given by gu(t) = Io(tu). Then there exists a unique t, > O such that
gu(t) >0in (0, t) and g;,(t) < 0 in (ty, o);

(a2)Thereis a T > 0 independent on u such that t, > T for allu € Sy. Moreover, for each compact W C Sy there
is such that t, < Cy, forallu € 'W;

(a3)The map m : Ho\{O} — Ny given by m(u) = tyu is continuous and mo = mo|s, is a homeomorphism

between So and Ny. Moreover, m™'(u) = Hlll\lo'
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The proof of Lemma 4.1 is similar to that of Lemma 3.2, we omit it.

Lemma 4.2. Let V be given in (V1) and suppose that (f1)—(f4) are satisfied, then
(b1)¥, € CY(Ho\{0},R) and

Y (u)v = Hrﬁ&%l&(ﬁl(u))[v], Vu € Hp\{0} and Vv € Hp;

(b2)¥, € CY(Sp, R) and
Yo)v = [m@)lolo(m))v], Vv € TuSo;
(b3)If {un} is a (PS). sequence of ¥y, then {m(un)} is a (PS). sequence of Iy. If {un} C No is a bounded (PS).
sequence of Iy, then {m~(un)} is a (PS). sequence of ¥o;
(b4)u is a critical point of ¥y if and only if m(u) is a critical point of Iy. Moreover, the corresponding critical
values coincide and
12)f Y, = 13{{10f Iy.

The proof of Lemma 4.2 can be found in the proofs of Proposition 9 and Corollary 10 of Szulkin and Weth [30],
SO we omit it.
Similar to the previous argument, we have the following variational characterization of the infimum of I
over Np:
cy, = inf Ip(w)= inf suply(tu) = inf supIp(tu
Vo ueNo 0( ) MEH()\{O} [>(§) 0( ) ueSo [)(? 0( )

The next result is useful in later arguments.

Lemma 4.3. Let {un} C Hyp be a (PS). sequence for I such that u, — 0. Then, one of the following alternatives
occurs:
(i) upn = 0inHyasn — +oo;
(ii) there are a sequence {yn} C R and constants R, B > O such that
lim inf / \un|2dx = f.
n

BR(Yn)

Proof. Assume that (ii) does not hold. Then, for every R > 0, we have

lim sup / |un|?dx = 0.
n yeRr3
Br(y)

Being {un} bounded in Hy, by the Lion’s lemma [37], it follows that
unp — 0in L'(R>,R), 2<r<6.
From the subcritical growth of f, we have
/F(u%)dx = on(1) = /f(uﬁ)uﬁdX-
R3 R3
Moreover, from I (un)[un] — 0, it follows that
/ (|Vun|® + Voup)dx + / (X" * [un|?) un|* dx = / Fup)uidx + 0n(1) = 0n(1).
RN R? R3

Thus (i) holds. O
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Remark 4.1. From Lemma 4.3 we see that if u is the weak limit of (PS)c,, sequence {un} of the functional Io,
then we have u # 0. Otherwise we have that u, — 0 and if uy, —# 0, from Lemma 4.3 it follows that there are a
sequence {yn} C R? and constants R, B > O such that

lim inf / lun|?dx = B > 0.
n
BR(Yn)

Then set vn(x) = un(x + zn), it is easy to see that {va} is also a (PS)c,, sequence for the functional Iy, it is
bounded, and there exists v € Hg such that v — v in Ho with v # 0.

Lemma 4.4. Assume that V satisfies (V1), (V2) and f satisfies (f1)-(f4), then problem (4.1) has a positive
ground state solution.

Proof. First of all, it is easy to show that cy, > 0. Moreover, if uy € Ny satisfies Io(uo) = cy,, then m Y(up) €
So is a minimizer of ¥y, so that ug is a critical point of Iy by Lemma 4.2. Now, we show that there exists a
minimizer u € Ny of I|y,. Since infg, ¥o = infy, Ip = cy, and Spisa C ! manifold, by Ekeland’s variational
principle, there exists a sequence w, C So with ¥o(wn) — ¢y, and ¥j(wn) — 0as n — oo. Put uy = m(wn) €
No for n € N. Then Ip(un) — cy, and Ij(un) — 0 as n — oo by Lemma 4.2(b3). Similar to the proof of Lemma
34, itis easy to know that {u, } isbounded in Hy. Thus, we have un, — uin Hp, un — uin LI’OC(]R3, R),1<r<6
and un — u a.e.in R, thus I(u) = 0. From Remark 4.1, we know that u # 0. Moreover, by Lemma 2.1,

v, < To(w) = To(w) - 5Tl
- (A-DmBed- / (™ > JuP)luldx + / (§Fedn - SFe?)) dx
R3 R3
< limninf{(% - %) [ unl|§ + (% - %)/(\x\_l * |un|?)|un|*dx + / (%f(un)u% - %F(uﬁ)) dx}
R3 R3

1

= limninf {Io(un) ~ D

Ié(un)[un]}

=Cvyp»
thus, u is a ground state solution. From the assumption of f, u > 0, moreover, by [8, Proposition 6 and Propo-
sition 7], we know that u(x) > 0 for x € RY. The proof is complete. O

Lemma 4.5. Let (un) C Ny be such that Io(un) — cy,. Then (un) has a convergent subsequence in Hy.

Proof. Since (un) C No, from Lemma 4.1(a3), Lemma 4.2(b4) and the definition of cy,, we have

Un

[[unllo

Vn=m Yun) = €Sy, VneN,

and
Wo(vn) = In(un) — cy, = inf Po(u).
ueSy

Since Sy is a complete C! manifold, by Ekeland’s variational principle, there exists a sequence {n,} C S
such that {Vn} is a (PS)c,, sequence for ¥, on Sp and

lVn = vallo = on(1).

Similar to the proof of Lemma 4.4, we may obtain the conclusion of this lemma. O

4.2 The technical results

In this subsection, we prove a multiplicity result for the modified problem (3.2) using the Ljusternik-
Schnirelmann category theory. In order to get it, we first provide some useful preliminaries.
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Let§ > Obesuchthat Mg C A,w € H L(R3, R) be a positive ground state solution of the limit problem (4.1),
and np € C*=(R*, [0, 1]) be a nonincreasing cut-off function defined in [0, +o0) such that n(t) = 1if0 < t < §/2
and n(t) =0ift = 6.

For any y € M, let us introduce the function

We,y(x) :=n(jex - y|)w(£XT_y) exp (I'Ty(ex - y)) ’

where ,
Ty(0 ==Y Ay
i
Let te > 0 be the unique positive number such that
ntlf(l)xls(tq’e,y) = Je(teWe,y).

Note that te ng,y < Ng.
Let us define @, : M — N¢ as
De(y) := teWe,y.

By construction, @¢(y) has compact support for any y € M.
Moreover, the energy of the above functions has the following behavior as € — 0.

Lemma 4.6. The limit
lim Je(P:(y)) = cy,
£—0*

holds uniformly iny € M.

Proof. Assume by contradiction that the statement is false. Then there exist 6o > 0, (yn) C M and &, — O*
satisfying

Je,(@e, (yn)) - Cyy| 2 do.

For simplicity, we write @y, ¥, and t, for @¢,(yn), ¥e,,y, and t,, respectively.
Similar to the proof of Lemma 3.4 in [36], by the Lebesgue Dominated Convergence Theorem, we have that

| W2, — /(\Va)\z + Vow?)dx as n — +oo. (4.2
]RB
/ (X * [ %al2) Pl 2l — / (K * [0)w[2dx as n — +oo. 4.3)
R3 R3

Since J, (tnWn)(tn¥n) = 0, by the change of variables z = (enx — yn)/€n, observe that, if z € Bg,, (0), then
&nz +yn € Bg(yn) C Mg C A,we have

| Wnll2, + th / (x| * | |*) [ Wl dx = / g(enz + yn, tan’(lenz)w* (2))n* (jenz)w’ (2)dz
R3 R3
- / FErP(enz) @) (jenz ) (2)dz
R3

> / ftrw*(2))w’(2)dz
Bs/2en (0)

. / f(Rw* (@) (2)dz
Baya(0)

> f(t2y%) / w*(2)dz

Bj)5(0)
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for all n large enough and where y = min{w(z) : |z| < §/2}. Moreover, we have

tzzlmllén+/(\xr1*|'Pn|2)|wn|2dxzf“§y2)y2 / w*(2)dz.
J f(tay?)

Bs2(0)

If tn — +oo, by (f4) we derive a contradiction.

Therefore, up to a subsequence, we may assume that t, — to = 0.

If t, — 0, using the fact that f is increasing and the Lebesgue Dominated Convergence Theorem, we obtain
that

[¥nll2, + tn / (x| ™2 * | W) )| Wn|2dx = / FEn*(|enz)w? (@) (|enz)w?(2)dz — 0, asn — +oo,
R3 R3

which contradicts (4.2). Thus, from (4.2) and (4.3), we have ty > 0 and
R3(|Vw|2+Vow?)dx+E [o3 (x| *|w|?)|w|2dx=[,3 fltow?)w?dx

so that tow € Ny, . Since w € Ny,, we obtain that ¢y = 1 and so, using the Lebesgue Dominated Convergence
Theorem, we get

lirrln/F(|tn‘I’n|2)dx= /F(wz)dx.
R3 R3
Hence
lim Je, (@, (yn)) = Io(w) = cv,

which is a contradiction and the proof is complete. O

Now we define the barycenter map.
Let p > 0 be such that M5 C B, and consider Y : R> — R> defined by setting

Yoo = © it x| <p,
px/|x|, if |x| =z p.

The barycenter map : : Ne — R> is defined by

N 4
Beu) = |u|2R[Y(sx)|u(x)| dx.

We have the following lemma.

Lemma 4.7. The limit
lim Be(De(y)) =y
£—0*

holds uniformly iny € M.
Proof. Assume by contradiction that there exists k > 0, (yn) C M and &€, — 0 such that
|Be, (De, (yn)) = yn| 2 k. (4.4)

Using the change of variable z = (enx — yn)/€n, we can see that

/(Y(Snz + )/n) - Yn)i’l4(|€n2|)(u4(z)d2
Beo(@e,(yn) = yn + 2

/ n*(enz))w* (2)dz
R3
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Taking into account (yn) C M C Mg C By and the Lebesgue Dominated Convergence Theorem, we can obtain
that
|Ben (De, (yn)) — yn| = 0n(1),

which contradicts (4.4). O

Now, we prove the following useful compactness result.

Proposition 4.1. Let e, — 0" and (un) C N, be such that Je,(un) — cvy,. Then there exists (jn) C R3 such
that the sequence (Jvn|) ¢ H'(R?, R), where va(X) := un(x + n), has a convergent subsequence in H'(R>, R).
Moreover, up to a subsequence, yn := Enjn — y € M asn — +oo.

Proof. Since J;, (un)[un] = 0 and Je, (un) — cy,, arguing as in the proof of Lemma 3.4, we can prove that there
exists C > 0 such that ||un||e, < Cforalln € N.

Arguing as in the proof of Lemma 3.2 and recalling that cy, > 0, we have that there exist a sequence {yn} C R3
and constants R, 8 > 0 such that

lim inf / lun|>dx = B. (4.5)
Br(n)

Now, let us consider the sequence {|vn|} ¢ H(R?, R), where vn(X) := un(x + yx). By the diamagnetic
inequality (2.1), we get that {|vn|} is bounded in H L(R3, R), and using (4.5), we may assume that |[Vvn] = vin
HY(R3, R) for some v # 0.

Let now ¢, > 0 be such that ¥, := tn|vn| € Ny,, and set yn := €nyn.
By the diamagnetic inequality (2.1), we have

cv, < Io(Vn) < H})E(l)X]gn(tun) = Je,(un) = cy, +on(1),

which yields Io(¥n) — cy, asn — +oo.

Since the sequences {|vn|} and {¥»} are bounded in H'(R?, R) and |vn| —# 0 in H!(R3, R), then (tn) is also
bounded and so, up to a subsequence, we may assume that t, — ty = 0.

We claim that t, > 0. Indeed, if to = 0, then, since (|vx|) is bounded, we have 7, — 0 in H'(R>, R), that is
Io(¥n) — 0, which contradicts cy, > 0.

Thus, up to a subsequence, we may assume that ¥, — vV := tov #0in H 1(R3, R), and, by Lemma 4.5, we can
deduce that ¥, — ¥ in H'(R?, R), which gives |v4| — v in H}(R?, R).

Now we show the final part, namely that {y,} has a subsequence such that y, — y € M. Assume by contra-
diction that {yn} is not bounded and so, up to a subsequence, |yn| — +o0asn — +oo. Choose R > 0 such that
A C Bg(0). Then for n large enough, we have |y»| > 2R, and, for any x € B/, (0),

|&nX + yn| = |yn| — €nlx| > R.
Since un € Ng,, using (V1) and the diamagnetic inequality (2.1), we get that
/(|V\vr,|\2 + Volva|?)dx < / g(enX + Yn, |Vn|?)|vn|*dx
R3 R3

< / Flval)lva2dx + / F(valDlval2dx.

Brjey (0) BS,. (0)

(4.6)

Since |vn| — vin HY(R?, R) and f(¢) < V/K, we can see that (4.6) yields

min< 1, Vo 1-1 (IV|Val]® + [va|)dx = 0n(1),
{Lw(t-2)}
]R3

that is |v4| — 0in H(R3, R), which contradicts to v = 0.
Therefore, we may assume that y, — yo € R>. Assume by contradiction that y, ¢ A. Then there exists r > 0
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such that for every n large enough we have that |y» - yo| < r and B,(yo) C A Then, if x € B,/ (0), we have
that |enXx + yn — Yo| < 2r so that enx + yn € A and so, arguing as before, we reach a contradiction. Thus,
Yo € A.

To prove that V(yo) = Vg, we suppose by contradiction that V(yo) > Vj. Using the Fatou’s lemma, the change
of variable z = x + J, and maxsq Je, (tun) = J¢, (un), we obtain

- 1 ~ ~ 1 _ 125 1 -
v, = 1o < 3 (VI 4 Va3 [Ox * P)dx- 5 [ Q7P
R3 R3 R3

2

o . 1 (- ~ 1 _ ~ ~ 1 ~
< hmnlnf(E /(|an\2 + V(enX + yn)|n|?)dx + i /(\x| L |72 )2 dx - = /F(|vn|2)dx)
R3 R3 R3

2 4
= limninf(%" /(\V\unﬂz + V(en2)|un|*)dz + %” /(|x|'1 * [un|?) un|*dx - %/F(|tnun|2)d2)
R3 R3 R3
< limninf]gn(tnun) < 1imninf]gn(un) = cy,
which is impossible and the proof is complete. O

Let now
Ne :={u € Ne : Je(w) < cy, + h(e)},

where h : R* — R*, h(¢) - O0as & — 0*.
Fixed y € M, since, by Lemma 4.6, |Je(D:(y)) - cy,| — 0 as & — 0%, we get that Ne # 0 for any € > 0 small
enough.

We have the following relation between N, and the barycenter map.

Lemma 4.8. We have
lim sup dist(Be(u), Ms) = 0.
e—0 uEf\fg

Proof. Letey, — 0% as n — +oo. For any n € N, there exists un € Ne, such that

sup inf -y| = inf -yl +on(1).
ueﬂ;:"yeMG\Ben(u) vl yleMﬁlﬁsn(un) y|+on(1)

Therefore, it is enough to prove that there exists (yn) C Mg such that
lizn ‘ﬁen(un) —-yn| =0.

By the diamagnetic inequality (2.1), we can see that Io(t|un|) < Je, (tun) for any t = 0. Therefore, recalling that
{un} C Ng, C Ne,, we can deduce that

Cy, = H}%XIO(”UM) < ntlf(l)X]sn(tun) = Je,(un) < Cy, + h(en) 4.7

which implies that Je, (un) — cy, as n — +oo.
Then, Proposition 4.1 implies that there exists {j»} ¢ R? such that yn = enj/n € Mj for n large enough.
Thus, making the change of variable z = x — y,, we get

f]Rz (Y(enz +yn) = yn)lun(z + f’n)‘l'dz
Jgs un(z + 9n)|*dz

,Ben (un) = Yn+

Since, up to a subsequence, |un|(- + ) converges strongly in H*(R>, R) and enz+yn — y € Mforany z € R>,
we conclude. O
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4.3 Multiplicity of solutions for problem (3.2)

Finally, we present a relation between the topology of M and the number of solutions of the modified problem
(3.2).

Theorem 4.1. For any 6 > O such that Mg C A, there exists €5 > 0 such that, for any € € (0, &g), problem (3.2)
has at least caty, (M) nontrivial solutions.

Proof. For any € > 0, we define the function 7 : M — S} by
7e(y) = mz' (De(y)), Vy € M.
By Lemma 4.6 and Lemma 3.3(B4), we obtain

lim Ye(me(y)) = lim Je(@e(y)) = cy,, uniformlyin y € M.
€—0 e—0

Hence, there is a number & > 0 such that the set 5f := {u € S : We(u) < cy, + h(€)} is nonempty, for all
€ € (0, &), since (M) c S}. Here h is given in the definition of Ne.

Given § > 0, by Lemma 4.6, Lemma 3.2(A3), Lemma 4.7, and Lemma 4.8, we can find &5 > 0 such that for
any ¢ € (0, &), the following diagram

-1
M 2 @ (M) 2 o) T (M) By Mg

is well defined and continuous. From Lemma 4.7, we can choose a function 0(e, z) with |O(e, 2)| < g uni-
formlyinz € M, forall € € (0, €) such that B¢(D:(z)) = z+0O(€, z) forall z € M. Define H(t, z) = z+(1-t)O(e, 2).
Then H : [0, 1] x M — Mg is continuous. Clearly, H(0, z) = B:(®@¢(2)), H(1, z) = z for all z € M. That is, H(t, z)
is a homotopy between B¢ o @, = (B¢ o m¢) o 71 and the embedding ¢ : M — Mg. Thus, this fact implies that

cat,, () (7me(M)) = caty, (M). (4.8)

By Corollary 3.1 and the abstract category theorem [30], W has at least cat, ) (7e(M)) critical points on S;.
Therefore, from Lemma 3.3(B4) and (4.8), we have that J. has at least caty, (M) critical points in Ne which
implies that problem (3.2) has at least cat, (M) solutions. O

5 Proof of Theorem 1.1

In this section we prove our main result. The idea is to show that the solutions u, obtained in Theorem 4.1
satisfy
lue(x)|? < a for x € AS

for € small. The key ingredient is the following result.

Lemma5.1. Let e, — 0% and un € Ne, be a solution of problem (3.2) for € = en. Then Je, (un) — cy,. Moreover,
there exists {Jn} C RN such that, if va(x) := un(x + 1), we have that {|vn|} is bounded in L>(R", R) and

lim |va(x)| =0 uniformlyinn € N.
|X| =400

We use the Moser iteration method to prove the theorem. Although there is more one term for problem, by
the calculation, it is easy to know this term does not affect the procedure. We may refer to [36] for the details,
so we omit it for simplicity.

Now, we are ready to give the proof of Theorem 1.1.
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Proof of Theorem 1.1. Let 6 > 0 be such that Mg C A. We want to show that there exists &5 > 0 such that for
any ¢ € (0, &5) and any u, € N, solution of problem (3.2), it holds

Hungw(Ag) <a. (5.1)

We argue by contradiction and assume that there is a sequence €, — 0 such that for every n there exists
un € Ne, which satisfies Ji, (un) = 0 and

HuﬂHIZﬁ(Agn) >a. (5.2)

As in Lemma 5.1, we have that Je,(un) — cvy,, and therefore we can use Proposition 4.1 to obtain a sequence
(#n) C R? such that yn := €njin — yo for some y, € M. Then, we can find r > 0, such that B,(yn) C A, and so
B,/ (7n) C Ag, for all n large enough.

Using Lemma 5.1, there exists R > 0 such that |v,|? < a in B%(0) and n large enough, where vy = un(: + yn).
Hence |un|? < a in B4(77x) and n large enough. Moreover, if n is so large that /ey > R, then A¢, C Bf/gn (yn) C
B%(7n), which gives |un|* < a for any x € A¢, . This contradicts (5.2) and proves the claim.

Let now &4 := min{&g, €5}, where &5 > 0 is given by Theorem 4.1. Then we have caty;, (M) nontrivial solutions
to problem (3.2). If us € N is one of these solutions, then, by (5.1) and the definition of g, we conclude that
Ue is also a solution to problem (2.2).

Finally, we study the behavior of the maximum points of |it¢|, where #¢(x) := us(x/¢) is a solution to problem
(1.1),as e — 0".

Take £, — 0" and the sequence (u,) where each uy is a solution of (3.2) for € = &,. From the definition of g,
there exists y € (0, a) such that

glex, )t < %tz, forall x e RN, |t] <.

Arguing as above we can take R > 0 such that, for n large enough,
HunHLw(Bg(y,,)) <y. (5.3)

Up to a subsequence, we may also assume that for n large enough

([l =By 7)) = V- (54)

Indeed, if (5.4) does not hold, up to a subsequence, if necessary, we have ||ux || < y. Thus, since J¢, (ue,) = 0,
using (g5) and the diamagnetic inequality (2.1) that

/(|V|un\|2+Vo|un|2)dxs/g(enx,|un\2)|un\2dxs %/wn\zdx
R3 R3 R3

and, being K > 1, ||jun|| = 0, which is a contradiction.

Taking into account (5.3) and (5.4), we can infer that the global maximum points py, of |u¢, | belongs to Bg(yx),
that is pn = qn + ¥n for some gn € Bg. Recalling that the associated solution of problem (1.1) is itn(x) =
un(x/en), we can see that a maximum point 7e, of |itn| is e, = €n¥n + €ngn. Since gn € Bg, &nyn — Yo and
V(yo) = Vo, the continuity of V allows to conclude that

lirfln V(ne,) = Vo.
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