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Real-time measurements of key effluent parameters play a highly crucial role in wastewater treatment. In this research work, we
propose a soft sensor model based on deep learning which combines stacked autoencoders with neural network (SAE-NN).
Firstly, based on experimental data, the secondary variables (easy-to-measure) which have a strong correlation with the bio-
chemical oxygen demand (BOD5) are chosen as model inputs. Moreover, stochastic gradient descent (SGD) is used to train each
layer of SAE to optimize weight parameters, while a strategy of genetic algorithms to identify the number of neurons in each
hidden layer is developed. A soft sensor model is studied to predict the BOD5 in a wastewater treatment plant to evaluate the
proposed approach. Interestingly, the experimental results show that the proposed SAE-NN-based soft sensor has a better
performance in prediction than the current common methods.

1. Introduction

Recently, water pollution has been one of the most serious
and ongoing problems facing our world. Key variables in
wastewater treatment need to be evaluated in order to
control pollution and ensure that water emission calcula-
tions are up to international standards.

Several methods have been used to calculate the key
variables in the treatment of wastewater. However, in the
wastewater treatment system, there are a large number of
variables that are difficult to measure online, such as BOD5,
which is calculated by a normal 5-day off-line delay. 0is
makes it inappropriate for real-time measurement and may
lead to effluent quality violations. Soft sensor technology
provides a good solution to these problems [1–3]. Soft
measurement estimates variables that are difficult to mea-
sure by correlating themwith available variables that are easy
to measure. Soft sensors can be categorized into two separate
classes, namely, model-driven and data-driven, which can be
differentiated on a very general level. 0e first-principle
models are most often soft sensors model-driven family [4].

0e model-driven (white-box model) is built based on the
deep knowledge of process mechanism backgrounds. But,
due to the complicated physical backgrounds and harsh
conditions of industrial plants, when using first-principle
approaches, it is difficult to model the entire process when
that phase is considered. Nevertheless, data-driven (black-
box models) are built on historical data that can be obtained
from industrial processes and built without any operational
experience or prior knowledge, making it an acceptable
choice for soft sensor modeling of complex processes [5].
For the development of data-driven soft sensors, an abun-
dance of multivariate statistical methods and machine
learning methods such as Partial Least Squares (PLS),
Principal Component Analysis (PCA), Fuzzy Logic, Support
Vector Regression (SVR), and Artificial Neural Network
(ANN) have been used [6].

0e data-driven model is highly sensitive to dimen-
sionality accompanied by a high degree of correlation, which
leads to nontrivial correlation since the data are available in a
large amount; however, it lacks the robustness. Such an issue
can result in poor robustness and instability of soft sensor
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algorithms, besides a fall in performance prediction.
0erefore, extracting the most useful information for soft
sensor models is a crucial step [7]. 0e most famous linear
algorithms feature representation for discovering data
models from two different perspectives are PLS and PCA. In
addition, machine learning algorithms such as Support
Vector Machine (SVM) and ANN, due to their ability to
cope with nonlinearity, have been commonly used in soft
sensor modeling. However, with one hidden layer of model
structures, these algorithms are considered as shallow
learning methods. Shallow learning can be useful for simple
processes and can cope with problems due to time-con-
suming, cost, or technical limitations with the use of a few
samples and labeled data that include both input and target
values. 0us, these approaches are often unsuitable for
modern applications when facing highly complex processes.
More potential solutions should be developed to deal with
these problems. Consequently, in comparison with shallow
ones, deep learning with multilayer architectures has better
performance in these complex processes.

Deep learning has been widely implemented in natural
language processing, image processing, speech recognition,
etc. over the past few years [8–11]. In order to optimize the
weight of the deep network, Hinton suggested a greedy
layer-wise unsupervised pretraining learning process,
making it a good solution and attracting more attention and
rapidly developing [12, 13]. Recently, in many fields, deep
neural networks have been proposed and undoubtedly
achieved success. In those complex issues that conventional
neural networks cannot properly solve, deep neural net-
works have shown remarkable performance. It can create
more complex features successfully; meanwhile, when
learning deep architectures directly, it can prevent the
gradient vanishing and exploding problems, causing the
gradient-based backpropagation to be unable to run the
lower layers in the network [14, 15]. Deep learning has also
been shown to be particularly appropriate for modeling soft
sensor as it is more descriptive than conventional soft sensor
models. Qiu et al. used the stacked autoencoders soft sensor
to predict BOD5 in the wastewater treatment process. 0ey
showed that when compared to shallow neural networks, a
deep neural network can achieve better prediction and
generalization efficiency [16]. Wang et al. proposed a data-
driven soft sensor model that integrates stacked autoen-
coders with support vectors regression (SAE-SVR) to estimate
the rotor deformation of air preheaters in thermal power plant
boiler. 0ey used the Broyden–Fletcher–Goldfarb–Shanno
Limited Memory (L-BFGS) algorithm to optimize weight
parameters and the GA to achieve optimum SVR parameters
[17]. Yan et al. proposed a deep learning-based soft sensor
modeling that integrates denoising autoencoder with a neural
network (DAE-NN) to estimate flue gas oxygen content in
ultrasuperficial units of 1000MW. 0ey used improved
gradient descent to update the parameters of the model [18].
Yuan et al. proposed a novel variable-wise weighted stacked
autoencoder (VW-SAE) soft sensor for high-level output-
related feature extraction on an industrial debutanizer col-
umn process to estimate product concentration prediction

[8]. Liu et al. proposed a stacked autoencoder based deep
neural network for achieving gearbox fault diagnosis [19].

In this present research work, we propose a novel soft
sensor prediction modeling approach for key parameters of
online measurement in wastewater treatment, which com-
bines a deep neural network SAE-NN and the GA.0e main
contributions of this paper are duly to be summarized as
follows. (i) 0e SAE, which integrates autoencoder (AE)
with neural network (NN), has been used for predictive
modeling of key BOD5 effluent parameter for on-line
monitoring. In order to obtain the SAE, the multilayer AEs
achieve coarse tuning through unsupervised learning; then
the SAE achieves fine-tuning through supervised learning
BP. 0e problem of nonlinear mapping between the aux-
iliary variables and the primary variables was better solved.
(ii) GA was implemented to determine the number of
neurons in each hidden layer, aiming at the issue that the
deep neural network structure was difficult to optimize.
Consequently, the accuracy of the prediction model was
improved by optimizing the network structure. (iii) In order
to further raise the performance of the model, the original
data set was augmented by resampling and polynomial
interpolation, which improved the completeness of the data.
0e problem of overfitting of the model was alleviated. Our
approach is employed for the modeling and prediction of
BOD5 in WWTPs. 0e experimental results showed a better
prediction performance by using the proposed soft sensor
modeling method based on the combination of SAE-NN and
GA for on-line wastewater monitoring.

2. Problem Statement

2.1. Stacked Autoencoders. Autoencoder (AE) is an unsu-
pervised machine learning neural network that aims to turn
inputs into outputs with as little distortion as possible;
namely, target variables are the matching as input variables.
0e dimension of the output layer is, therefore, set to be
equivalent to the dimension of the input layer. 0e main
differences between AE and multilayer NN are as follows: (i)
AE merely requires data input and it will unsupervisely
evaluate the output data, while multilayer NN is subject to
strict supervision, which means labeled data are needed; (ii)
AE is based on dimensionality reduction.0is is important if
input components include, or are highly correlated, a lot of
redundancy. AE is a decoder and an encoder. Figure 1
depicts the AE model’s basic structure. Assume that AE
inputs are x � [x(1), x(2), ..., x(dx)]

T ∈ Rdx , where dx stands
for the dimension of the input.

0e inputs x are mapped to the hidden layer h ∈ Rdx by
function f as

h � f(x) � rf(Wx + b), (1)

where hd stands for the hidden variable vector dimension
and W stands for hd × dx weight matrix and b ∈ Rdh soft
sensor in the decoder; the hidden representation h is mapped
to the output layer of x ∈ Rdx by mapping function f.

x � f(h) � rf(w + b), (2)
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where w stands for a hd × dx weight matrix and b ∈ Rdx

stands for the output layer bias function. 0e nonlinear
activation functions of rf and rf represent the rectified
linear units (ReLU) and can be described as

rf(x) � max(0, x). (3)

An AE’s parameter set is θ � w, w, b, b . 0e initial
input x of AE is used to be as similar to the reconstructed
output x as possible. 0at is the task that AE attempts to
learn gθ(x) � f(f(x)) ≈ x. Assume the set of input data
X � x1, x2, ..., xN , where N represents an overall number
of samples in training. By calculating the mean square error,
the reconstructed loss function is reduced to obtain the
model parameters as

j(w, w, b, b) �
1
2N



N

i�1
x − xi

����
����
2

�
1
2N



N

i�1
gθ − xi

����
����
2

. (4)

By SGD, the autoencoder parameters can be optimized.
Within the stacked autoencoder, there are multiple AEs

connected layer by layer that can be trained through su-
pervised fine-tuning and layer-wise unsupervised pretrain-
ing. Using raw input data, an unsupervised pretraining is
used to train the first AE and obtain the trained function
vector. 0e former layer’s function vector is used as the
output of the next layer, and this process can be repeated by
layer pretraining before training the entire SAE layer. 0e
output layer will be applied to the top of the SAE after
training all the hidden layers and backpropagation (BP)
using the labeled training set to minimize cost function and
update weights to achieve supervised fine-tuning.

2.2. SAE Parameter Optimization Algorithm. By using an
optimization algorithm, we must optimize weights in the
pretraining process for each layer of the AE network; then
these are the initial parameters used for a deep AE network.
0e BP algorithm is the most common method, but training
deep backpropagation AE network typically results in lower
quality of generalization. 0at is, the top-layer parameters
will simply adapt to fit as much as possible the training data

sets, regardless of the lower-layer parameters estimate. We
adopt the SGD algorithm in this research work in order to
optimize the initial parameters. It is a method of optimi-
zation for unconstrained problems with optimization. In
SGD, for each iteration, several samples are selected ran-
domly instead of the entire data set [19–25]. 0e process of
conducting one iteration in each sample update basically
depends on random shuffling, and hence the updated
model’s parameters are estimated by

for i range(m): θJ � θJ − α yi − y
i

 x
i
J. (5)

At each iteration, we figure out the cost function gradient
of a single example rather than the sum of the cost function
gradient of all the examples, so the SGD algorithm has a high
speed of execution and can also be used for online learning.

2.3. Model Structure Identification Using a Genetic Algorithm
(GA). How to assess network architecture is one of the
critical aspects that need to be dealt with for a neural net-
work. In other words, the appropriate number of neurons
should be selected for each hidden layer. In this present
work, GA is employed to identify the number of neurons in
each hidden layer, which is a process of searching and an
optimization method that is driven based on the process of
natural selection. Generally, it is widely utilized for finding
the near-optimal solution for optimization problems with
large parameter space. When employing GA, there are two
preconditions that have to be realized, a defining chromo-
some or solution representation and a fitness function to
evaluate the solutions. In this work, the root means squared
error (RMSE) acts as a fitness value.

3. Main Results

3.1. Soft Sensor Modeling of Key Effluent Parameter BOD5
Based on SAE-NN. 0emain objective of the SAE-NN based
on the soft sensor is to take the unlabeled raw data in the soft
sensor modeling and to benefit the critical information
behind process data.

0e SAE-NN-based soft sensor structure is shown in
Figure 2. First of all, the original data set from the wastewater
treatment plant will be analyzed. 0en, the secondary BOD5
related variables are selected (including labeled data and
unlabeled data) that are used to pretrain SAE to have im-
proved neural network initialization trained on labeled data
y. Finally, the prediction values of BOD5 are obtained by
SAE-NN. 0e soft sensor proposed in this work has two
main parts: supervised learning (classical neural network
NN) and an unsupervised pretraining layer (SAE). In ap-
plications of large-scale data set such as wastewater treat-
ment data set, three layers of SAE can be utilized through the
following steps. Firstly, an AE will be trained to acquire
features. Second, learn secondary features after using the
primary features as raw input to the next AE. Such procure is
repeated to reach the last level of AE. After building the
stacking of the encoders, the acquired features are used as
raw input to NN regressor. And finally, the data labels are
mapped after applying the training process. Eventually, all
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Figure 1: 0e structure of autoencoder.
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layers are merged into stacked autoencoder and a final layer
of NN regressor which is capable of regressing the BOD5 key
effluent parameter.

0e SAE-NN soft sensor modeling procedure is sum-
marized as follows:

Step 1. Select secondary variables based on process
knowledge and data collection and divide them into a
training set, validation set, and testing set.
Step 2. Data preprocessing: resampling and interpo-
lating the data set involves changing the time series
observation rate and applying data normalization so
that all observations are within 0 and 1.
Step 3. Define the deep SAE structure, train the indi-
vidual AE in an unsupervised pretraining layer and use
the SGD algorithm to obtain the optimized weight
values, and use the genetic algorithm to determine the
optimum number of neurons in each hidden layer.
Step 4. Primarily, the initiation of the weight of SAEs will
be considered to launch the supervised neural network
and train it on the criterion of supervised training.
Step 5. Test a SAE-NN’s performance based on a soft
sensor.

3.2.Case Study. In this section, in order to predict the BOD5
in a wastewater treatment plant, the soft sensor model
proposed is applied to an actual WWTP. BOD5 is deter-
mined by standard, off-line 5-day delay, which plays an
essential role in controlling the key effluent indicator and in
preventing water body eutrophication. Soft sensor tech-
nology provides a good solution for dealing with these
problems. Compared to other data-driven modeling ap-
proaches, the proposed soft sensor has shown a better
performance of prediction.

3.2.1. Case Description. In the WWTP, basically intended to
remove organic matter and nutrients, an activated waste-
water treatment plant is commonly used. 0e influential
rate, the performance, and the number of species of mi-
croorganisms vary over time, and the process information is
very restricted. 0erefore, due to its climate sensitivity and
seasonal changes, an online analyzer appears to be un-
available. Based on the above, the complexity and fluctua-
tions result in deterioration or even failure of the online
analyzer performance. 0e proposed wastewater processing
plant [26] is shown in Figure 3 which consists of four es-
sentials: pretreatment, primary settlers, aeration tanks, and
secondary settlers.

Firstly, wastewater is processed after primary settlers in
the bioreactor tank where the microorganisms decrease the
level of the substrate. Secondly, for biomass sled settlement,
the sewage water is moved to secondary settlers.

0us, at the top of the settlers, there is clean water and
the sewage processing plant is performed. To retain a
sufficient level of biomass, a fraction of the sludge is added
to the input of the aeration tank to allow the organic matter
to be oxidized and the remaining sludge to be purged. 0e
plant primarily treats sewage flow of 35,000 m3/d. A series
of device variables, 8 of which are performance indicators,
are calculated at several plant locations with the regular
measurement of a sensor, giving a set of 38 values per day, 9
of which are percentages of performance. In this work, the
behavior of the plant along of 527 days has been considered;
individually it involves 38 process variables. However, the
data set reduction was done to cope with any missing values
for attributes. In other words, all rows with any missing
data were removed from the data set, thereby resulting in a
data set with 381 instances. It is necessary to select the
correct secondary variables in order to achieve high per-
formance because irrelevant variables will deteriorate the
soft sensor’s prediction performance. Figure 4 shows
Pearson’s linear correlation. Nineteen process variables
were chosen to predict BOD5, including local settlers
performance based on SS/COD/BOD5, suspended solids
(SS), sediments, biochemical demand for oxygen (BOD),
unstable suspended solids, chemical demand for oxygen
(COD), input, and global plant performance based on
BOD/COD/SS input. 0en, these nineteen variables were
employed as the model soft sensor input, and BOD5 was
employed as the model soft sensor output. Table 1 shows
the details of secondary variables.

3.2.2. Augmentation Processing and Data Preprocessing.
Because of overfitting, training a deep SAE with small data set
would deteriorate SAE’s performance; that is, the network is
working well on the training set, but the testing set is worth it
[27, 28]. Augmentation data are used to solve this problem in
order to expand the data set and reduce the problem of
overfitting [29, 30].0e number of samples is increased in the
data augmentation method by applying sampling polynomial
interpolation to the data set, where we increased the fre-
quency of data set from days to hours and used an inter-
polation scheme to fill in the new hourly frequency.

To eliminate different scales of data set, all data set is
scaled to (0, 1) by min-max scaler according to the following
equation:

xi
∗

�
x − min xi( 

max xi(  − min xi( 
, (6)

where x∗i refers to normalized variables and i refers to the
dimension of the data set.

3.2.3. Setting Parameters of the Deep Neural Network.
0e performance of the soft sensor is governed by a neuron’s
number in each hidden layer; this process was not modeled

NN 
regression

Unlabeled 
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data x, y

Train with label y
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.

.
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Figure 2: SAE-NN’s BOD5 prediction structure.
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up to date. 0e genetic algorithm used in this work is to
choose the number of neurons in the hidden layer. To
evaluate the soft sensor model performance, the root means
squared error (RMSE) and the correlation coefficient (R2)
are used.

0e calculation of RMSE is

RMSE �

���������������



N

i�1

yi,predict − yi,real

N




, (7)

where yi,predict and yi,real are, respectively, the forecast value
and the real value for the example; and in the given data set,
N refers to the total number of examples.

(1) R2 is calculated by

R
2

�
1 − 

N
i�1 yi,predict − yi,real 

2


N
i�1 yi,predict − y 

2 , (8)

where y stands for the average of the test set’s output values.

4. Simulation Experiment and Result Analysis

0e proposed soft sensor was validated in this study and
compared to three conventional soft sensors: SVR (there are
a number of core functions like linear kernel, polynomial
kernel, sigmoid kernel, RBF kernel, etc., gamma� scale
(hard no limit on iterations within solver) max_iter� −1),
PCA-SVR combining PCA (number of components� 10)
and support vector regression, and NN with three hidden
layers (activation� relu, optimizer� sgd, momentum for
gradient descent update� 0.9, and initial learning rate-
� 0.001). 0e data set itself will be used to model training for
comparison purposes in order to ensure a fair comparison.
0e number of neurons in each hidden layer is determined
experimentally as 13, 13, 13, and the regularization pa-
rameters C and ε are 5 and 0,022, respectively, based on the
linear kernel function of SVR, using the GA. 12749 samples
have been utilized as samples for training (the initial training
samples are divided into new training samples and valida-
tion samples, of which 30% were initial training samples)
and 3188 are used as testing samples. In order to obtain the
SAE, an unsupervised pretraining layer-wise method is
utilized to achieve a good initialization for the weights and
bias of each AE. Every AE is equipped with the SGD al-
gorithm for batch normalization to speed up training, and
Dropout is used for regularization, setting the batch size as
512 samples. Every AE is trained iteratively by 50 epochs, in
addition to the supervised backpropagation-trained fine-
tuning. 0e size of the batch is set as 128 samples and
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iteratively as 150 epochs. As can be seen in Figure 5, RMSE
and R2 of 0.0051 and 0.989, respectively, were predicted by
the proposed soft sensor based on SAE-NN. It can be seen
that the predicted values of the BOD5 match real values
and when faced with drastic variations it performs better.
0e figures show only 100 training samples and 100 testing
samples because the training and testing data set is too
large to show. Table 2 describes the predictive performance
of the soft sensor based on different approaches. 0e re-
sults of PCA-SVR, SVR, multilayer NN, and the proposed
soft sensor based on SAE-NN are predicted in Table 2 on
the training and testing data set. As can be seen, the SAE-
NN-based soft sensor has much better performance in
learning and generalization than other conventional soft
sensors and given a fairly satisfactory estimate of BOD5,
while PCA-SVR, SVR, and multilayer NN obtained

relatively poor results. 0e SVR had the worst results
because it was unable to adequately describe the nonlinear
structure data. 0e PCA-SVR model achieved slightly
better predictive results as PCA can eliminate input data
from noise and data redundancy to improve predictive
performance. More accurately than PCA-SVR and SVR,
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Figure 5: Soft sensor performance prediction based on SAE-NN.

Table 2: Results of different models of soft sensors.

SAE-NN PCA-SVR SVR NN (3 hidden
layers)

Training RMSE 0.0051 0.0246 0.0283 0.0202
Testing RMSE 0.0041 0.0249 0.0287 0.0203
Training R2 0.989 0.876 0.837 0.917
Testing R2 0.987 0.849 0.799 0.899

Table 1: Variables selected for the soft sensor.

Attribute no. Comments Attributes
1 Input flow to the plant Q-E
2 pH input to the plant PH-E
3 Suspended solids input to the plant SS-E
4 Volatile input suspended solids into the plant SSV-E
5 Plant input sediments SED-E
6 Biological oxygen demand input for primary settlers BDO-P
7 Suspended solids input into primary settlers SS-P
8 Biological oxygen demand input for secondary settlers DBO-D
9 Chemical oxygen demand input for secondary settlers DQO-D
10 pH output pH-S
11 Biological oxygen demand output DBO-S
12 Chemical oxygen demand output DQO-S
13 Input performance biological oxygen demand in primary settlers RD-DBO-P
14 Input performance biological oxygen demand in secondary settler RD-DBO-S
15 Input performance chemical oxygen demand in secondary settlers RD-DQO-S
16 0e output of global quality biological oxygen demand RD-DBO-G
17 0e output of global quality chemical oxygen demand RD-DQO-G
18 0e output of global quality suspended solids RD-SS-G
19 0e output of global quality sediments RD-SED-G
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Figure 6: Soft sensor performance prediction based on PCA-SVR.

100

95

90

85

80

75

70

65

60

BO
D

5 
co

nc
en

tr
at

io
n 

(m
g/

L)

0 20 40 60
Training samples

80 100

Actual
Predicted

(a)

100

95

90

85

80

75

70

65

60

BO
D

5 
co

nc
en

tr
at

io
n 

(m
g/

L)

0 20 40 60
Testing samples

80 100

Actual
Predicted

(b)

Figure 7: Soft sensor performance prediction based on SVR.
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Figure 8: Soft sensor performance prediction based on NN.
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traditional multilayer NN can approximate the complex
data relationship. Nonetheless, NN with 3 hidden layers
does not provide great predictive performance compared
to SAE-NN.

0e network parameters for the multilayer NN have
been randomly initialized and local optima are easily
disposed to it. 0at is, training NN with BP results in a slow
rate of convergence and difficulties in deciding an ap-
propriate architecture to achieve a minimum. In contrast,
layer by layer can be extracted from high-level abstract
features in SAE. 0erefore, for tasks of prediction, these
features are much more structured. 0at is, the perfor-
mance of SAE-NN is better than that of multilayer NN.0e
comparative results of the other traditional soft sensor are
shown in Figures 6–8. It can be observed from Figures 6–8
that from estimating the BOD5 in the WWTP plant, this
explicitly shows the fact that soft sensor based on SAE-NN
has good performance. 0at is, from tracking the BOD5’s
varying trend, SAE-NN performs well. 0e prediction
errors of SAE-NN are smaller than those of the other, as can
be seen. 0at is, the SAE-NN forecast easily shifts without
significant variations and displays greater robustness than
models of shallow architecture predictions. 0e experi-
ments were performed on a PC using Intel® Core™ i5-
8250U CPU @1.60GHz (8 CPUs)∼1.8 GHz, 4 GB RAM
using the Keras Python deep learning library (using Ten-
sorFlow backend) 2.2.4. [31].

5. Conclusions

In this paper, in a wastewater treatment plant, SAE-NN
based on the data-driven soft sensor is proposed and
implemented to estimate the BOD5. 0e stacked AEs have
been trained for the supervised NN to obtain initialization
weights, which resulted in the best generalization of the NN
system and avoiding the issue of overfitting. In addition, in
each hidden layer, GA was developed to determine the
appropriate number of neurons. Generally, the soft sensor
output is estimated by approximating the real values of
BOD5. In most cases, the SAE-NN-based soft sensor out-
performs all additional tools regarding the soft sensors. Deep
learning in many industrial process applications is superior
to shallow learning when faced with complex situations and
is a promising approach for modeling soft sensors. Auto-
matically selecting the appropriate parameter values to
improve the performance of the deep network will be the
focus in future work. Further future work will also extend
our approach to a pretraining layer-wise manner which is
supervised or semisupervised.
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