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ABSTRACT To improve the efficiency of structural reliability-based design optimization (RBDO) based on
the performancemeasure approach (PMA), a modified conjugate gradient approach (MCGA) is proposed for
RBDO with nonlinear performance function. In PMA, the advanced mean value (AMV) approach is widely
used in engineering because its simplicity and efficiency. However, the AMV method shows the inefficient
and unstable results for structural performance function with high nonlinearity in RBDO. To overcome this
shortcoming, the proposed MCGA method improves the efficiency of solution by modifying the relevant
parameters of conjugate gradient approach (CGA) and the direction of conjugate gradient algorithm for
searching the optimal design point. Finally, three numerical examples with highly nonlinear performance
function and an optimization design example of speed reducer are presented. Compared with different
methods, the results show that the MCGAmethod exhibited the better efficiency and robustness in structural
reliability and RBDO analyses.

INDEX TERMS Reliability-based design optimization, modified conjugate gradient approach, advanced
mean value, performance measure approach, reliability analysis.

I. INTRODUCTION
In the structural optimization design, the traditional opti-
mization methods are often used to solve the deterministic
optimization problem, which means that the design vari-
ables are deterministic variables. However, there are certain
uncertainties in the dimensional parameters, material proper-
ties and external loads of the structure owing to machining
errors, internal dispersion of materials and accidental fac-
tors, etc [1], [2]. To solve this problem, the reliability-based
design optimization (RBDO) has been proposed. Generally,
the RBDO methods can be divided into three categories:
decoupling method, single loop method and double loop
method. Decoupling method can be used to solve the opti-
mization design and the reliability analysis as well. By using
this method, new design parameters are obtained through the
optimization loop, and then the reliability analysis method
is used to evaluate the feasibility of the design parame-
ters for the probability constraint. In the step of reliabil-
ity analysis, the most probable point (MPP) is obtained,
which is used to get optimal design parameters in subsequent
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optimization loops [3]. Generally, relatively high solution
efficiency can be obtained by the decoupling method. Unlike
decoupling method, single-loop method solves the RBDO
problem by replacing the reliability analysis loop with the
Karush-Kuhn-Tucker optimal condition. However, the rele-
vant research shows that single-loop method encounters the
numerical instability and non-convergence for highly non-
linear problems [4]. For double loop method, an external
optimization loop and an internal reliability constraint loop
are usually used to solve the RBDO problem. Compared
with single-loop method, the double loop method is relatively
simple.

The RBDO problem is actually optimization design prob-
lem based on probability constraints. In order to ensure the
reliability of the structure, it is very important to obtain the
efficient and accurate solutions of the probability constraints.
In RBDO, double loop method based on the reliability index
approach (RIA) and performance measure approach (PMA)
is widely used [5]–[8]. The RIA usually transforms the prob-
ability constraint problems into reliability index constraint
problems, and then establishes a constraint relationship with
the target reliability index. In general, the reliability index
can be solved by first order reliability method (FORM)
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and second order reliability method (SORM) [9]–[11].
However, second order Taylor series expansion is needed to
approximate the performance function at MPP in SORM,
which is difficult to use in engineering applications because
of the expensive computing for complicated engineering
problems. On the other hand, FORM just needs first order
Taylor series expansion at MPP. Therefore, FORM has high
efficiency. In FORM, the HL-RF method is often used in
engineering practice because of its simple and efficient char-
acteristics. However, iterative oscillation and low efficiency
could be caused for a performance function with a high
nonlinearity [12]–[14]. In RBDO, the PMA of the double
loop method transforms the probability constraint problem
into an optimization problem with the constraint function
of target reliability index, then the minimum performance
target point (MPTP) can be obtained through continuously
searching in PMA. Compared with RIA, PMA has higher
efficiency and robustness [15]–[17].

In the PMA, the advanced mean value (AMV) method
has been often used because of its simple and efficient
characteristics [18]. However, for nonlinear performance
functions, its solutions maybe not converge owing to the
phenomena of chaotic and periodic cycles. In order to ensure
the convergent stability and efficiency of the AMV, con-
jugate mean value (CMV) and hybrid mean value (HMV)
methods have been proposed [19]–[21]. However, unsta-
ble solutions still occur for some highly nonlinear con-
cave functions. In response to the highly nonlinear problem,
Yang and Yi [22] successfully applied the chaotic control
method to solve the nonlinear performance function prob-
lems, and significantly improved the convergence compared
with the HMV method, but the efficiency is low. Further-
more, to solve highly nonlinear convex functions, based
on the work of Yang, Meng et al. [23] proposed a mod-
ified chaotic control (MCC) method, which improved the
chaotic control method through modifying the iterative step,
and then an efficient hybrid chaos control (HCC) method
is proposed combining AMV and MCC. There are other
advanced methods for RBDO are presented in recent years,
such as enhanced chaos control (ECC) method [24] and iso-
geometric analysis method [25]. In addition, Ezzati et al. [26]
proposed a conjugate gradient approach (CGA), which can
quickly achieve the convergence of the solution by using
the CGA optimization method, which has very high effi-
ciency. However, in CGA, the efficiency of solution for
some highly nonlinear performance functions still needs to be
improved.

Based on CGA, this paper proposes amore efficient RBDO
method, which modifies the relevant iterative parameters of
the conjugate gradient method and the direction of conjugate
gradient algorithm for searching the optimal design point.
The method is tested by three RBDO numerical examples
with highly nonlinear probability constraints and RBDO of a
speed reducer. Compared with the other methods, the results
show that the proposed method has good robustness and high
efficiency.

II. RELIABILITY-BASED DESIGN OPTIMIZATION
MODEL AND ANALYSIS METHODS
In this section, we introduce the mathematical model of
RBDO and reliability analysis methods. To begin with,
we introduce the mathematical model of RBDO, RIA, and
PMA in subsection II-A. Then, the common reliability analy-
sis methods of RBDO are showed in subsection II-B. Finally,
amodified conjugate gradient approach of RBDO is proposed
to improve the efficiency of RBDO in subsection II-C.

A. RELIABILITY-BASED DESIGN OPTIMIZATION MODEL
In RBDO, its mathematical model is generally defined as
follows [27], [28]

find d,µX

min f (d,X)

s.t. P [gi(d,X) ≤ 0] ≤ 8
(
−β it

)
i = 1, 2, · · · , n

dL ≤ d ≤ dU , µL
X ≤ µX ≤ µU

X (1)

where f (·) is the objective function, β it represents the ith target
reliability index for constraint performance function gi(·),
and 8(·) is the cumulative distribution function of the stan-
dard normal distribution, d stands for the vector of design
variables, X is random variables, µX is the mean of X,
P(gi(d,X) ≤ 0) represents the failure probability of the ith
constraint function,µL

X andµU
X represent the lower and upper

value of µX respectively, dL and dU stand for the lower and
upper value of d.
In general, multi-dimensional integration can be used to

solve the constraint function of probability, which can be
computed by

P [g (d,X)≤0]=Fg (0)=
∫

g(d,X)≤0

· · ·

∫
fX (x)dx≤8(−βt)

(2)

where fX (x) is the joint probability density function of X,
Fg(X) represents cumulative distribution function of g(·),
g(d,X) ≤ 0 stands for failure domain.
However, (2) is difficult to compute in practical engi-

neering. Thus, some efficient approximation methods have
been developed, such as FORM and SORM. FORM is often
used in engineering practice for its simplicity and effi-
ciency [29]–[31]. In FORMmethod, it is generally necessary
to transform the original space (X-space) into a standard
normal space (U-space) as U = 8−1[FX (X)]. In addition,
the probability constraint problem of (2) can be transformed
into the following using the inverse transformation of the
cumulative distribution function [20], [21]

β =
(
−8−1

(
Fg (0)

))
≤ βt (3)

gp (d,X) = F−1g (8 (−βt)) ≥ 0 (4)

where β represents reliability index of the performance func-
tion, gp is probabilistic performance measure. In RBDO,
the probability constraint in (1) can be replaced by (3) and (4)
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using the constraint of reliability index and the probabilistic
performance measure respectively. Therefore, they are called
reliability index approach (RIA) and performance measure-
ment approach (PMA) respectively.

B. EXISTING RELIABILITY ANALYSIS TOOLS IN RBDO
Aiming at the problem that the HMV method does not con-
verge for solving highly nonlinear performance functions,
Yang and Yi [22] successfully applied chaotic dynamics
theory in RBDO, which partially solved the problem of
non-convergence of nonlinear performance functions. How-
ever, the speed of convergence needs to be improved. Due
to the chaos control method is not efficient, Meng et al. [23]
proposed a modified chaos control (MCC) method, which
improved the efficiency of the solution by correcting the
relevant parameters of the chaos control method, and the
principle of the MCC can be depicted as

ñ
(
µk+1

)
= µk

+ λC
(
f
(
µk
)
− µk

)
0<λ<1

µk+1
= βt

ñ
(
µk+1

)∥∥ñ (µk+1
)∥∥ (5)

where

f
(
uk
)
= −βt

∇g (d,uk)
‖∇g (d,uk)‖

(6)

and ñ
(
µk+1

)
is the modified descent direction based on the

chaos control on performance measure functions. C repre-
sents the n × n dimensional involutory matrix, in general, C
is the unit matrix I, factor λ is generally recommended to be
0.1 or 0.5.

Although MCC method can improve the efficiency of
solving the highly nonlinear probability constraint function,
the selection of its parameter λ has a great influence on
the accuracy of the solution. Since MCC method has a low
efficiencywhen a small value of λ is selected. On the contrary,
MCC method has a high efficiency when a large value of λ is
selected. Therefore, the method needs to select the appropri-
ate λ in the process of practical application, which reduces the
efficiency of the method. Furthermore, Ezzati et al. [26] suc-
cessfully introduced the conjugate gradient analysis (CGA)
optimization algorithm in RBDO. Compared with the MCC
method, CGA is simple and has higher efficiency for the non-
linear probability constraint problem. The iterative formula of
the CGA is formulated as [32]µk+1 = βtn

(
µk
)

n
(
µk
)
=

wk
‖wk‖

(7)

where n( µk ) stands for the conjugate search direction,
wk represents conjugate gradient vector written as

wk = −∇g
(
d,µk

)
+ θkwk−1 (8)

in which, θk stands for conjugate scalar factor computed by

θk =

∥∥∇g (d,µk
)∥∥2∥∥∇g (d,µk−1
)∥∥2 (9)

C. MODIFIED CONJUGATE GRADIENT APPROACH (MCGA)
In CGA method, a new design point µ is determined by the
vector wk and the conjugate factor θk . During the iteration of
the CGA, θk can be determined by the previous conjugate of
the performance function, andwk is mainly used to determine
the direction of the new design point. Therefore, wk has an
important influence on the efficiency and accuracy in CGA.
For the above reasons, this paper improves the efficiency of
the CGA method by modifying the vector wk , which consid-
ers the influence of vectorwk−1 onwk . After the modification
of wk , the CGA can significantly improve its convergence
speed. In addition, researches show that θk is not beneficial
to improve computation efficiency in CGA. Therefore, θk is
changed into (14) in MCGA, and the iterative approach of the
MCGA is formulated by

µk+1 = βtn
(
µk
)

n
(
µk
)
=

wMCGA
k∥∥wMCGA
k

∥∥ (10)

where wMCGA
k is modified conjugate gradient vector, and it

can be given by

wMCGA
k = αwk (11)

where α stands for conjugate gradient vector factor, which
considers the influence of vector wk−1 on wk . wk and α are
calculated by

wk = −∇g
(
d,µk

)
+ θkwk−1 (12)

and

α =

√
‖wk−1‖
‖wk‖

(13)

respectively, θk can be obtained by

θk =

∥∥∇g (d,µk
)∥∥∥∥∇g (d,µk−1
)∥∥ (14)

In the next section, we would demonstrate the efficiency and
robustness of the MCGA method compared with the AMV,
CC, HCC, and CGA methods. The flowchart of MCGA
method is shown as Figure 1.

III. EXAMPLES ANALYSES
In this section, the proposed MCGA is compared with differ-
ent methods including AMV, CC, MCC, and CGA method
through three mathematical examples in subsection III-A.
In addition, a speed reducer design example is showed in
subsection III-B.

A. NONLINEAR PERFORMANCE FUNCTION EXAMPLES
Three examples of probability constraints are solved through
the MCGA proposed in this paper. Where, example 1 and
example 2 are highly nonlinear performance functions. And
example 3 is a large reliability index problem, which also
increases the difficulty to solve. These three mathematical
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FIGURE 1. Flowchart of the MCGA method.

examples are often analyzed in the literature, so we still use
them and given as follows [23]:

Example 1:{
g1 (x) = x31 + x

3
2 − 18

x1 ∼ N
(
10, 52

)
, x2 ∼ N

(
9.9, 52

)
, βt = 3.0

Example 2:{
g2 (x) = x41 + 2x42 − 20

x1 ∼ N
(
10, 52

)
, x2 ∼ N

(
12, 52

)
, βt = 2.5

Example 3:{
g3(x) = 0.3x21x2 − x2 + 0.8x1 + 1
x1 ∼ N (1.2, 0.422), x2 ∼ N (1.0, .0422), βt = 6.0

TABLE 1. Results of the different methods.

The computing results including the AMV, CC, MCC and
CGA method as well as MCGA are all given in Table 1. And
the number of iterations of the different methods, which can

be used as the evaluation criterion of efficiency, is given in
the bracket in Table 1.

It can be seen that the AMV method does not converge
for all the examples. This is because that the performance
function has high nonlinearity which leads to chaos in the
iterative process. In contrast to the AMV method, all of the
results of the CC,MCC, CGA, andMCGAmethods converge
accurately.

For example 1, as shown in Figure 2, although the CC
method can converge, its convergence speed is extremely
slow, because its iterative step size decreases continuously
as it approaches MPTP. Unlike the CC method, the MCC,
CGA, and MCGA methods converge very quickly because
the step size is larger when µ is far away from the MPTP, but
the step size is small when µ approaches MPTP. Therefore,
in MCC, CGA, andMCGA, the iterations mainly concentrate
near the MPTP. However, as shown in Figures 2(2) and (3),
the speed is slow when MCC and CGA converge in areas
close to the MPTP, which limits the rate of convergence.
Unlike them, MCGA’s convergence rate in the areas close
to the MPTP is significantly better than MCC and CGA,
as shown in Figures 3(2), (3) and (4).

For Example 2 in Table 1, the MCGA method is signif-
icantly more efficient than the CC and CGA methods. The
proposed MCGA method converges about 10 times faster
than the CC method and about 2 times faster than the CGA
method. Similarly, for Example 3 in Table 1, the MCGA
method is 12 times faster than the CC method and 4 times
faster than the MCC method.

As shown in three examples in Table 1, compared with the
MCGA method, the efficiency of the CC method is lower
for all three examples. The MCC method is inefficient for
examples 1 and 3, and the efficiency of the CGA method is
relatively low for examples 1 and 2, and the MCGA method
has fewer the number of iteration times for all examples.
Therefore, the proposedMCGAmethod has higher efficiency
and robustness.

B. A SPEED REDUCER DESIGN EXAMPLE BASE
As an important part of mining machinery, cranes and trans-
portation machinery, the RBDO of speed reducer is very
important, because it not only ensures its reliability, but
also reduces its production cost. A schematic diagram of
a reducer is shown in Figure 4. There are 7 random vari-
ables and 11 probability constraint functions in the model
of reliability-based optimization design of the speed reducer.
Generally, the design goal is that the speed reducer is the
lightest in weight and it also meets the requirement of prob-
ability constraint. Besides, the constraint functions of the
speed reducer correspond to displacement constraints, stress
constraints, and other constraints, respectively. In the RBDO
model of the speed reducer, the random variables X1, X2 and
X3 are the gear width, the gear module and the number of
pinion teeth, X4 and X5 are the bearing distance, and X6 and
X7 are the diameter of each shaft.
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FIGURE 2. Iterative results of MPTP for example 1: (1) CC method; (2) CGA method; (3) MCC method; (4) MCGA
method.

TABLE 2. Reliability-based optimization design results of the speed reducer.

Therefore, the mathematical model of RBDO for the speed
reducer can be given as follows [33]:

find d = [d1, d2, d3, d4, d5, d6, d7]

min f (d)=0.7854d1d22 (3.3333d
2
3+14.9334d3−43.0934)

− 1.508d1(d26 + d
2
7 )+ 7.477(d36 + d

3
7 )

+ 0.7854(d4d26 + d5d
2
7 )

s.t. P [gi(d,X) ≤ 0] ≤ 8
(
−β it

)
i = 1, 2, · · · , 11

g1 (X) =
27

X1X2
2X3
− 1, g2 (X) =

397.5

X1X2
2X

2
3

− 1,

g3 (X) =
1.93X4

3

X2X3X4
6

− 1, g4 (X) =
1.93X4

5

X2X3X4
7

− 1,

g5 (X) =

√(
745X4

/
(X2X3)

)2
+ 16.9× 106

0.1X3
6

− 1100,

g6 (X) =

√(
745X5

/
(X2X3)

)2
+ 157.5× 106

0.1X3
7

− 850,
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FIGURE 3. Iterative results near MPTP for example 1: (1) CC method; (2) CGA method; (3) MCC method; (4) MCGA
method.

FIGURE 4. A speed reducer diagram.

g7 (X) = X2X3 − 40, g8 (X) = 5−
X1
X2
,

g9 (X) =
X1
X2
− 12,

g10 (X) =
(1.5X6 + 1.9)

X4
− 1,

g11 (X) =
(1.1X7 + 1.9)

X5
− 1,

2.6 ≤ X1 ≤ 3.6, 0.7 ≤ X2 ≤ 0.8, 17 ≤ X3 ≤ 28,

7.3 ≤ X4 ≤ 8.3, 7.3 ≤ X5 ≤ 8.3, 2.9 ≤ X6 ≤ 3.9,

5.0 ≤ X7 ≤ 5.5,

d0 = [3.5,0.7,17.0,7.3,7.72,2.35,5.29]T ,

β1t = β
2
t = · · · = β

11
t = 3.0,

Xj ∼ N
(
dj, 0.0052

)
, j = 1, 2, · · · , 7

where d0 is initial value of the design variable, dj stands for
the random design variable, j = 1, 2, · · · , 7.

The optimization results of the speed reducer is shown
in Table 2, the five methods of CC, HCC, CGA, MCC
and MCGA based PMA are adopted. As shown in Table 2,
the number of iterations of the objective function for all
methods is 10, and all methods give almost the identical
optimal design points. In addition, although it has an accu-
rate solution, the CC method has the slowest convergence
speed. Apparently, compared with the CC method, the MCC
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is improved. Furthermore, HCC and CGA method is obvi-
ously more efficient than CC and MCC method, because the
number of iterations of the constraint function is 880 and
756 in HCC and CGA respectively. And MCGA is more
efficient than CC, MCC HCC and CGA. Where, MCGA
converges about twice as faster than CC and the efficiency
of MCGA is significantly better than MCC. Besides, the
number of iterations of MCGA is less than HCC and CGA.
In summary, the MCGA method has a higher efficiency in
RBDO.

IV. CONCLUSION
In the process of structural RBDO, efficient solution of
structural performance function with the highly nonlinear
has always been a problem needed to be solved. Therefore,
how to achieve efficient and accurate solution of nonlinear
problems has always been an important research topic. In this
paper, a RBDO reliability method based modified conjugate
gradient (MCGA) is proposed. The proposed method is vali-
dated through comparative analyses of three numerical exam-
ples and a speed reducer engineering example. The results
show that this method not only can significantly improve
the efficiency of reliability optimization design. Therefore,
the method has the advantages of high efficiency and good
solution accuracy, and can be applied to practical large-scale
engineering reliability optimization design.
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