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Abstract
Firstly, a novel pyrazole-pyrazoline fluorescent probe was developed and synthesized. The probe can be used to determine Fe3+

ions in a series of cations in tetrahydrofuran aqueous solution with high selectivity and high sensitivity. After the addition of iron
ions, the fluorescence intensity is significantly reduced, Its structure was characterized by 1H NMR, 13C NMR and HR-ESI-MS.
UV absorption spectra and Fluorescence spectroscopywere used to study the selective recognition of probeM onmetal ions. The
probeM can selectivity and sensitivity to distinguish the target ion from other ions through different fluorescence phenomena. In
addition, the binding modes ofM with Fe3+ were proved to be 1:1 stoichiometry in the complexes by Job’s plot, IR results. The
combination of probeM and iron ions is 1:1, and the detection limit is 3.9 × 10−10 M. The binding mode and sensing mechanism
of M with Fe3+ was verified by theoretical calculations using Gaussian 09 based on B3LYP/6-31G(d) basis.
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Introduction

Metal ion fluorescent probes have received extensive attention
due to their wide application in environmental and biochem-
ical fields [1]. Fe3+ ion is one of the essential ions for life.
Many cell-level biochemical processes require the participa-
tion of iron ions [2, 3]. Therefore, the research on the detection
of iron ions is of great significance in the environment and life
sciences. The lack or excess of Fe3+ can inducemany diseases,
such as diabetes, hepatitis, anemia and Parkinson’s disease
[4–6], so it is very important to detect Fe3+. Commonly used
detection methods are colorimetry [7], atomic absorption
spectrometry [8, 9], electrothermal atomic absorption

spectrometry [10], cold vapor atomic absorption spectrometry
[11], inductively coupled plasma emission spectrometry [12,
13], spectroscopy [14–16] and anodic stripping voltammetry
[17], among them, fluorescence spectroscopy has the advan-
tages of high sensitivity and simple operation, so it has
attracted widespread attention, and many have been designed
and synthesized probe [18].

Pyrazoline is an important nitrogen-containing five-mem-
bered heterocyclic compound. There are many methods to
synthesize this compound [19–21] with many biological ac-
tivities [22–28]. Pyrazoline has strong fluorescence properties,
so it is also widely used in the field of optoelectronics. It is
used as an optical brightener for textiles and papermaking
materials. The pyrazoline fluorescent compound also has ex-
cellent stability, so it can be used in laser dyes, fluorescent
dyes, for biological analysis, tracking detection, drug tracking
and sun traps. Pyrazole is a colorless or white crystalline sub-
stance with high fluorescence quantum yield, high light sta-
bility, non-toxic and other optical properties, it is usually used
as stabilizer, chelate, organic synthesis intermediate, etc
[29–31]

Due to the excellent properties of pyrazole and pyrazoline,
we designed and synthesized compoundM that combines the
advantages of both. This compound contains two
fluorophores, a pyrazole unit and a pyrazoline unit. It has good
selectivity and high-sensitivity fluorescence response to Fe3+.
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In order to clarify the complex relationship between the probe
and Fe3+, theoretical calculations of density functional theory
(DFT) were carried out. These results illustrate the reasonable
design of fluorescent probes for Fe3+ detection. At the same
time, the probeM has good yellow fluorescence, its emission
wavelength is about 600 nm, the fluorescence quantum yield
is high, the hole transport efficiency is high, it is easy to detect,
and the color change can be directly observed with the naked
eye. And it is also a good photoluminescent material. In addi-
tion, the resultingM-Fe3+ group reacts specifically with pyro-
phosphate (PPI) anion through fluorescence quenching.

Experimental Part

Materials and Characterization

FA1004 Electronic Balance (Changzhou Nuoji Instrument
Co., Ltd.); SGWX-4 Micro-melting Point Instrument
(Shanghai Precision Scientific Instrument Co., Ltd.); Bruker-
AV400, 400 MHz Nuclear Magnetic Resonance Instrument;
HPLC Q-Tof HR-MS Mass Spectrometer (Waters
Micromass); Bruker DTX-400 carbon spectrum analyzer;
UV-1800PC spectrometer; HITACHIF-4500 fluorescence
spectrometer.

During the experiment, various metal ions correspond to
chloride salts (Na+, K+, Ca2+, Cu2+, Zn2+, Ni2+, Pb2+, Mg2+,
Al3+, Ba2+, Fe3+, Co2+, Mn2+) and nitrate (Ag+), Other re-
agents are commercially available analytical grade, and all
samples are performed at room temperature.

Synthesis Route of Probe M

Scheme 1 shows the synthetic route of compound M.
The syn thes i s o f p robe M i s a s fo l l ows : o -

hydroxyacetophenone was purchased from a commercial

supplier. Compound a was prepared according to literature
method [32] m.p.140–143 °C(lit [32]. m.p.144–146 °C), in
50 ml round-bottom flasks, add 0.210 g (1 mmol) of com-
pound a, 0.136 g (1.0 mmol) of o-hydroxyacetophenone,
10 ml of ethanol and 1 ml of 10% NaOH at 75 °C was heated
to reflux for 3 h. After the reaction was completed, it was
cooled to room temperature to produce a bright yellow pow-
der. The crude product was obtained by suction filtration.
Recrystallized with V ethanol: V ethyl acetate (1:1) to obtain
compound b. The rate is 88%. Dissolve 0.366 g (1.0 mmol) of
compound b in 2 ml of acetic acid, completely dissolve it and
transfer to an oil bath (120 °C), then add 1.0 ml of 80%
hydrazine hydrate dropwise, heat for 4 h, and detect the com-
pletion of the reaction by TCL. After cooling to room temper-
ature, white crystalMwas produced with a yield of 78%, with
a yield of 78%, mp: 230–233 °C The analysis data are as
follows: 1H NMR (CDCl3, 400 MHz) δppm 2.39(s,
3H) , 3 . 21 (dd , J = 4 . 1 , 4 . 0 Hz , 1H) , 3 . 71 (d , J =
4.0 Hz,2H),5.84(m, 1H),6.87(t, J = 4.0 Hz, 1H),7.01(s,
2H),7.25(s, 1H),7.33(d, J = 3.1 Hz, 2H),7.41(dd, J = 5.1,
1.2 Hz, 3H),7.69(dd, J = 4.0, 2.3 Hz, 4H),7.81(s, 1H),
1 0 . 1 8 ( s , 1 H ) . 1 3 C N M R ( D M S O - d 6 ,
1 0 0 M H -
z):167.93,156.59,156.79,154.00,150.46,146.86,139.70,136.-
81,132.93,131.40,128.59,126.99,125.84,119.69,119.14,117.-
45,116.99,115.73,114.99,112.44,65.43,50.86,47.31,42.41,2-
2 .64 ,22 .13 . ca l cu l a t ed fo r [M + H]+ 423 .2411 ,
found423.2497.

Spectral Test

The M mixed stock solution was prepared 1.0 × 10−3 M. The
configuration of the cation stock solution is prepared from the
corresponding chloride or nitrate. Make volume with soft wa-
ter, the concentration is 5.0 × 10−3 M. Add 10 μL, 20 μL of
CompoundM solution (1 × 10−3M) to the cell, with an optical

Scheme 1 Synthesis route of
probe M
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path of 1 cm, which contains 2 mL of THF/water (1:1 (v/v)
and HEPES buffer (0.02 mM pH= 7.4), then add a certain
amount of cation, andmeasure its UV-visible absorption, fluo-
rescence spectrum and infrared spectrum.

Results and Discussion

Identification of Metal Ions by Probes

In the THT/water system, under the excitation wavelength of
280 nm, the probe showed strong fluorescence emission at
410 nm. The experimental results show that metal ions other
than iron ions have little effect on the fluorescence of the
system or have a very small fluorescence quenching effect
(Fig. 1). This shows that probeM has a better response to iron
ions.

Fluorometric Titration Test of Iron Ion by Probe

Add a different multiple of iron ions to the probe in a THF/
water (1:1: v/v) solution containing HEPES buffer (0.02 mM,

Fig. 1 Fluorescence emission spectrum of M in THF / water mixed
solvent (1: 1, v / v) containing HEPES buffer (0.02 mM, pH = 7.4) at
room temperature

Table 1 Detection limits of Fe3+ by other fluorescent sensors and
fluorescent probe M

Fluorescence probes Ions Detection limits

1 [33] Fe3+ 1.05 × 10 −7M.

2 [34] Fe3+ 4.2 × 10 −8 M.

3 [35] Fe3+ 2.54 × 10 −6M.

4 [36] Fe3+ 4.8 × 10 −6 M.

5 [37] Fe3+ 6.5 × 10 −7M.

6 [38] Fe3+ 2.0 × 10 −3M.

Our probe M Fe3+ 3.9 × 10−10 M.

Fig. 2 a Fluorescence emission intensity curve of adding different
concentrations of Fe3+ to probe M. b The fluorescence spectrum of the
emission spectrum of probe M and the change in Fe3+ concentration. c
Complexation constant curve of Fe3+ to probe M titration
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pH = 7.4), as shown in Fig. 2a, as the iron ion concentration as
the factor increases, the fluorescence intensity of probe M
decreases continuously until it reaches saturation. The quanti-
tative response of probeM to Fe3+ has a good linear relation-
ship. As shown in Fig. 2b, the linear regression equation is y =
640.19–350.28x, R2 = 0.9902. The Benesi-Hildebrand non-
linear curve fits a straight line, showing a linear fit, and con-
firms that the stoichiometric relationship between Fe3+ and
probe M is 1:1. From Fig. 2c, we can conclude that the bind-
ing constant of the M-Fe3+ complex is 2.6 × 105 M−1. The

detection limit calculated from the multiple of the fluores-
cence intensity of the probe M relative to the standard devia-
tion is 3.9 × 10−10 M (when the probe concentration is 1.0 ×
10−5 M). Table 1 lists several probes for Fe3+ detection.
Compared with the LOD of other probes,M probe has a lower
detection line and a higher Fe3+ detection sensitivity.

Competitive Testing

In order to further detect the actual application of the
probe M for the recognition of Fe3+, an anti-interference
experiment was performed on the probe M (Fig. 3a).
Only adding iron ions to the probe will significantly
reduce the fluorescence intensity, and then add other

Fig. 3 a In the presence of Fe3+ and various other metal ions in a mixed
solvent of THF/ water (1:1, v/v) containing HEPES buffer (0.02 mM,
pH= 7.4) at room temperature Next, the fluorescence response of probe
M. The black bar indicates the probe M plus other metal ion solutions.
The gray bar indicates that the same amount of Fe3+ is subsequently
added to the mixture solution. b represents the fluorescence spectrum of
probe M in a mixed solvent THF/water (1:1, v/v) containing HEPES
buffer (0.02 mM, pH = 7.4) and different iron salts at room temperature

Fig. 4 aUV-Vis spectra of probesM andM + Fe3+ in THF/water (1:1, v/
v) containing HEPES buffer (0.02 mM, pH= 7.4). bAfter adding various
metal ions, the UV-visible spectrum of probe M changes
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equal amounts of metal ions. The fluorescence intensity
remains basically unchanged. The results prove that the
probe M does not interfere with other ions during the
recognition process of Fe3+, and has good anti-
interference ability. In addition, in order to further ex-
plore the influence of anions on the identification pro-
cess of iron ions in probe M, we configured iron sulfate
ion, sulfate ion and chloride ion solutions in HEPES
buffer (0.02 mM, pH = 7.4) THF /water Fluorescence
spectroscopy tests were carried out in water (1:1: v/v)
solution, as shown in Fig. 3b, the fluorescence response
of the probe did not change significantly. The results
show that in the process of identifying metal salt ions,
anions will not affect the identification of metal ions.

Selective Features

In order to explore the practical application of probe M in a
biological environment at room temperature, the absorption
spectrum characteristics of probe L in a mixed solvent con-
taining THF/water (1:1, v/v) for various metal ions were stud-
ied. As shown in Fig. 4a, without adding Fe3+ ions, the probe
M showed a maximum absorption peak at 250 nm. Then, Fe3+

ions were added to the probe M. We found that it did cause a
significant change in absorption, the absorbance at 310 nm
increased, and a new band appeared at 310 nm. It can be
clearly seen from Fig. 4b that when adding 1 eq Fe3+ and other
metal ions (Ba2+, Ca2+, Mg2+, Na+, Al3+, Mn2+, Ni+, Pb2+,
Cu2+, Co2+, K+, Zn2+, Ag+, M), only Fe3+ The absorption
peak has obvious changes.

UV Absorption Spectrum of Fe3+ Recognized by Probe

In THF/water (1:1, v/v) buffer containing HEPES (0.02 mM,
pH = 7.4), as shown in Fig. 5a, adding different concentrations
of Fe3+ ions, the probeM starts to absorb at 350 nm. It shows
that a new complex is formed between compound M and
Fe3+. The UV-vis titration in Fig. 5b shows a good linear
relationship between probeM and Fe3+. The linear regression
equation is y = 0.022 + 0.8343x, R2 = 0.9946. The spectral fit
of the absorption data obtained with Fe3+ titration probe M
shows that the stoichiometric ratio between probeM and Fe3+

is 1:1.

Fig. 5a UV absorption spectrum of fluorescent probeM and addition of
different equivalents of Fe3+ metal ions. b Linear ultraviolet absorption
spectrum of fluorescent probe M and iron ion concentration

Fig. 6 Used to determine the stoichiometry of probes M and Fe3+ in
THF/water (1:1, v/v) with HEPES buffer (0.02 mM, pH = 7.4), total
concentration 1.0 × 10−5 M Working graph
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Combination Ratio

In order to further explore the binding ratio of probe M to
Fe3+, the molar ratio of probe M to Fe3+ (9:1, 8:2, 7:3, 6:4,
5:5, 4:6, 3:7, 2:8, 1:9), to detect its fluorescence properties,
and draw the curve shown in Fig. 6, the maximum molar
fraction of probe M appears at 0.5, which supports the above
1:1 (M:M + Fe3+) In combination with stoichiometry.

Detection Limit

The detection limit is calculated by LOD = 3ơ/k, where & is
the standard deviation of the relative fluorescence intensity of
the 15 sets of probes at the position of their emission peaks.
After probe M is combined with different concentrations of
Fe3+, the emission peaks are relative to each other. The inten-
sity is plotted against the corresponding concentration to ob-

Fig. 7 Geometric optimization of Gaussian
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tain the slope k. Through calculation, the LOD of the probeM
to Fe3+ is 3.9 × 10−10M. Compared with the fluorescent probe
for detecting Fe3+ listed in Table 1, the fluorescent probe M
made by us has a lower detection limit.

Optimized Calculation

To have a better understanding about the electronic
structures of M and M + Fe3+, DFT calculations were

Fig. 8 (continued)
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performed at B3LYP/def2-SVP [39–41]. For the com-
posite M+ Fe3+, HOMO and LUMO are different from
M. Due to the addition of Fe3+ in pyrazoline, the
HOMO of M + Fe3+ is limited to this fragment, and
the CT from the electron donor to the electron acceptor
group is interrupted in M + Fe3+, resulting in a decrease
in fluorescence. Compared with M, the LUMO-HOMO
orbital energy of M + Fe3+ is reduced (Fig. 7), and the
acceptor system of the compound is destroyed. This is
due to the hydrogen bonding interaction between C=N
and C=O.

Infrared Spectrum Test

Figure 8 shows the FT-IR spectra of probesM andM + Fe3+.
The characteristic bands of -OH, pyrazoline C=O and C=N
extend at 3430 cm−1, 1664 cm−1 and 1101 cm−1, respectively.
After adding probe M, these three bands dropped from
3466 cm−1, 1652 cm−1 and 1287 cm−1 to 3428 cm−1,
1643 cm−1 and 1258 cm−1, which may be due to -OH, C=O
and C=N The density of the group and Fe3+ coordination
electron cloud decreases [41].

PPI Test Fluorescence Probe M Detection Fe3+ Reversibility
Experiment

By adding the chelating agent PPI to the fluorescent probeM
to recognize the fluorescence emission peak of Fe3+, we can
gain a deeper understanding of the response of the fluorescent
probe M to Fe3+, as shown in Fig. 9, when adding PPi to the
mixed solution of M and Fe3+ At this time, the fluorescence
intensity of the complex almost quenches to the intensity of
the fluorescent probeM itself, which shows that the complex-
ation between the fluorescent probeM and Fe3+ is reversible.

Recognition Mechanism of Fluorescent Probe M and Fe3+

The possible binding mechanism ofM with Fe3+ induced the
fluorescence changes is shown in Scheme 2. Based on the
previously reported pyrazoline-based probes [42–44], we
can speculate that Fe3+ may interact with C =N, C =O and -
OH on the fluorescent probe M to undergo photoinduced
electron transfer and chelation. The cooperation thus weakens
the binding of fluorescence [45], but the chelation of probeM
with Fe3+ makes the complex more rigid and limits the C =N
isomerization [46, 47]. And because the binding ratio of probe
M and Fe3+ ions is 1:1, the phenomenon of fluorescence
quenching is further confirmed and their binding mechanism.

Conclusion

In summary, a novel fluorescent probe based on pyrazole-
pyrazoline for Fe (III) ions recognition was designed and syn-
thesized. By observing the ultraviolet absorption spectrum
and fluorescence spectrum, it was found that tetrahydrofuran:
water = 1:1 (v: v) in the presence of other metal ions, the probe
M in the mixed solution has high selectivity, sensitivity and
anti-interference ability for the detection of Fe3+, and the rec-
ognition process is reversible. The combination of probe M

Fig. 9 Fluorescence spectrum of M combined with Fe3+ when PPI was
added to THF/water (1:1, v/v) containing HEPES buffer (0.02 mM, pH=
7.4)

Fig. 8 Infrared spectra of probes M and M + Fe3+
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and iron ions is 1:1, and the detection limit is 3.9 × 10−10 M.
The binding mode and sensing mechanism of M with Fe3+

was verified by theoretical calculations using Gaussian 09
based on B3LYP/6-31G(d) basis.
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