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Abstract: Bulk metallic glass (BMGs) is highly expected for applications in engineering structures due
to their superior mechanical properties. The fracture toughness of some BMGs was investigated at
cryogenic and at elevated temperatures. However, the mechanism of the temperature-dependence of
BMG toughness still remains elusive. Here, we characterized the fracture toughness of Zr61Ti2Cu25Al12

BMG prepared with Zr elemental pieces with low Hf content at temperatures ranging from 134 to
623 K. The relaxation spectrum of the BMG was characterized by a dynamic mechanical analysis
using the same temperature range. We found that the BMG is tougher at onset temperatures of the
relaxation processes than at peak temperatures. The temperature-dependent fracture toughness of
the BMG is strongly dependent on its relaxation spectrum.
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1. Introduction

Due to high strength [1–3], high toughness [4–6], and high fatigue resistance [7,8], bulk metallic glasses
(BMGs) have potential applications as structural engineering materials. Usually, structural materials
function at various temperatures. Temperature effects on mechanical properties of BMGs have been
intensively investigated [9–11], and because thermal activation increases with increasing temperature,
yield strength and hardness of BMGs decrease monotonically with increasing temperature [12–17].
The temperature dependence of plasticity [18–20] and toughness [21] are more complicated. There is
brittle-to-ductile transition at cryogenic temperature [19] and intermediate temperature brittleness [18,21]
as in crystalline metals [22,23]. The brittle-to-ductile transition of Ti6Al4V alloy is caused by oxygen [24]
and the intermediate temperature brittleness occurs due to a transition from intra-grain plasticity to grain
boundary failure in many crystalline metals [25]. However, the mechanism of the temperature-dependent
toughness of BMGs remains elusive [21].

The fracture toughness of materials strongly depends on the flow units ahead of the crack tip [26].
Flow units in crystalline metals, such as dislocation, twining, and so on, can be observed using a
transmission microscope [27] and theoretically described using physical models [28,29], which revealed
the mechanism of temperature-dependent toughness of crystalline metals. The flow units in BMGs can
be neither visualized experimentally nor physically modeled perfectly [30,31]. As such, the behavior of
BMG flow units needs to be investigated to understand the temperature dependence of BMG toughness.

Many research groups found that flow units correlated with peaks in relaxation spectrum of
BMGs. Harmon [32] theoretically identified elastic deformation and plastic deformation with slow
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β- and α-relaxation, respectively, and stated that isolated STZ (shear transformation zone) and shear
banding are associated with slow β- and α-relaxation, respectively. Dynamic mechanical analysis
(DMA) of BMGs verified that activation of slow β-relaxation is nearly equal to the potential energy
barriers of STZs [33], whereas compression tests showed that viscosity of shear band is quite similar to
that of supercooled liquid, which undergoes α-relaxation [34,35]. It was reported [19] that the plasticity
of BMGs at cryogenic temperature is mediated by another kind of flow unit that is associated with
fast β-relaxation [36]. Therefore, we think that investigation of the correlation of different relaxation
processes and flow units could shed light on the mechanism of the temperature-dependent fracture
of BMGs.

Here, Zr61Ti2Cu25Al12 BMG with benchmark toughness was chosen for investigating the
temperature effect on fracture toughness of the BMG. DMA was used to characterize the relaxation
processes of the BMG. The toughness of the BMG was tested from cryogenic temperature to elevated
temperature. Fracture morphology was also imaged to obtain detailed information about the fracture
behavior of the BMG at various temperatures.

2. Materials and Methods

Zr61Ti2Cu25Al12 alloy ingots were prepared by arc melting high purity Zr (≥99.95%) elemental
pieces with low Hf content (≤0.03%), Ti (≥99.9%), Cu (≥99.9%), and Al (≥99.9%) elemental pieces in a
Ti-gettered pure argon atmosphere in a vacuum chamber. Each alloy ingot was re-melted four times to
ensure homogeneous composition. The Zr61Ti2Cu25Al12 plates with dimensions of 90 × 10 × 3 mm3

were fabricated by arc melting the ingots and a water-cooled copper mold suction casting.
Samples for fracture toughness tests with dimensions of B (thickness) ×W (width) × L (length) =

3 × 6 × 30 mm3 were cut from the bottom of the as-cast plates using the electrical-discharge cutting
technique and manual grinding with SiC papers. A straight-through notch with a root radius of 200 µm
and a length of about 0.25 W was cut in the sample by using a diamond wire saw (Well 3500 Premium
Version, Mannheim, Germany). Fatigue pre-cracking was performed on an Instron 8801 Servohydraulic
Dynamic Testing System (Norwood, MA, USA) with a span (S) of 24 mm at a frequency of 20 Hz at
ambient temperature. Fatigue pre-cracking was controlled by da/dN (crack propagation rate) fatigue
crack propagation software (FastTrack 2) under decreasing stress intensity factor range (∆K) mode with
a constant stress ratio (R = Pmin/Pmax) of 0.1. The initial ∆K was 11 MPa·m1/2, which decreased with a
normalized K gradient of −0.224. The end stress intensity factor at the tip of the fatigue pre-crack was
around 7.5 MPa·m1/2. The total length of notch and fatigue pre-crack were about 0.45–0.5 W (confirming
ASTM standard) after about 26,000 fatigue cycles.

Fracture toughness tests at different temperatures were conducted in an environmental box with
laboratory air on an Instron 8801 universal mechanical testing machine (Norwood, MA, USA) with a
three-point bending fixture at a displacement rate of 0.1 mm/min. A clip gauge was used to monitor
crack opening displacement (COD) across the crack mouth. The high temperatures were provided by a
resistance heating wire and the low temperatures were supplied by inputting liquid nitrogen into the
environmental box. After reaching the set temperature, 10 minutes were used for heat preservation to
stabilize the temperature and subsequent fracture toughness tests. During the tests, the temperature
fluctuation was within ±1 K. Three toughness tests were performed at each temperature to ensure
repeatability of experimental results.

We investigated the relaxation behavior of Zr61Ti2Cu25Al12 glass using dynamic mechanical
analysis (DMA) to determine the test temperatures for fracture toughness. The sample for DMA
measurement, with a dimension of 30 × 2 × 1 mm3, was taken from the as-cast plate by using a diamond
wafering blade on a low speed saw and subsequent grinding on SiC papers. DMA measurements
were recorded on a TA Q800 DMA (New Castle, DE, USA) with a constant heating rate of 2 K/min at a
frequency of 0.5 Hz. Finally, the morphology on side surface and fracture surface of the failed samples
were observed in a Hitachi SU-1510 scanning electron microscope (SEM, Tokyo, Japan).
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3. Results

3.1. Dynamic Mechanical Analysis

The DMA relaxation spectrum of the BMG, obtained by measuring loss modulus E” at temperatures
ranging from 134 to 730 K, is shown in Figure 1. The E” curve shows two distinct peaks in the temperature
range: the peak temperature of 687 K is associated with α-relaxation and the peak at 207 K correlates to
fast β-relaxation. In addition, a hidden peak is present, as a shoulder in the α-relaxation peak. This kind
of hidden peak was identified as slow β-relaxation [37] with a peak temperature of 578 K. The onset
temperatures of the fast β-relaxation and α-relaxation are 134 and 623 K in Figure 1, respectively.
Between the slow and fast β-relaxation, there was a cage dynamic process that was thought to be the
precursor of the slow β-relaxation, as reported in the literature [31]. Therefore, the onset temperature
of the slow β-relaxation should be the inflection point, which was at 373 K. These characteristic
temperatures and room temperature of 298 K were chosen for toughness tests of the BMG samples to
see if there were some correlations between fracture toughness and the relaxation processes.
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Figure 1. DMA (dynamic mechanical analysis) relaxation spectrum of the BMG (bulk metallic glass).
The variation of loss modulus E” with temperature were obtained at the frequency of 0.5 Hz and
heating rate of 2 K/min. The black line indicates experimental data. The purple, red, and green curves
represent the H-N (Havriliak-Negami) fitting of fast β-relaxation, slow β-relaxation, and α-relaxation,
respectively (see details of the fittings in [36]).

3.2. Toughness Test

The mode I stress intensity factor KI vs. crosshead displacement curves are shown in Figure 2a.
Except for the curve at 578 K, all other curves were nonlinear. The nonlinearity indicates plastic events
ahead of fatigue crack tip. The plastic events were examined and will be shown in the next section.
All these curves are typical for BMGs as reported in the literature [10,12]. A fracture toughness test was
also performed at 623 K, however, the sample did not fracture. Hence, the toughness of the sample
tested at 623 K could not be calculated. The temperature-dependent fracture toughness Kmax of the
BMG samples are shown in Figure 2b. From room temperature to elevated temperature, the dependence
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was similar to the reported intermediate temperature toughness minimum [21], and also similar to the
reported intermediate temperature plasticity minimum [18]. However, the temperature-dependence of
Kmax of the BMG samples below room temperature was quite different from that of plasticity reported
in the literature [18].

From Figures 1 and 2b, the toughness at the onset temperature of relaxations was higher than
the toughness at peak temperature of the relaxation processes. We think that at peak temperature
of relaxation processes, the associated flow units were thermally activated and plasticity seldomly
had flow units to mediate. We also think that at the onset temperature of relaxations, shear stress can
activate associated flow units to undergo plastic deformation ahead of fatigue crack tip to increase
fracture toughness of BMGs. Therefore, the BMG samples had higher toughness at 134, 298, and 373 K,
whereas they had the lowest toughness at 207 and 578 K. The toughness values of the samples tested at
these temperatures were 133, 102, 147, 132, and 76 MPa·m1/2, respectively.

Kmax is an effective parameter used to compare fracture toughness of samples [5] tested at different
temperatures. Due to the limited glass forming ability of the BMG, we could not obtain thicker samples
to measure KIC. KJC could not be precisely measured because there was crack deflection, as shown in
the SEM images in Figure 3, and the standard KJC test [28] supposed that crack propagates straight in
the direction of fatigue pre-crack.

Materials 2020, 13, x FOR PEER REVIEW 4 of 9 

 

sample tested at 623 K could not be calculated. The temperature-dependent fracture toughness Kmax 
of the BMG samples are shown in Figure 2b. From room temperature to elevated temperature, the 
dependence was similar to the reported intermediate temperature toughness minimum [21], and also 
similar to the reported intermediate temperature plasticity minimum [18]. However, the 
temperature-dependence of Kmax of the BMG samples below room temperature was quite different 
from that of plasticity reported in the literature [18].  

From Figures 1 and 2b, the toughness at the onset temperature of relaxations was higher than 
the toughness at peak temperature of the relaxation processes. We think that at peak temperature of 
relaxation processes, the associated flow units were thermally activated and plasticity seldomly had 
flow units to mediate. We also think that at the onset temperature of relaxations, shear stress can 
activate associated flow units to undergo plastic deformation ahead of fatigue crack tip to increase 
fracture toughness of BMGs. Therefore, the BMG samples had higher toughness at 134, 298, and 373 
K, whereas they had the lowest toughness at 207 and 578 K. The toughness values of the samples 
tested at these temperatures were 133, 102, 147, 132, and 76 MPa⋅m1/2, respectively. 

Kmax is an effective parameter used to compare fracture toughness of samples [5] tested at 
different temperatures. Due to the limited glass forming ability of the BMG, we could not obtain 
thicker samples to measure KIC. KJC could not be precisely measured because there was crack 
deflection, as shown in the SEM images in Figure 3, and the standard KJC test [28] supposed that crack 
propagates straight in the direction of fatigue pre-crack. 

 
Figure 2. Temperature-dependent fracture toughness of the BMG samples. (a) KI (mode I stress 
intensity factor) vs. crosshead displacement curve at various temperatures. (b) Fracture toughness of 
the samples at various temperatures. 

3.3. Plain-Stress Plastic Zone 

To further investigate the temperature-dependent fracture behavior of the BMG samples, SEM 
was used to document the side surface fracture morphology of the samples fractured at various 
temperatures, as shown in Figure 3. Except the sample tested at 623 K, the samples underwent shear 
banding ahead of the fatigue crack tip. Samples fractured below room temperature had a fan-shaped 
plastic zone, as shown in Figure 3a,b. The plastic zone of the sample fractured at room temperature 
had the largest plastic zone (Figure 3c) extended from the fatigue pre-crack to the other end of the 
sample. Figure 3d,e show that there were fewer shear bands ahead of fatigue pre-crack in the samples 
tested at 373 and 578 K, respectively. The specimen tested at 623 K did not fracture, as shown in 
Figure 3f. No shear band was found ahead of the fatigue pre-crack and the material ahead of the crack 
tip underwent homogeneous plastic deformation, as shown. The fatigue pre-crack tip was strongly 
blunted. The blue surface indicated that the sample was oxidized during the toughness test. Figure 
3g shows details of the oxidization. There were high-density voids around the crack tip. The voids 
might have been caused by failure of the interface between the oxide particles and the BMG matrix. 
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3.3. Plain-Stress Plastic Zone

To further investigate the temperature-dependent fracture behavior of the BMG samples, SEM was
used to document the side surface fracture morphology of the samples fractured at various temperatures,
as shown in Figure 3. Except the sample tested at 623 K, the samples underwent shear banding ahead
of the fatigue crack tip. Samples fractured below room temperature had a fan-shaped plastic zone, as
shown in Figure 3a,b. The plastic zone of the sample fractured at room temperature had the largest
plastic zone (Figure 3c) extended from the fatigue pre-crack to the other end of the sample. Figure 3d,e
show that there were fewer shear bands ahead of fatigue pre-crack in the samples tested at 373 and
578 K, respectively. The specimen tested at 623 K did not fracture, as shown in Figure 3f. No shear
band was found ahead of the fatigue pre-crack and the material ahead of the crack tip underwent
homogeneous plastic deformation, as shown. The fatigue pre-crack tip was strongly blunted. The blue
surface indicated that the sample was oxidized during the toughness test. Figure 3g shows details
of the oxidization. There were high-density voids around the crack tip. The voids might have been
caused by failure of the interface between the oxide particles and the BMG matrix.
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3.4. Fracture Pattern

As shown in Figure 4, no nano-corrugation was found on the fracture surface of specimens
tested at all temperatures. There were dimples and viscous vein patterns on the fracture surface of
the samples tested at 134 K, whereas the fractured samples tested at room temperature showed a
viscous vein pattern that was similar to the pattern on the fracture surface of Zr52.5Cu17.9Ni14.6Al10

BMG fractured under pure shear [38]. The combination of viscous veins and shear sliding zones on the
fracture surface of specimens, tested at 207, 373, and 578 K, were quite similar to the fracture pattern
on the fracture surface of pre-compressed BMGs [38]. The viscous vein pattern corresponded to the
sliding crack along the shear band and the shear sliding zone correlated with the deviation of crack
from one shear band to another [39]. Because the deviation drives the crack toward the orientation
of maximum hydrostatic tension in the plastic zone [39], it indicated domination of the maximum
hydrostatic stress. Hence, the viscous vein pattern alone existed on the fracture surface of specimens,
which was tougher than the samples with the combination of viscous vein pattern and the shear
sliding zone. The pattern on fracture surface of the specimen tested at 578 K was quite similar to that
of the specimens tested at 207 and 373 K. Usually, the similarity indicates nearly the same fracture
toughness [40]; however, the toughness of the sample tested at 578 K was much lower than that of
the samples tested at 207 and 373 K. This was unexpected and has not been reported before, as far as
we know. The viscous vein pattern on the fracture surface of the sample tested at 578 K might have
been caused by the elevated temperature. Therefore, the relationship between toughness and fracture
morphology [40] at room temperature cannot be applied to elevated temperatures.
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4. Discussion

As described above, shear banding dominates the fracture behavior of Zr61Ti2Cu25Al12 BMG.
To reveal the mechanism of temperature-dependent fracture toughness of the BMG, the investigation
of the physics of flow units that mediate the plasticity of the BMG is necessary. We measured the
plastic zone size by measuring the extension of the shear bands in the plastic zone from fatigue
pre-crack tip in the direction of loading. Illustrations of the measurement can be found in our previous
work [39]. As seen in Figure 1, the lowest point on the relaxation curve is somewhere around room
temperature. Figure 5 shows that the specimen tested at room temperature had the largest plastic zone.
Figure 5 also shows that the plastic zone sizes of the specimens tested at the onset temperatures of
relaxation processes were larger than those of specimens tested at peak temperatures of relaxation
processes on the relaxation spectrum in Figure 1.
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The specimens tested at 623 K underwent homogeneous plastic deformation, which is α-relaxation
of supercooled liquid [32]. Therefore, shear stress can activate relaxation processes (or associated flow
units) at their onset temperatures to percolate into α-relaxation (shear banding or homogeneous plastic
flow) to increase plastic zone size and, hence, fracture toughness. However, at peak temperatures of
relaxations, the associated flow units have already been thermally activated and plasticity seldomly
had flow units to mediate. From this viewpoint, the temperature-dependent fracture toughness and
plasticity, reported in literatures [18,21], can also be reasonably explained.

5. Conclusions

Temperature-dependent fracture toughness of Zr61Ti2Cu25Al12 BMG with low Hf content was
measured from 134 to 623 K. The BMG had the highest toughness at room temperature, relatively
lower toughness below room temperature, and intermediate temperature brittleness as reported in the
literature [21]. We failed to obtain toughness data of the sample tested at 623 K because the sample did
not fracture due to homogeneous viscous flow. The fracture toughness of the BMG was superior to most
engineering materials at both cryogenic temperatures and elevated temperatures. Hence, the material
has potential applications in engineering structures. Correlations between fracture toughness,
fracture morphology, and relaxation spectrum were also investigated. Samples tested at all temperatures
exhibited viscous vein patterns on their fracture surface. Only the sample tested at 134 K had dimples
on its fracture surface. Shear sliding zones was found on the fracture surface of samples tested
at 207, 373, and 578 K. The fracture morphology of the sample tested at room temperature only
exhibited viscous vein pattern. We found that the fracture toughness of the BMG was higher at the
onset temperatures of relaxation processes than at peak temperatures of the relaxation processes,
including fast β-relaxation, slow β-relaxation, and α-relaxation. These relaxation processes correspond
to different flow unites [19,30–32]. At the onset temperatures, shear stress can activate corresponding
relaxations to mediate plasticity while there were rarely flow units to be triggered to percolate into shear
banding or homogeneous plastic flow at peak temperatures of relaxation processes. Our viewpoint is
helpful for understanding the temperature-dependent fracture toughness and plasticity of BMGs.
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