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Abstract

Based on the classical nonlinear von Karman plate theory, axisymmetric large deflection bending of a functionally

graded circular plate is investigated under mechanical, thermal and combined thermal–mechanical loadings, respec-

tively, and axisymmetric thermal post-buckling behavior of a functionally graded circular plate is also investigated. The

mechanical and thermal properties of functionally graded material (FGM) are assumed to vary continuously through

the thickness of the plate, and obey a simple power law of the volume fraction of the constituents. Governing equations

for the problem are derived, and then a shooting method is employed to numerically solve the equations. Effects of

material constant n and boundary conditions on the temperature distribution, nonlinear bending, critical buckling
temperature and thermal post-buckling behavior of the FGM plate are discussed in details.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Extensive investigations on the thermal bending and post-buckling of isotropic and composite plates and

shells were carried out by Tauchert and Huang (1987); Tauchert (1991); Meyers and Hyer (1991) and Leissa

(1992), etc. However, there are few works on the stability, vibration, bending and buckling behavior of

functionally graded structures, and these are still open problems. Loy et al. (1999) and Pradhan et al. (2000)

examined the free vibration of functionally graded cylindrical shell by using the Rayleigh–Ritz method. An

analytical solution of the dynamic response of simply supported functionally graded cylinder due to low-

velocity impact was given by Gong et al. (1999). Based on the classical small deflection theory of plate,
Yang and Shen (2001) investigated the dynamic response of a functionally graded rectangular thin plate

with initial stress subjected to partially distributed impulsive lateral loads and without or resting on an
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foundation. Ng et al. (2000, 2001) studied the dynamic stability of functionally graded rectangular plate

and cylindrical shell, respectively. A modified classical lamination theory to account for piezoelectric

coupling terms under applied electric field was developed by Almajid et al. (2001), and then the theory was

applied to predict the out-of-plane displacement and stress field of actuators and the functionally graded
material (FGM) bimorph. Mian and Spencer (1998) established a large class of exact solutions of the three-

dimensional elasticity equations for functionally graded and laminated elastic materials.

The response of functionally graded ceramic–metal plate accounting for the transverse shear strains,

rotary inertia and moderately large rotations in the von Karman sense was studied by Praveen and Reddy

(1998), in which finite element method was employed to investigate the static and dynamic responses of the

functionally graded plate by varying the volume fraction of the ceramic and metallic constituents. Effect of

imposed temperature field on the response of the functionally graded plate was also discussed. Reddy and

Chin (1998) investigated the dynamic thermo-elastic response of functionally graded cylinders and plates. A
thermo-elastic boundary value problem was derived by using the first-order shear deformation plate theory

that account for coupling with a three-dimensional heat conduction equation for a functionally graded

plate. Using the first-order shear deformation theory of Mindlin plate, axisymmetric bending of func-

tionally graded annular and circular plates was studied by Reddy et al. (1999), in which the solutions were

expressed in terms of the classical solutions based on the Kirchhoff plate theory. Based on the higher-order

shear deformation theory of plate, Reddy (2000) developed both theoretical and finite element formulations

for thick FGM plates, and the nonlinear dynamic responses of FGM plates subjected to suddenly applied

uniform pressure were studied. Based on the von Karman theory, Woo and Meguid (2001) derived an
analytical solution expressed in terms of Fourier series for the large deflection of functionally graded plates

and shallow shells under transverse mechanical loading and a temperature field. Cheng and Batra (2000)

studied three-dimensional thermo-mechanical deformations of an isotropic linear thermo-elastic func-

tionally graded elliptic plate. A closed form solution was obtained which shows that the through-thickness

distribution of the in-plane displacements and transverse shear stress in a functionally graded plate do not

agree with those assumed in classical and shear deformation plate theories. Moreover, a new set of field

equations in terms of displacement and stress potential functions for inhomogeneous plates had been

presented and reformulated by Cheng (2001), and mixed Fourier series technique was employed to solve the
equations. Using an asymptotic method, the three-dimensional thermo-mechanical deformations of func-

tionally graded rectangular plate were investigated by Reddy and Cheng (2001) and the distributions of

temperature, displacements and stresses in the plate were calculated for different volume fraction of ceramic

constituent.

Assuming that the material properties throughout the structure are produced by a spatial distribution of

the local reinforcement volume fraction vf ¼ vfðx; y; zÞ, Feldman and Aboudi (1997) studied the elastic
bifurcation buckling of functionally graded plate under in-plane compressive loading. More recently,

Javaheri and Eslami (2002a,b) studied the thermal buckling of functionally graded rectangular plate based
on the classical and the higher-order shear deformation theories of plate, respectively, and obtained the

closed form solutions under several types of thermal loads. Ma and Wang (in press) studied the axisym-

metric post-buckling behavior of a functionally graded circular plate under uniformly distributed radial

compression on the basis of classical nonlinear plate theory.

To the authors� knowledge, only few works on the nonlinear bending of functionally graded plates are
concerned, but the thermal post-buckling of FGM plates has not been carried out in the previous works. In

the present paper, axisymmetric nonlinear bending and thermal post-buckling behavior of a functionally

graded circular plate are studied under mechanical, thermal and combining thermal–mechanical loading in
the framework of von Karman plate theory. Simply supported and clamped boundary conditions are

considered. The material properties are assumed to vary continuously through the thickness of the plate.

Effects of material properties and boundary conditions on the large deflection bending and thermal post-

buckling behavior of the FGM plate are discussed in details.
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2. Basic equations

A functionally graded circular plate with thickness h and radius b is considered here. It is assumed that
the mechanical and thermal properties of FGM vary through the thickness of plate, and the material
properties P can be expressed as (Reddy and Chin, 1998; Reddy et al., 1999)

P ðzÞ ¼ ðPm � PcÞVm þ Pc; ð1Þ
where the subscripts m and c denote the metallic and ceramic constituents, respectively, Vm denotes the
volume fraction of metal and follows a simple power law as

Vm ¼ h� 2z
2h

� �n

; ð2Þ

where z is the thickness coordinate (�h=26 z6 h=2), and n is a material constant. According to this dis-
tribution, bottom surface (z ¼ �h=2) of the functionally graded plate is pure metal, the top surface
(z ¼ h=2) is pure ceramics, and for different values of n one can obtain different volume fractions of metal.
Based on the classical nonlinear von Karman plate theory, the equilibrium equations of a thin plate

subjected to a thermal load T and uniformly distributed transverse mechanical load q are as follows

ðrNrÞ;r � Nh ¼ 0; ð3Þ

ðrQrÞ;r þ ðrNrW;rÞ;r ¼ �rq; ð4Þ

ðrMrÞ;r �Mh � rQr ¼ 0; ð5Þ

where the comma followed by r denotes differentiation with respect to r, W is the displacement in z di-
rection, and the force and moment components N and M are as follows,

ðNr;NhÞ ¼
Z h=2

�h=2
ðrr; rhÞdz; ð6aÞ

ðMr;MhÞ ¼
Z h=2

�h=2
ðrr;rhÞzdz: ð6bÞ

The constitutive relations for the FGMs are given by

rr

rh

� �
¼ EðzÞ
1� m2

1 m
m 1

� �
e0r
e0h

� ��
þ z

jr

jh

� ��
� EðzÞ
1� m

aðzÞT ðzÞ 1
1

� �
: ð7Þ

The Young�s modulus EðzÞ and thermal expansion coefficient aðzÞ in Eqs. (7) follow the distribution law of
Eqs. (1) and (2), namely,

EðzÞ ¼ ðEm � EcÞVm þ Ec;

aðzÞ ¼ ðam � acÞVm þ ac:

For simplicity, the Poisson�s ratio m in Eqs. (7) is assumed to be a constant. The radial and circumferential
strain components e0r and e0h in the mid-plane of the plate (i.e. z ¼ 0) can be calculated as

e0r ¼
dU
dr

þ 1
2

dW
dr

� �2
; ð8aÞ
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e0h ¼
U
r

ð8bÞ

with U being the displacement in r direction. Variations of the curvature jr and jh in the mid-plane of the

plate (z ¼ 0) can be calculated as,

jr ¼ � d
2W
dr2

; ð9aÞ

jh ¼ � 1
r
dW
dr

: ð9bÞ

The temperature difference T ðzÞ from the stress free state is governed by the following well-known heat
transfer equation

� d

dz
KðzÞ dT ðzÞ

dz

� �
¼ 0 ð10Þ

with the boundary conditions T ðh=2Þ ¼ T1 and T ð�h=2Þ ¼ T2. The thermal conductivity coefficient KðzÞ in
Eq. (10) follows the distribution law of Eqs. (1) and (2), namely,

KðzÞ ¼ ðKm � KcÞVm þ Kc:

It is easily to obtain from Eq. (10) that

T ðzÞ ¼ T2 þ ðT1 � T2Þ
Z z

�h=2

dz
KðzÞ

�Z h=2

�h=2

dz
KðzÞ : ð11Þ

From Eqs. (6) and (7), one obtains

Nr

Nh

� �
¼ A11 A12

A12 A22

� �
e0r
e0h

� �
þ B11 B12

B12 B22

� �
jr

jh

� �
� NT

r

NT
h

� �
; ð12Þ

Mr

Mh

� �
¼ B11 B12

B12 B22

� �
e0r
e0h

� �
þ D11 D12

D12 D22

� �
jr

jh

� �
� MT

r

MT
h

� �
; ð13Þ

where Aij, Bij and Dij are stiffness coefficients of the plate and can be calculated as

ðAij;Bij;DijÞ ¼
Z h=2

�h=2
Qijð1; z; z2Þdz ð14Þ

with

Q11 ¼ Q22 ¼
EðzÞ
1� m2

; Q12 ¼ mQ11:

The forces and moments in Eqs. (12) and (13) induced by thermal load can be calculated as

NT
r ¼

Z h=2

�h=2

EðzÞ
1� m

aðzÞT ðzÞdz; ð15aÞ

NT
h ¼

Z h=2

�h=2

EðzÞ
1� m

aðzÞT ðzÞdz; ð15bÞ

MT
r ¼

Z h=2

�h=2

EðzÞ
1� m

aðzÞT ðzÞzdz; ð15cÞ
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MT
h ¼

Z h=2

�h=2

EðzÞ
1� m

aðzÞT ðzÞzdz: ð15dÞ

From Eqs. (3)–(5), (8), (9), (12), (13) and (15), one then obtains the governing equations expressed in

terms of the displacements

A11
d2U
dr2

"
þ 1
r
dU
dr

� U
r2

þ d
2W
dr2

dW
dr

þ 1� m
2r

dW
dr

� �2#
¼ B11

d3W
dr3

�
þ 1
r
d2W
dr2

� 1

r2
dW
dr

�
; ð16Þ

D11
d4W
dr4

�
þ 2
r
d3W
dr3

� 1

r2
d2W
dr2

þ 1

r3
dW
dr

�

¼ A11
dU
dr

"
þ m
r
U þ 1

2

dW
dr

� �2#
d2W
dr2

þ A11 m
dU
dr

"
þ 1
r
U þ m

2

dW
dr

� �2#
1

r
dW
dr

þ B11
d3U
dr3

�
þ 2
r
d2U
dr2

� 1

r2
dU
dr

þ 1

r3
U
�
þ B11

d3W
dr3

�
þ 2� 3m

r
d2W
dr2

� 1

r2
dW
dr

�
dW
dr

� NT
r

1

r
dW
dr

�
þ d

2W
dr2

�
þ q: ð17Þ

The continuity conditions at the center of plate results in W being finite, and

U ¼ dW
dr

¼ 0; lim
r!0

d3W
dr3

�
þ 1
r
d2W
dr2

�
¼ 0 at r ¼ 0:

In what follows, two types of boundary conditions are examined.

Case 1. The plate edge is clamped and immovable in r direction. Such that the boundary conditions can
be expressed as

U ¼ W ¼ dW
dr

¼ 0 at r ¼ b: ð18Þ

Case 2. The plate edge is simply supported and immovable in r direction. Such that the boundary
conditions can be expressed as

U ¼ W ¼ 0; B11
dU
dr

"
þ m
r
U þ 1

2

dW
dr

� �2#
� D11

d2W
dr2

�
þ m
r
dW
dr

�
�MT

r ¼ 0 at r ¼ b: ð19Þ

Now, a nonlinear bending problem is formulated. If q ¼ 0, the problem reduces to a nonlinear buckling
problem. It is difficult to solve such a nonlinear problem due to the inhomogeneity of material. For con-

venience, the following dimensionless parameters are introduced,

x ¼ r
b
; w ¼ W

h
; u ¼ Ub

h2
; F1 ¼

B11
D11

h; F2 ¼
A11
D11

h2; F3 ¼
B11
hA11

; N ¼ NT
r b

2

D11
; M ¼ MT

r b
2

D11h
;

k ¼ 12 b
2

h2
ð1þ mÞacT2; Q ¼ qb4

D11h
; Er ¼

Em
Ec

:

Such that the dimensionless governing equations and boundary conditions of the plate can be expressed as

d2u
dx2

þ 1
x
du
dx

� u
x2

þ d
2w
dx2

dw
dx

þ 1� m
2x

dw
dx

� �2
¼ F3

d3w
dx3

�
þ 1
x
d2w
dx2

� 1

x2
dw
dx

�
; ð20Þ
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ð1� F1F3Þ
d4w
dx4

�
þ 2
x
d3w
dx3

� 1

x2
d2w
dx2

þ 1

x3
dw
dx

�

¼ F2
du
dx

"
þ m
x
uþ 1

2

dw
dx

� �2#
d2w
dx2

þ F2 m
du
dx

"
þ 1
x
uþ m

2

dw
dx

� �2#
1

x
dw
dx

þ F1
2m
x
d2w
dx2

dw
dx

"
þ 1

x2
dw
dx

� �2
þ d2w

dx2

� �2#
� N

1

x
dw
dx

�
þ d

2w
dx2

�
þ Q; ð21Þ

u ¼ dw
dx

¼ 0; lim
x!0

d3w
dx3

�
þ 1
x
d2w
dx2

�
¼ 0; wð0Þ ¼ n at x ¼ 0; ð22Þ

u ¼ w ¼ dw
dx

¼ 0 at x ¼ 1; ð23Þ

or

u ¼ w ¼ 0; F1
du
dx

"
þ 1
2

dw
dx

� �2#
� d2w

dx2

�
þ m
x
dw
dx

�
�M ¼ 0 at x ¼ 1; ð24Þ

where n is a dimensionless deflection parameter.

3. Shooting method

In what follows, a shooting method (Li et al., 1996) is employed to numerically solve the problems. Here,

the governing equations (20) and (21) and boundary conditions (22)–(24) can be rewritten in the following

form

dY
dx

¼ Hðx; Y Þ; ð25Þ

B0Y ð0Þ ¼ b0; ð26aÞ

B1Y ð1Þ ¼ b1; ð26bÞ

where

Y ¼ y1 y2 y3 y4 y5 y6 y7f gT ¼ w
dw
dx

d2w
dx2

d3w
dx3

u
du
dx

d

� �T

; ð27Þ

H ¼ y2 y3 y4 u y6 w 0f gT: ð28Þ

For bending problem, d ¼ Q. For buckling and post-buckling problems, d ¼ k. Expressions of u, w, B0, B1,
b0 and b1 are as follows
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u ¼ � 2

x
d3w
dx3

�
� 1

x2
d2w
dx2

þ 1

x3
dw
dx

�
þ F2

du
dx

"(
þ m
x
uþ 1

2

dw
dx

� �2#
d2w
dx2

þ F2 m
du
dx

"
þ 1
x
uþ m

2

dw
dx

� �2#
1

x
dw
dx

þ F1
2m
x
d2w
dx2

dw
dx

"
þ 1

x2
dw
dx

� �2
þ d2w

dx2

� �2#

� N
1

x
dw
dx

�
þ d

2w
dx2

�
þ Q

),
ð1� F1F3Þ; ð29Þ

w ¼ � 1

x
du
dx

"
� u
x2

þ d
2w
dx2

dw
dx

þ 1� m
2x

dw
dx

� �2#
þ F3

d3w
dx3

�
þ 1
x
d2w
dx2

� 1

x2
dw
dx

�
; ð30Þ

B0 ¼

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1=Dx 1 0 0 0
0 0 0 0 1 0 0

2
664

3
775; b0 ¼

n
0

0
0

8>><
>>:

9>>=
>>;: ð31Þ

For the clamped boundary, i.e. Case 1,

B1 ¼
1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 1 0 0

2
4

3
5; b1 ¼

0

0

0

8<
:

9=
;: ð32aÞ

For the simply supported boundary, i.e. Case 2,

B1 ¼
1 0 0 0 0 0 0

0 ððF1y2Þ=2Þ � ðm=DxÞ �1 0 0 F1 0

0 0 0 0 1 0 0

2
4

3
5; b1 ¼

0

M
0

8<
:

9=
;: ð32bÞ

The small quantity Dx (Dx > 0) in Eqs. (31) and (32b) is introduced in computation to avoid the singu-
larities of resultants of transverse shear force Qr and moment Mr at x ¼ 0.
Consider an initial value problem related to the boundary value problem Eqs. (25) and (26)

dZ
dx

¼ Hðx; ZÞ; ð33aÞ

ZðDxÞ ¼ Iðn;DÞ; ð33bÞ
where

Z ¼ f z1 z2 z3 z4 z5 z6 z7 gT;

I ¼ f n 0 d1 �d1=Dx 0 d2 d3 gT;
and the initial parameter vector,

D ¼ f d1 d2 d3 gT:
For a given value of parameter n, if there exists an initial parameter vector D such that Eqs. (33) satisfy
Lipschitz condition, and the unique solution for the initial value problem must exist, namely,

Zðx; d;DÞ ¼ IðDÞ þ
Z x

Dx
Hðn; Z; dÞdn: ð34Þ
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On the other hand, for the same value of n, if there exists D	 ¼ f d	
1 d	

2 d	
3 g

T
such that Zðx; d;D	Þ satisfy

B1Zðx; d;D	Þ ¼ b1; ð35Þ

one then obtains the following solution for the boundary value problem Eqs. (25) and (26)

Y ðx; dÞ ¼ Zðx; d;D	Þ: ð36Þ

This approach is called a shooting method.

4. Numerical results and discussions

In what follows, the well-known Runge–Kutta method in conjunction with a Newton iterative formu-

lation are employed to numerically solve Eqs. (33) and (35). If one obtains the solution of Eqs. (25) and (26)

for a sufficiently small value of parameter n, then the solutions of Eqs. (20)–(24) can be obtained for large
scale of n by using the so-called analytical continuation method in which the parameter n increases step by
step,

d ¼ d	
3 ¼ dðnÞ; n > 0: ð37Þ

For bending problem, Eq. (37) is the solution of deflection–load curves, Q ¼ QðnÞ. For post-buckling
problem, Eq. (37) is the solution of post-buckling paths, k ¼ kðnÞ.
Numerical analysis for the small deflection bending problem of a functionally graded circular plate with

clamped and simply supported boundary conditions is carried out to examine the validity of the present

numerical method. All the material parameters are taken from Reddy et al. (1999). Comparisons of the

numerical results obtained in the present paper to the analytical results obtained by Reddy et al. (1999) are
shown in Table 1 for the dimensionless deflection w	 ¼ 64WDc=qb4 at the center of plate. Excellent
agreements can be seen from Table 1, and the validity of the present numerical method is verified.

Table 1

Comparisons of the results obtained in the present paper to the results obtained by Reddy et al. (1999) for the maximum dimensionless

deflection w	 of FGM circular plate with different material constant n and different boundary conditions under uniformly distributed
transverse mechanical loading (m ¼ 0:288, Er ¼ Em=Ec ¼ 0:396)
Material constant n Reddy et al. (1999) Present paper

Clamped plate Simply supported plate Clamped plate Simply supported plate

0 2.525 10.368 2.525 10.368

2 1.388 5.483 1.389 5.485

4 1.269 5.102 1.269 5.103

6 1.208 4.897 1.208 4.899

8 1.169 4.761 1.169 4.762

10 1.143 4.665 1.143 4.665

15 1.103 4.514 1.103 4.514

20 1.080 4.426 1.080 4.427

25 1.066 4.370 1.066 4.370

30 1.056 4.330 1.056 4.330

35 1.048 4.301 1.048 4.301

40 1.043 4.278 1.043 4.278

50 1.034 4.246 1.034 4.246

100 1.018 4.178 1.018 4.178
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4.1. Temperature field

In what follows, a metal, aluminum and ceramics, zirconia system of FGM is considered. The material

parameters, Young�s modulus E, Poisson�s ratio m, thermal conductivity and thermal expansion coefficients
K and a are taken from Praveen and Reddy (1998) and Reddy (2000) which are summarized in Table 2.

Dimensionless parameters W ð0Þ=h––center deflection and Q ¼ qb4=Dch––load parameter are used in
analysis, and T1=T2 ¼ 15.
Fig. 1 shows the variations of volume fraction of metallic phase through the thickness of plate for

various values of n calculated from Eq. (2). If n ¼ 0 the plate reduces to a pure metallic plate. Temperature
distributions through the thickness of the functionally graded plate for various values of n calculated from
Eq. (11) are shown in Fig. 2. It is seen that temperature in the functionally graded plate is always lower than

that in a pure metallic plate (i.e. n ¼ 0). Effect of n on the mid-plane temperature in the plate is shown in
Fig. 3. It is clear that the mid-plane temperature reaches a minimum value at n ¼ 3. As the material
constant n increases from 0 to 3, the mid-plane temperature decreases rapidly, after that it increases rapidly
as n increases from 3 to 20, and then it increases slowly as n > 20.

4.2. Nonlinear bending of the FGM plate

In this section, nonlinear bending of a functionally graded circular plate is numerically analyzed under

the thermal, uniformly distributed transverse mechanical and combined thermal–mechanical loadings.

Table 2

Material parameters of metal, aluminum and ceramics, zirconia in the FGM system (Praveen and Reddy, 1998; Reddy, 2000)

Materials Young�s modulus E
(GPa)

Poisson�s ratio m Thermal conductivity

coefficient K (W/mk)
Thermal expansion

coefficient a (1/�C)

Aluminum 70 0.3 204 23
 10�6
Zirconia 151 0.3 2.09 10
 10�6

0.0

0.2

0.4

0.6

0.8

1.0

V
m

z/h

n=10

n=5

n=2

n=1 n=0.5

n=0.1

n=0.01

n=100

-0.6        -0.4        -0.2      0.0       0.2         0.4       0.6

Fig. 1. Variations of the volume fraction of metallic phase through the dimensionless thickness of the functionally grated plate for

different values of n.
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Figs. 4 and 5 show respectively the curves of dimensionless deflection at the center of the clamped and
simply supported FGM plates vs. the uniformly distributed transverse mechanical load parameter Q for
different values of material constant n. It is clear that the center deflection in the FGM plate is lower than

that of pure metallic plate (i.e. n ¼ 0), and this deflection decreases significantly with increasing the value of
n for the same value of transverse mechanical load. This is because pure metallic plate has lower stiffness
than the functionally graded plate. The greater the value of mechanical load, the more significant the effect

of the material constant n on the center deflection in FGM plate. In the case of the combined thermal–

0

4

8

12

16

T
(z

)/
T

2

z/h

n=100

n=10

n=5

n=2
n=1 

n=0.5

n=0.1

n=0

-0.6      -0.4       -0.2        0.0        0.2         0.4       0.6

Fig. 2. Temperature distributions through the thickness of FGM plate for different values of material constant n.

1

2

3

4

5

6

7

8

T
(0

)/
T

2

n
0             20            40             60             80           100

Fig. 3. Effect of material constant n on the temperature at the mid-plane of FGM plate (z ¼ 0).

3320 L.S. Ma, T.J. Wang / International Journal of Solids and Structures 40 (2003) 3311–3330



mechanical loading, these phenomenon are still true, see the dashed lines shown in Figs. 6 and 7, respec-
tively. It is also seen from Figs. 6 and 7 that effect of thermal load on the deflection of pure metallic plate

(n ¼ 0) is greater than that of FGM plate.

Effect of material constant n on the center deflection of FGM plates with and without thermal load is

shown in Figs. 8 and 9 for clamped and simply supported boundary conditions, respectively. The dashed

lines denote the case of combined thermal–mechanical loading. One can seen from Figs. 8 and 9 that the

center deflection in FGM plate decreases rapidly as the material constant n increases from 0 to 5 for the
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Fig. 4. Deflection vs. transverse mechanical load for the clamped FGM plate with different values of n.
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L.S. Ma, T.J. Wang / International Journal of Solids and Structures 40 (2003) 3311–3330 3321



same values of mechanical load. As n > 5, effect of n becomes not so significant. In the case of combined
thermal–mechanical loading, these phenomena are still true, for more details see the dashed lines shown in

Figs. 8 and 9. It is valuable to note that combined thermal–mechanical loading results in a higher value of

center deflection in the FGM plate for the same value of material constant n.
The temperature filed Eq. (11) applied individually to a simply supported FGM plate yields bending

deflection in the plate gradually from the beginning of heating. However, one cannot see this phenomenon
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Fig. 6. Comparisons of the curves of transverse mechanical load vs. center deflection of clamped FGM plates with and without thermal

loading. The dashed lines denote the case of thermal load parameter k ¼ 0:5.
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in the case of the clamped FGM plate. In other words, the boundary condition has important effect on the

behavior mode of a functionally graded plate. Figs. 10 and 11 show the thermal load–deflection curves of

the simply supported FGM plate for different values of material constant n. It is seen that material constant
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Fig. 8. Effects of material constant n and mechanical load parameter Q on the center deflection of the clamped FGM plate with and

without thermal loading. The dashed lines denote the case of combining thermal–mechanical loading with the thermal load parameter

k ¼ 0:5.
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n has significant effect on the thermal bending behavior of the FGM plate, which is different from that of
Fig. 5. One can see from Fig. 11 that deflection in the simply supported FGM plate increases almost linearly

with increasing thermal load when values of thermal load parameter k is small, saying, k < 0:2.
Bending configurations of the clamped and simply supported FGM plates subjected to the combined

thermal–mechanical loading (dashed lines) and individual mechanical loading (solid lines) are respectively

shown in Figs. 12 and 13 for the mechanical load parameter Q ¼ 100. Bending configurations of the simply
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Fig. 10. Curves of thermal load vs. center deflection of the simply supported FGM plate for different values of material constant n.
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supported FGM plate subjected to individual thermal load k ¼ 5 are shown in Fig. 14. It is clear that
deflection of the FGM plate is lower than that of pure metallic plate (i.e. n ¼ 0). In the cases of individual
mechanical loading and the combined thermal–mechanical loading, deflection of the plate decreases with

the increase of material constant n. However, the deflection decreases as n increases from 0 to �3, and it
increases as n > 3 in the case of individual thermal loading, which is related to the temperature distribution
shown in Fig. 3.
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Fig. 12. Bending configurations of the clamped FGM plate subjected to the combining thermal–mechanical loading (dashed lines) and

individual mechanical loading (solid lines) for different values of material constant n. The mechanical load parameter Q ¼ 100.
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4.3. Thermal buckling and post-buckling of the FGM plate

Thermal buckling and post-buckling behavior of a functionally graded plate is studied in this section.
Fig. 15 shows the effect of material constant n on the critical buckling temperature kcr of the clamped FGM
plate. It is clear that the value of critical buckling temperature for the clamped FGM plate is greater than

that of the pure metallic plate (i.e. n ¼ 0). The critical buckling temperature increases rapidly as the material
constant n increases from 0 to 2, and it decreases rapidly as n increases from 2 to 20. As n > 20, kcr decreases
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Fig. 14. Bending configurations of the simply supported FGM plate with individual thermal load parameter k ¼ 5 for different values
of material constant n.
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Fig. 15. Effect of the material constant n on the critical buckling temperature kcr of the clamped FGM plate.
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very slowly. This means that the thermal stability of FGM plate is better than that of the pure metallic

plate.

Thermal post-buckling paths for the clamped FGM plate are respectively shown in Figs. 16 and 17 for

different values of material constant n. It is seen that the material constant n has significant effect on the
thermal post-buckling behavior of FGM plate, especially in the case of large deflection. An interesting

phenomenon in Fig. 17 is that for the clamped FGM plate, the post-buckling temperature does not increase

monotonically with increasing the center deflection. Especially in the cases of n ¼ 0:5, 1, 2 and 5, the post-
buckling temperature decreases at first, and then increases with the increase of deflection. This means that
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Fig. 16. Curves of post-buckling thermal load vs. center deflection of the clamped FGM plate for different values of material constant n.
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the thermal post-buckling behavior of a functionally graded plate is quite different from that of a homo-

genous plate, if the difference of volume fraction of two constituents is small.

Effect of material constant n on the thermal bending and thermal post-buckling deflection in the simply
supported and clamped FGM plates are respectively shown in Fig. 18 in the case of thermal load parameter
k ¼ 5. It is seen that the thermal post-buckling deflection and thermal bending deflection decreases rapidly
as n increases from 0 to �2.5, after then it increases slowly with increasing n. Effect of material constant n
on the thermal post-buckling configurations of the clamped FGM plate are shown in Fig. 19. It is clear that
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Fig. 18. Effect of material constant n on the thermal bending and thermal post-buckling deflection W ð0Þ=h in the simply supported and
clamped FGM plates, respectively, with thermal load parameter k ¼ 5.
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Fig. 19. Thermal post-buckling configurations of the clamped FGM plate with thermal load parameter k ¼ 5 for different values of
material constant n.

3328 L.S. Ma, T.J. Wang / International Journal of Solids and Structures 40 (2003) 3311–3330



the thermal post-buckling deflection of the clamped FGM plate is lower than that of a pure metallic plate

(i.e. n ¼ 0), and it decreases with the increase of material constant n. In other words, material constant n has
important effect on the thermal post-buckling configurations of FGM plate.

5. Conclusions

Axisymmetric nonlinear bending and thermal post-buckling of a functionally graded circular plate are

investigated under uniformly distributed transverse mechanical, thermal and combined mechanical–

thermal loadings, respectively. Based on the classical nonlinear von Karman plate theory, governing

equations for the problem are derived, and then a shooting method is employed to numerically solve the

equations. Effects of material constant n and boundary conditions on the temperature distribution, non-
linear bending, critical buckling temperature and thermal post-buckling behavior of the FGM plate are

discussed in details. The following conclusions are addressed:
Temperature distribution through the thickness of the functionally graded plate is always lower than

that in a pure metallic plate. The material constant n has significant effect on the mid-plane temperature in
the FGM plate.

Deflection in the center of FGM plate is lower than that of a pure metallic plate, and this deflection

decreases significantly with increasing the value of n. The greater the value of load, the more significant the
effect of material constant n on the center deflection in FGM plate. In the case of combined thermal–

mechanical loading, these phenomena are still true. It is valuable to note that the combined thermal–

mechanical loading results in a great value of center deflection in the FGM plate for the same value of
material constant n.
Material constant n has important effect on the critical buckling temperature of the clamped FGM plate.

This critical temperature is higher than that of a pure metallic plate. In the other words, the thermal

stability of FGM plate is better than that of a pure metallic plate. The material constant n has significant
effect on the thermal post-buckling behavior of FGM plate, especially for the problem of large deflection.

Boundary condition has important effect on the behavior modes of a functionally graded plate subjected to

an individual temperature field Eq. (11). The post-buckling temperature does not increase monotonically

with increasing the center deflection for the clamped FGM plate.
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