

岩土工程学报 Chinese Journal of Geotechnical Engineering ISSN 1000-4548,CN 32-1124/TU

《岩土工程学报》网络首发论文

 题目:
 盐渍土冻结过程中的特征温度研究

 作者:
 应赛,周凤玺,文桃,曹亚鹏

 网络首发日期:
 2020-08-28

 引用格式:
 应赛,周凤玺,文桃,曹亚鹏.盐渍土冻结过程中的特征温度研究[J/OL].岩

 土工程学报.https://kns.cnki.net/kcms/detail/32.1124.TU.20200827.1731.022.html

www.cnki.net

网络首发:在编辑部工作流程中,稿件从录用到出版要经历录用定稿、排版定稿、整期汇编定稿等阶段。录用定稿指内容已经确定,且通过同行评议、主编终审同意刊用的稿件。排版定稿指录用定稿按照期刊特定版式(包括网络呈现版式)排版后的稿件,可暂不确定出版年、卷、期和页码。整期汇编定稿指出版年、卷、期、页码均已确定的印刷或数字出版的整期汇编稿件。录用定稿网络首发稿件内容必须符合《出版管理条例》和《期刊出版管理规定》的有关规定;学术研究成果具有创新性、科学性和先进性,符合编辑部对刊文的录用要求,不存在学术不端行为及其他侵权行为;稿件内容应基本符合国家有关书刊编辑、出版的技术标准,正确使用和统一规范语言文字、符号、数字、外文字母、法定计量单位及地图标注等。为确保录用定稿网络首发的严肃性,录用定稿一经发布,不得修改论文题目、作者、机构名称和学术内容,只可基于编辑规范进行少量文字的修改。

出版确认:纸质期刊编辑部通过与《中国学术期刊(光盘版)》电子杂志社有限公司签约,在《中国 学术期刊(网络版)》出版传播平台上创办与纸质期刊内容一致的网络版,以单篇或整期出版形式,在印刷 出版之前刊发论文的录用定稿、排版定稿、整期汇编定稿。因为《中国学术期刊(网络版)》是国家新闻出 版广电总局批准的网络连续型出版物(ISSN 2096-4188, CN 11-6037/Z),所以签约期刊的网络版上网络首 发论文视为正式出版。

盐渍土冻结过程中的特征温度研究

应赛^{1,2},周凤玺^{1*},文桃²,曹亚鹏³

(1. 兰州理工大学 土木工程学院,甘肃 兰州 730000;2.长江师范学院 建筑物全生命周期健康检测与灾害防治工程研究中心,重庆 涪陵 408100;
 3. 中科院西北生态环境资源研究院冻土工程国家重点实验室,甘肃 兰州 730000)

摘要: 盐渍土在降温冻结过程中出现过冷温度和冻结温度两种特征温度,分别表示在降温过程中孔隙溶液中晶核形成和 孔隙溶液与冰晶共存时的临界温度,对判断土体的冻结状态有着重要的意义。首先,通过不同含盐量的土体冻结试验,得到 了相应的过冷温度和冻结温度;然后,基于热力学与经典成核理论给出了盐渍土冻结过程中的两种特征温度的理论计算模型, 并与试验结果进行对比,验证了该模型的有效性;最后,分析了盐渍土特征温度的影响因素,重点考察了孔隙溶液中结晶盐 析出对冻结温度和过冷温度的影响。结果表明,本文模型可以实现对盐渍土冻结特征温度的有效预测。通过冻结特征温度随 含盐量的关系曲线,可以得到结晶盐析出时的含盐量。冻结时孔隙溶液的浓度与冻结温度存在负相关关系,结晶盐的析出引 起冻结时孔隙溶液浓度下降,从而使冻结温度升高。而结晶盐析出导致孔隙溶液浓度降低和土颗粒与冰晶接触角减小的双重 影响,是盐渍土过冷温度的升高的原因。

关键词:盐渍土;冻结温度;过冷温度;结晶盐析出 中图分类号:TU45 文献标识码:A

The study of the characteristic temperatures of cooling saline soil

YING Sai^{1,2}, ZHOU Fengxi^{1*}, WEN Tao², CAO Yapeng³

College of Civil Engineering, Lanzhou University of Technology, Lanzhou 730000, Gansu, China;
 Engineering Research Center for Health Monitoring in Building Life Cycle and Disaster Prevention, Yangtze Normal University, Fuling 408100, Chongqing, China; 3.State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China)

Abstract: The characteristic temperatures appearing in freezing process of cooling saline soil include the freezing temperature and the supercooling temperature. The freezing temperature is the point that chemical potentials of ice and liquid achieve equilibrium, and the supercooling temperature is the point of ice nucleation. The characteristic temperatures are important for the analysis of the freezing state of soil. In the beginning, the characteristic temperatures are obtained through the freezing tests of saline soil with different salt contents. And then, a model for calculating the characteristic temperatures is provided based on thermodynamics and the classical nucleation theory. The model are proved to be reliable by comparing the calculated data with the tested data. At last, the influence factors of the model are analyzed, and especially the influence of salt precipitation on the characteristic temperatures is considered. The results show that the calculating model can effectively predict the characteristic temperatures of saline soil. The salt content corresponding to the salt precipitation can be acquired by the relationship curve between the characteristic temperatures and salt contents of saline soil. The freezing temperature has a negative correlation with the concentration of pore solution and the salt precipitation will induce the depression of the concentration of pore solution, as the result the freezing temperature will increase when salt precipitation occurs. The reason for the increase of the supercooling temperature of saline soil is the double effect of the depression of solution concentration and the decreasing of contact angle between ice and soil particles.

Key words: Saline soil; freezing temperature; supercooling temperature; salt precipitation

基金项目:国家自然科学基金项目(11962016);教育部春晖计划项目(Z2016178);长江师范学院校级科研项目(2017XJQN16) 通讯作者:周凤玺(1979–),男,教授,主要从事岩土工程方面的教学与研究工作。E-mail: geolut@163.com

1 引 言

盐渍土在我国西北部寒旱区有着广泛的分布, 其工程性质除了受到本身矿物、结构等因素影响外, 更多的是受环境因素的影响和控制。其中,温度的 改变会导致盐渍土孔隙中的盐溶液发生水盐相变现 象,包括孔隙溶液中液态水结晶/融化和溶解盐析出 /溶解等,进而影响土的物理力学性质,引起盐渍土 地基的盐胀,冻胀和融陷等现象,从而对建筑物和 地面设施产生危害[1]。盐渍土孔隙溶液的相变行为 受到温度、湿度以及孔隙的吸附和毛细作用、溶质 的种类与含量等诸多因素的影响^[2-9],使得盐渍土中 水盐相变机制成为特殊土力学及其工程性质领域的 一个研究热点和难点问题。盐渍土冻结时的特征温 度:冻结温度和过冷温度,是孔隙溶液相变在热量 维度的宏观表现,是判断土体是否冻结、预测冻结 深度和冻胀变形等工程应用中重要的基本物理指标 [10-11],同时对土体中的水分迁移和分凝冰形成有着 重要的影响^[12-14]。

许多学者利用室内冻结温度试验,对土体冻结 温度与土质、水盐含量及盐的种类等因素的关系进 行了系统的研究^[15-23],认为粘性土冻结温度小于砂 土冻结温度,塑限对冻结温度有显著影响,土体的 冻结温度随含盐量的增加而降低,一定范围内随含 水量的增加而增大,随荷载增加而逐渐降低。大量 学者利用核磁共振和差热分析技术针对受限于孔隙 中水的相变温度进行研究,结果表明孔隙中水的相 变温度与冰晶-溶液接触面的曲率和表面张力有关 ^[24-27],满足 Gibbs-Thomson 方程,该方程被广泛应 用于孔隙分布和孔形貌的测定^[28]。

Wan 和 Xiao 考虑了盐溶液中水的活度对冻结 温度的影响,给出了盐渍土冻结温度的计算公式 ^[29-30],揭示了冻结温度随溶液浓度增大而降低的机 理。Kozlowski 根据试验结果给出了以液塑限,含 水量和土样质量为参数的土体过冷温度经验公式 ^[31],但对于盐渍土的过冷温度,还是缺少简单有效 的理论计算模型。试验表明当盐渍土冻结前有结晶 盐析出时,冻结温度会发生突变^[29],上述冻结温度 公式不再适用。对于结晶盐析出对冻结特征温度的 影响这一问题,现有的研究缺乏深入的分析与探讨。 本文通过室内试验测定了盐渍土在冻结过程中 的过冷温度和冻结温度,基于热力学原理与成核理 论,给出了冻结特征温度的计算方法,分析了结晶 盐析出对盐渍土冻结过程中特征温度的影响规律。 成果对深化认识多孔介质中的水盐相变机理和寒区 盐渍土的盐冻胀病害防治具有一定的指导意义。

2 盐渍土特征温度试验研究

2.1 试验材料

试验用土为兰州地区粉土,土体经纯净水洗盐 (6次)、烘干、粉碎、过筛(2mm)后密封保存, 土的物理性质指标见表 1。使用无水硫酸钠溶解于 蒸馏水中,在室温下(20±2℃)配制成一定浓度的 硫酸钠溶液,将其与干燥土体拌和均匀后配制成土 样。土样的含水率为溶液中水的质量与干土质量之 比,控制为18%。土样中含盐量由溶液浓度控制, 本次试验中土体含盐量控制见表 2。试样在高 3.5cm,直径 3.5cm 的金属容器中压实,干密度为 1.75±0.01g/cm³,该干密度下土样的孔隙分布由压 汞试验测定,孔隙分布曲线如图1所示,由压汞试 验可知,试样孔径结构为单峰孔隙结构,平均孔径 为 0.25μm,孔隙率为 35.2%。

表1 土的物理性质指标

	Table I Phy	sical properties of	DI SOII
土粒相	液限	塑限	塑性指数
对密度	W _L /%	$W_{\rm p}/\%$	$I_{\rm p}$
2.71	26.8	17.6	9

4 101 1 1

表2 土样含盐量

Table 2 Salt contents of samples

编号	含盐量 mol/L	编号	含盐量 mol/L
1	0	9	0.610
2	0.076	10	0.685
3	0.152	11	0.761
4	0.228	12	0.838
5	0.305	13	0.914
6	0.381	14	0.990
7	0.457	15	1.066
8	0.533	16	1.142

Fig.1 Pore size distribution curve of remolded sample

2.2 试验仪器及测试方法

试验所采用的控温装置为低温冷浴,精度为 ±0.1℃,测温装置采用中科院寒旱所自制的温度探 头,精度为±0.01℃。将温度探头插入金属容器中土 样中,容器用隔水膜包裹后放入冷浴,冷浴温度由 18℃降至-15℃,过程中试样的降温速率为 0.3±0.05℃/min,期间使用数据采集器 DT80 每隔 5s 采集一次温度数据。

2.3 试验结果

土体冻结时的特征温度包括冻结温度 T_f与过冷 温度 T_s,如图 2 所示^[10-12]。从图 2 可以看到,土体 冻结曲线分为过冷,上升,稳定和下降四个阶段。 过冷阶段中孔隙溶液处于过冷状态,没有冰晶产生, 在该阶段的温度最低点为过冷温度,是孔隙溶液中 冰晶成核的起始点。在上升阶段,大量冰晶成核, 释放潜热,土体温度回升。在稳定阶段晶体生长所 释放的潜热与土体与外界热量交换所导致的热量散 失相平衡,大量自由水在该阶段冻结,此时土体温 度保持稳定,为土体的冻结温度。当大量自由水冻 结完成后,吸附水冻结释放的潜热有限,土体温度 逐渐下降,该阶段为土体冻结的下降阶段。

图 2 工体标结曲线小息图 Fig.2 Typical cooling curve of frozen soil

图 3 为试验测得不同含盐量盐渍土的冻结曲 线,从曲线上可以读出土体的冻结温度与过冷温度。 将不同含盐量土体的冻结特征温度绘制于图 4, 可 以看到,随着含盐量的增大,冻结温度与过冷温度 的变化趋势基本一致,分为下降、上升和稳定3个 阶段。在下降阶段,随着土体含盐量的增加,特征 温度逐渐降低;当含盐量大于 0.533mol/L 时,过冷 温度和冻结温度随着含盐量的增加而升高,为上升 阶段;当含盐量大于等于 0.76 mol/L 时, 土体冻结 曲线上的两个特征温度将随着含盐量的增加基本保 持不变,为稳定阶段。从图3可以明显观察到,当 土体含盐量大于等于 0.609mol/L 时, 土体冻结前有 结晶盐析出放热现象,这说明在土体含盐量为 0.533mol/L 至 0.609mol/L 之间的某一值时, 土体冻 结前有结晶盐析出。所以冻结前结晶盐析出的临界 点为 0.533mol/L 至 0.609mol/L 之间的某一值, 由试 验无法精确得到,采用上升阶段的起始点, 0.533mol/L 作为冻结前结晶盐析出的临界点。认为 当土体含盐量小于等于 0.533mol/L 时, 土体冻结前 无结晶盐析出,当土体含盐量大于 0.533mol/L 时, 土体冻结前开始有结晶盐析出。

从图 4 可以看到,当含盐量大于 0.533mol/时, 土体冻结温度开始进入上升阶段,这表明土体冻结 前的结晶盐析出与土体冻结温度的上升同步发生, 由此可以判断,土体冻结前的结晶盐析出是导致土 体冻结特征温度升高的原因,万旭升的研究结果也 证实了这一点^[29]。

图 4 盐渍土冻结特征温度试验值 Fig.4 The experimental results of characteristic temperatures of saline soil

3 盐渍土冻结温度模型

3.1 溶液冻结温度

冰-溶液共存体系中当溶液与冰达到平衡时,二 者的化学势相等:

$$\mu_i(T, p_i) = \mu_l(T, p_l, a_w) \tag{1}$$

其中: $\mu_i 和 \mu_l 分别为冰和溶液的化学势, p_i 和 p_l 分$ $别为冰和溶液的压力(Pa), <math>a_w$ 为溶液的活度, T 为温度(K)。

当冰晶直径大于 1µm, 可忽略冰晶曲率的影响^[32], 此时溶液和冰的化学势分别为:

$$\mu_{l}(T, p_{l}, a_{w}) = \mu_{l}^{0}(T_{0}, p_{0}) + \int_{p_{0}}^{p_{l}} V_{w} dp - \int_{T_{0}}^{T} S_{w} dT + RT \ln a_{w}(2)$$

$$\mu_{i}(T, p_{i}) = \mu_{i}^{0}(T_{0}, p_{0}) + \int_{p_{0}}^{p_{l}} V_{i} dp - \int_{T_{0}}^{T} S_{i} dT \quad (3)$$

式中, $\mu_l^0(T_0, p_0)$ 和 $\mu_i^0(T_0, p_0)$ 分别为溶液和冰在 标准态 (p_0 为标准大气压, $T_0=273.15$ K)下的化学 势, V_w 和 V_i 分别为水和冰的摩尔体积 ($m^3 mol^{-1}$), S_w 和 S_i 分别为水和冰的摩尔焓 (J mol⁻¹ K⁻¹) R 为 理想气体常数 (J mol⁻¹ K⁻¹)。

在标准态下冰水两相达到平衡时有

$$\mu_l^0(T_0, p_0) = \mu_i^0(T_0, p_0)$$
(4)

$$\int_{p_0}^{T} V_w dp - \int_{p_0}^{T} V_i dp + RT \ln a_w = \int_{T_0}^{T} S_w - S_i dT \quad (5)$$

当 T 为冻结温度 T_f 时,过冷度 $\Delta T = T_f - T$ 为 0,此时 $p_0 = p_i = p_i^{[30,33]}$,代入公式 (5)可得

$$T_f - T_0 = \frac{RT \ln a_w}{\Delta S} \tag{6}$$

式中 $\Delta S_m = S_w - S_i = L_{wi} / T$ 为冰水相变时的焓变

($J \text{ mol}^{-1} \text{K}^{-1}$), $L_{wi} = 6010 \text{ J mol}^{-1}$ 为冰水相变潜热。 式(6)表示溶液的冻结温度 T_f ,还将受到溶液 活度的影响。对于盐溶液来说,溶液浓度对冻结温 度的影响体现在水的活度 $\ln a_w$ 这一项上。

考虑结晶体含有 v_{M} 个电荷数为 z_{M} 的正离子M, v_{X} 个电荷数 z_{X} 的负离子 X 和 v_{0} 个 H₂O, 其电离反 应为:

$$\mathbf{M}_{v_{M}} \mathbf{X}_{v_{X}} \cdot v_{0} \mathbf{H}_{2} \mathbf{O} \rightleftharpoons v_{M} \mathbf{M}^{z_{M}} + v_{X} \mathbf{X}^{z_{X}} + v_{0} \mathbf{H}_{2} \mathbf{O}$$
(7)

对于芒硝晶体 $Na_2SO_4 \cdot 10H_2O$, $v_M = 2$,

v_x =1, z_M =1, z_x =2, v₀ =10。
 溶液中水的活度可由下式计算^[34]

$$\ln a_w = -\phi \frac{M_w}{1000} vC \tag{8}$$

式中, $v = v_{M} + v_{x}$, C 为溶液浓度, M_{w} =18.0153g mol⁻¹为水的摩尔质量; ϕ 为渗透参数,且有

$$(\phi - 1) = |Z_{\rm M} Z_{\rm X}| f^{\phi} + 2C \frac{v_{\rm M} v_{\rm X}}{v} B_{\rm MX}^{\phi} + 2C^2 \frac{(v_{\rm M} v_{\rm X})^{\overline{2}}}{v} C_{\rm MX}^{\phi}(9)$$

$$B^{\phi}_{MX} = \beta^{(0)}_{MX} + \beta^{(1)}_{MX} \exp\left(-\alpha_1 I^{1/2}\right) + \beta^{(2)}_{MX} \exp\left(-\alpha_2 I^{1/2}\right) \quad (10)$$

其中:

$$A^{\phi} = -A_{\phi} \frac{I^{1/2}}{1+bI^{1/2}}, \quad I = \frac{1}{2} \sum_{i} C_{i} z_{i}^{2}$$
 (11)

式中: *I* 为溶液的离子强度 (mol kg⁻¹); z_i 为第i 种 离子的离子价。对于 Na₂SO₄ 溶液, b=1.2 kg^{0.5} mol^{-0.5}, $a_1=1.2$ kg^{0.5} mol^{-0.5} 和 $a_2=1.2$ kg^{0.5} mol^{-0.5} 为经 验参数, $\beta_{MX}^{(0)}$, $\beta_{MX}^{(1)}$, $\beta_{MX}^{(2)}$ 和 C_{MX}^{ϕ} 为离子间相互 作用的参数 (kg^{0.5} mol^{-0.5}), 取值见表 3, A_{ϕ} 为 Debye-Hückel 参数 (kg^{0.5} mol^{-0.5}), 其取值与温度 *T* 相关, 计算式为^[35]:

$$A_{\phi} = 0.13422 \bigg(0.0368329T - 14.627 \ln T - \frac{1530.1474}{T} + 80.40631 \bigg)$$
(12)

表 3 溶液参数表

Т	able 3	Parameters	of e	electrolyte	solution	
						1

盐种类	$oldsymbol{eta}_{ extsf{MX}}^{\scriptscriptstyle (0)}$	$oldsymbol{eta}_{ extsf{MX}}^{\scriptscriptstyle (1)}$	$oldsymbol{eta}_{ extsf{MX}}^{\scriptscriptstyle (2)}$	$C^{\phi}_{ m MX}$
Na_2SO_4	0.1939	1.4285	-0.5954	-0.008222
 古由	(8) 可计	算得到 0	℃时 Na ₂ S	O ₄ 溶液中水
的活度与	溶液浓度	的关系,t	如图5所示	。图中可以
看到,随	着溶液浓	度的增大,	溶液中水	的活度不断
减小,由	式 (6) 可	知,这将5	寻致溶液的	冻结温度的
降低。图	5 给出了	理论上溶浴	夜浓度和溶	液中水的活
度的关系	,而实际	上当溶液洋	农度增加至	一定值时,
会有盐结	晶析出,-	导致溶液ネ	农度的降低	,所以溶液
浓度不会	无限增大,	, 溶液中2	水的活度和	冻结温度也
不会随着	溶液中盐	的增多而	无限减小周	所以图 5 所

示的关系曲线只适用于溶液中没有盐析出时的情况,盐析出对溶液冻结温度的影响会在第5节进行 详细分析。

Fig.5 The water activities of Na₂SO₄ solution in 0[°]C 采用逐次逼近的计算方法,图 6 给出了式(6) 的计算结果,并与其他模型的 Na₂SO₄ 溶液冻结温 度计算结果进行了对比。可以看到 3 个公式的计算 结果的差异不大,都能较好的反映冻结温度与溶液 浓度之间的关系。当 $T_0 与 T_f$ 相差不大,式(6)中 的 T 可近似为 T_0 ,则与文献[30]的计算公式一致。 但当 $T_0 与 T_f$ 的差值逐渐增大,文献[30]的计算结果 与公式(6)的计算结果的差值也逐渐增大。

Fig.6 The freezing temperatures of Na₂SO₄ solutions with different salt concentrations

3.2 孔隙溶液的冻结温度

当孔隙直径小于 1µm 时, 孔隙中冰晶的化学势 受其表面曲率的影响较大, 晶体表面曲率的增大导 致晶体化学势和溶解度的增大^[36], 此时冰的化学势 为:

$$\mu_{i}(T, p_{i}) = \mu_{i}^{0}(T_{0}, p_{0}) + \gamma_{sl}V_{i}\frac{dA}{dV} + \int_{p_{0}}^{p_{i}}V_{i}dp - \int_{T_{0}}^{T}S_{i}dT \quad (13)$$

式中, γ_{st} 为冰与溶液的界面能, *A* 为冰晶表面积, *V* 为冰晶体积。

利用公式(13)代替公式(3),经推导可得孔 隙中盐溶液冻结温度 T_f的表达式为:

$$T_f - T_0 = \frac{RT \ln a_w}{\Delta S_m} - \frac{\gamma_{\rm sl} V_i}{\Delta S_m} \frac{\mathrm{d}A}{\mathrm{d}V} \tag{14}$$

当认为孔中的结晶形状为球形时,其曲率 $dA/dV = 2/r_p$, r_p 为球状冰晶的半径且等于孔隙 半径,此时公式(14)右侧第二项与 Gibbs-Thomson 方程一致。

土体作为多孔材料,在利用公式(14)计算其 冻结温度时,需先确定等效孔径_{rp}。受孔壁毛细与 吸附作用的共同影响,多孔材料的等效孔径不仅与 其孔隙分布有关,还受含水率与土颗粒表面性质的 影响,所以等效孔径不等于平均孔径,等效孔径需 根据试验数据修正或直接拟合得到。Wang 通过试 验数据拟合得到粉质粘土和粉土的等效孔径和平均 孔径的关系式,结果表明不同土体的等效孔径和平 均孔径的关系式有较大差异^[8]。根据冻结温度试验 数据对公式(14)中的孔隙半径进行拟合,当等效 半径为0.11µm,可得计算值与试验值的可决系数达 到最大值0.995,认为本试验所使用兰州黄土的等效 半径为0.11µm。根据式(14)计算得到当溶液浓度 增大时,兰州黄土的冻结温度,如图 7 所示,随着 孔中溶液浓度增大,土体冻结温度不断降低。

Fig.7 The freezing temperatures of saline soil with different salt contents

4 盐渍土过冷温度模型

4.1 过冷度与成核位垒

当土体的温度 T 低于冻结温度 T_f 时,溶液处于 过冷状态。过冷度 $\Delta T = T_f - T$ 是导致冰晶析出的 驱动力,当冰晶在土颗粒表面析出时,要克服冰晶 与土颗粒表面物质键合能差异和晶格不匹配所导致 的成核位垒,这需要一定的过冷度,需要克服的位 垒越大,所需要的过冷度越高^[37]。

晶体在催化剂表面的成核为异质成核,由于土

颗粒尺寸远大于冰核尺寸,所以土颗粒表面的冰晶 成核为平基底上的非均匀成核,根据经典成核理论 冰晶的临界半径**r***由下式计算^[37]:

$$r^* = -\frac{2\gamma_{\rm sl}\upsilon_s}{\Delta g} \tag{15}$$

$$\Delta g = -\frac{L_{w} \Delta T}{NT_{f}} \tag{16}$$

其中: v_s 为单个冰分子的体积, Δg 为相变驱动力, N为阿伏伽德罗常数。

成核位 $\Delta G(r^*)$ 计算公式为:

$$\Delta G(r^*) = \frac{16}{3} \frac{\pi \upsilon_s^2 \gamma^3}{\Delta g^2} f(m)$$
(17)

式中, f(m)为几何因数, 当催化剂为平基底时, $f(m) = (2-3m+m^3)/4^{[37]}$ 。

m 为土颗粒与冰晶的接触角 θ 的余弦,其值由 土颗粒表面物质的物理化学性质决定。若在亚稳流 体相 F 中存在催化剂 C,催化剂和流体的界面为平 面,有球状晶体胚团 S 在催化剂 C 上成核,此时三 相交界处的接触角 θ,则有:

$$\cos\theta = \frac{\gamma_{\rm SC} - \gamma_{\rm CF}}{\gamma_{\rm SF}} \tag{18}$$

其中, γ_{SC} 、 γ_{CF} 和 γ_{SF} 是界面能,下标 S、C 和 F 分别对应于晶体胚团、催化剂和流体。

催化剂表面物质与冰晶的键合能差异越小,晶格越匹配,则 γ_{sc} 越小,催化剂与冰晶的接触角越小。由于接触角 0° ≤ θ ≤ 180°,所以 *m* 的取值范围为-1 ≤ *m* ≤ 1。

4.2 孔隙溶液的过冷温度

当系统过冷度达到一定值时,冰晶才会在土颗 粒表面析出,此时的过冷度为临界过冷度。成核率 的计算公式为^[38]:

$$I = 4\pi 10^{25} r^{*2} \exp(-\Delta G(r^*) / kT)$$
 (19)

上式中 k 为玻尔兹曼常数。

由于成核率与驱动力之间满足指数规律,当溶 液过冷度大于临界过冷度时,冰晶成核率从一个接 近0的值突然增大,宏观上表现为冰晶突然出现。 经典成核理论规定,当成核率*I*=1 cm⁻³ s⁻¹时,对 应的过冷度为临界过冷度^[37-38],可以得到临界过冷 度的计算公式为:

$$\Delta T^{*} = \left[\frac{8\pi T \gamma^{3} \upsilon_{s}^{2} f(m)}{3k \left(\frac{L_{w}}{N}\right)^{2} \left(60.1 + 4.604 \log_{10} r^{*}\right)} \right]^{\frac{1}{2}}$$
(20)

代人接触角余弦m和一个任意给定的晶核临界半径 r*的初始值可得到临界过冷度,将该值代入公式 (15)和(16)可得到一个更准确的临界半径r^{*}, 临界过冷度和临界半径的数值可由该过程逐次逼近 得到。最终可以得到孔隙溶液的过冷温度为:

$$T_s = T_f - \Delta T^* \tag{21}$$

土颗粒与冰晶的接触角由土颗粒的表面物理化 学系性质决定。根据过冷温度试验数据对公式(20) 中的接触角余弦 *m* 进行拟合,当接触角余弦 *m*=0.935 时,计算值与试验值的可决系数达到最大 值 0.94,认为兰州黄土的接触角余弦 *m* 为 0.935。 由公式(21)得到兰州黄土过冷温度的计算值,如 图 8 所示,可以看到计算值与试验值吻合很好,随 着溶液浓度的增加,过冷温度不断减小。

Fig.8 The relationship between supercooling temperatures and salt contents of saline soil

5 结晶盐析出对特征温度的影响

5.1 结晶盐析出对冻结时溶液浓度的影响

与冰晶成核需要一定的过冷度相似,结晶盐的 成核需要一定的过饱和度^[5]。结晶盐与溶液两相平 衡时,溶液的浓度为饱和浓度 C_s ,当溶液浓度 $C > C_s$ 时,溶液处于过饱和状态, $U = C/C_s$,称为过饱和 度,当过饱和度 U > 1,系统中存在驱动结晶盐生 长的相变驱动力。由于成核位垒的存在,只有当过 饱和度 U大于起始过饱和度 U_s ($U_s > 1$)时,才会 有结晶盐析出,此时溶液浓度为起始析出浓度 C_p 。 溶液系统中有结晶盐存在后,只要过饱和度 U > 1, 就会有结晶盐生长,直至过饱和度 $U \le 1$,结晶盐 生长停止。由于 $U_s > 1$,所以起始析出浓度 C_p 大于 该温度下的饱和浓度 C_s。结晶盐析出过程是溶液从 过饱和状态向饱和状态转变的过程,该过程中溶液 浓度不断降低,直到溶液浓度达到饱和浓度。万旭 升的试验表明,当不同起始浓度的溶液降温至同一 温度,若降温过程中各溶液都有结晶盐析出,则当 各溶液结晶盐析出完成时,其浓度基本相同且近似 等于该温度下的饱和浓度^[39]。

在降温过程中,有结晶盐析出时和无盐结晶析 出时,溶液浓度的变化路径不同,如图9所示。溶 液1的起始浓度 C_1^* 小于冻结时的析出浓度 C_p ,温 度降至过冷温度时,溶液中无结晶盐析出,溶液浓 度保持不变。溶液2的起始浓度 C_2^* 大于冻结时的 析出浓度 C_p ,则在冻结发生之前,溶液中有结晶 盐析出,当温度降至过冷温度时,溶液浓度按箭头 所示路径减小为 C_s ,很明显 C_s 小于 C_1^* 。所以降 温前溶液2的浓度大于溶液1的浓度,由于降温过 程中溶液2有结晶盐析出,同时溶液1没有结晶盐 析出,导致在冻结发生时,溶液2的浓度反而小于 溶液1的浓度。

由上述分析可知,结晶盐析出作用导致冻结发 生时孔隙溶液浓度的降低。根据试验结果分析可知, 试验土样冻结前的起始析出浓度为 0.533 mol/L,由 芒硝的溶解度计算公式可得稳定阶段孔隙溶液的饱 和浓度为 0.317 mol/L^[40]。由图 3 可以看到,当溶液 浓度略大于起始析出浓度时,盐析出时刻与冻结发 生时刻间隔很短,则溶液冻结发生时,结晶盐未能 完全析出,这时的溶液浓度介于起始析出浓度与稳 定阶段的饱和浓度之间,如图 10 所示。可以看到, 当溶液起始浓度大于起始析出浓度时,结晶盐析出 导致冻结时的溶液浓度的下降。

5.2 结晶盐析出对冻结温度的影响

当土体含盐量较大时,在冻结前会有盐析出, 在计算冻结温度时应考虑盐析出对冻结时溶液浓度 的影响。将图 10 中的冻结时溶液浓度值代入公式 (14),计算考虑了盐析出影响的土体冻结温度,见 图 11。从图 11 可以看到,冻结时的溶液浓度降低, 导致了结晶盐析出时冻结温度的上升,计算值与试 验值吻合很好,说明这一分析是合理的。

5.3 盐析出对催化剂接触角的影响

催化剂与晶体的接触角越大则非均匀成核所需 的过冷温度越高。若催化剂与晶体键合能接近,晶 格匹配则能有效降低接触角。结晶盐与冰晶的接触 角要小于土体颗粒与冰晶的接触角。若冻结前土颗 粒表面没有结晶盐,则冻结时冰晶只能在土颗粒表 面成核。若冻结前土颗粒表面存在结晶盐,则冻结 发生时,就会有部分冰晶在结晶盐表面析出。这在 宏观上表现为,冻结前随着结晶盐不断析出,土颗 粒表面的结晶盐增多,土颗粒与冰晶的接触角不断 减小,并最终趋近于结晶盐与冰晶的接触角。根据 特征温度稳定阶段的过冷温度值对公式(20)中的 接触角余弦 m 进行拟合,当接触角余弦 m=0.971 时, 计算值与试验值的可决系数达到最大值 0.977,认为 在特征温度稳定阶段,兰州黄土的接触角余弦 m 为 0.971。所以特征温度下降阶段接触角余弦值为 0.935,稳定阶段的接触角余弦为 0.971,上升阶段 的接触角余弦由二者插值得到。

5.4 盐析出对过冷温度的影响

结晶盐析出导致冻结时溶液浓度的降低和冰晶 与土颗粒接触角的减小,这两个变化同时对过冷温 度产生影响。当认为土体与冰晶接触角为常数,只 考虑冻结时溶液浓度的变化,得到的过冷温度计算 值如图 12 中曲线 1 所示,可以看到冻结时溶液浓度 的降低会导致过冷温度的升高。当考虑冻结时溶液 浓度和土体与冰晶接触角变化的双重作用,得到的 过冷温度如图 12 中曲线 2 所示,试验值与曲线 2 吻合很好,说明结晶盐的析出,导致孔隙溶液浓度 降低和土颗粒与冰晶的接触角减小的双重作用,导 致了过冷温度的升高。

6 结 论

本文给出了盐渍土冻结时的过冷温度和冻结温 度的理论计算表达式,并通过与试验结果对比,验 证了表达式的有效性,同时对盐渍土冻结特征温度 的影响因素进行了分析,得到如下结论:

(1)随着硫酸钠溶液浓度的增大,特征温度的 变化分为下降,上升,稳定三个阶段,上升阶段的 起始点为土体冻结前结晶盐析出的含盐量临界点。 当土体含盐量小于等于该值,土体冻结前无结晶盐 析出,当土体含盐量大于该值,土体冻结前开始有 结晶盐析出。

(2)冻结温度随着溶液浓度的增大而降低,当

冻结前有结晶盐析出,则冻结时孔隙溶液浓度降低, 该作用导致了冻结温度的上升。

(3)结晶盐析出导致孔隙溶液降低和土体与冰

晶的接触角减小,是过冷温度的升高的原因。

参考文献(References):

- [1] 徐攸在.盐渍土地基[M].北京:中国建筑工业出版社,2012. (Xu Youzai. Saline Soil Foundation[M]. Beijing: China Architecture & Building Press, 2012.)
- [2] Wu D, Lai Y, Zhang M. Heat and mass transfer effects of ice growth mechanisms in a fully saturated soil[J]. International Journal of Heat and Mass Transfer, 2015, 86: 699-709.
- [3] Koniorczyk M, Gawin D. Modelling of salt crystallization in building materials with microstructure – Poromechanical approach[J]. Construction & Building Materials, 2012, 36(none):860---873.
- [4] Espinosa R M, Franke L, Deckelmann G. Model for the mechanical stress due to the salt crystallization in porous materials[J]. Construction and Building Materials, 2008, 22(7):1350-1367.
- [5] Espinosa R M, Franke L, Deckelmann G. Phase changes of salts in porous materials: Crystallization, hydration and deliquescence[J]. Construction & Building Materials, 2008, 22(8):1758-1773.
- [6] Scherer G W. Crystallization in pores[J]. Cement & Concrete Research, 1999, 29(8):1347-1358.
- [7] Scherer G W. Stress from crystallization of salt[J]. Cement & Concrete Research, 2004, 34(9):1613-1624.
- [8] Wang C, Lai Y, Yu F, et al. Estimating the freezing-thawing hysteresis of chloride saline soils based on the phase transition theory[J]. Applied Thermal Engineering, 2018, 135: 22-33.
- [9] Khvorostyanov V I, Curry J A. Thermodynamic theory of freezing and melting of water and aqueous solutions[J]. The Journal of Physical Chemistry A, 2004, 108(50): 11073-11085.
- [10] Wu D, Lai Y, Zhang M. Heat and mass transfer effects of ice growth mechanisms in a fully saturated soil[J]. International Journal of Heat and Mass Transfer, 2015, 86: 699-709.
- [11] 徐学祖, 王家澄, 张立新. 冻土物理学[M]. 科学出版社, 2001. (XU X, WANG J, ZHANG L. Frozen soil physics[M]. Beijing: Science Press, 2001.)
- [12] Lai Y , Wu D , Zhang M . Crystallization deformation of a saline soil during freezing and thawing processes[J]. Applied Thermal Engineering, 2017, 120:463-473.
- [13] Konrad J M. Temperature of ice lens formation in freezing soils[C]//Proceedings of 5th International Conference on Permafrost. Trondheim, Norway: Tapir Publishers. 1988: 384-389.
- [14] Style R W, Peppin S S L, Cocks A C F, Wettlaufer J S. Ice-lens formation and geometrical supercooling in soils and other colloidal materials[J]. Physical Review E, 2011, 84(4): 041402.
- [15] 万旭升,赖远明,廖孟柯. 硫酸盐渍土未相变含水率与温度关系研究[J]. 岩土工程学报, 2015, 37(12):2175-2181. (Wan X, Lai Y, Liao M. Relationship between temperature and water content of sodium saline soils without phase transformation [J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2175-2181.)
- [16] 邴慧, 马巍. 盐渍土冻结温度的试验研究[J]. 冰川冻土, 2011, 3(5): 1106-1113. (Bing H, Ma W. Experimental study on freezing point of saline soil[J]. journal of glaciology and geocryology, 2011, 3(5): 1106-1113.)
- [17] Hui Bing, Wei Ma. Laboratory investigation of the freezing point of saline soil[J]. Cold Regions Science & Technology, 2011, 67(1):79-88.
- [18] 张婷,杨平.不同因素对浅表土冻结温度的影响[J].南京林业大学 学报(自然科学版), 2009(04):136-138. (ZHANG T, YANG P*. Effect of different factors on the freezing temperature of shallow top soil[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2009, 33(04): 132-134.)
- [19] 李毅, 崔广心, 吕恒林. 有压条件下湿粘土结冰温度的研究[J]. 冰 川冻土, 1996, 018(001):43-46. (Li Y, Cui G, Lu H. A Study on Freezing Point of Wet Clay Under Loading[J]. journal of glaciolgy & geocryology, 1996, 018(001): 43-46.)
- [20] 周家作, 谭龙, 韦昌富, 魏厚振. 土的冻结温度与过冷温度试验研究[J]. 岩土力学, 2015, 36(3): 777-785. (Zhou J, Tan L, Wei C, Wei H. Experimental research on freezing temperature and super-cooling temperature of soil (in Chinese)[J]. Yantu Lixue/Rock and Soil Mechanics, 2015, 36(3): 777-785.)
- [21] Han Y, Wang Q, Kong Y, Cheng S, Wang J, Zhang X. Experiments on the initial freezing point of dispersive saline soil[J]. Catena, 2018, 171: 681-690.
- [22] Wan X, Hu Q, Liao M. Salt crystallization in cold sulfate saline soil[J]. Cold Regions Science and Technology, 2017, 137: 36-47.

- [23] Xiao Z, Lai Y, You Z, Zhang M. The phase change process and properties of saline soil during cooling[J]. Arabian Journal for Science and Engineering, 2017, 42(9): 3923-3932.
- [24] Petrov O, Furó I. Curvature-dependent metastability of the solid phase and the freezing-melting hysteresis in pores[J]. Physical Review E, 2006, 73(1): 011608.
- [25] Morishige K, Kawano K. Freezing and melting of water in a single cylindrical pore: The pore-size dependence of freezing and melting behavior[J]. The Journal of chemical physics, 1999, 110(10): 4867-4872.
- [26] Jiang Q, Ward M D. Crystallization under nanoscale confinement[J]. Chemical Society Reviews, 2014, 43(7): 2066-2079.
- [27] Sliwinska-Bartkowiak M, Gras J, Sikorski R. Phase transitions in pores: Experimental and simulation studies of melting and freezing[J]. Langmuir, 1999, 15(18): 6060-6069.
- [28] 王中平,王弢.简述核磁共振冷冻测孔法的原理及应用[J]. 材料导报, 2013, 027(001):129-133. (Wang Z, Wang T, A Brief Introduction to the Principle and Application of Nuclear Magnetic Resonance Cryoporometry[J]. Materials Reports, 2013, 027(001): 129-133.)
- [29] Wan X, Lai Y, Wang C. Experimental Study on the Freezing Temperatures of Saline Silty Soils[J]. Permafrost & Periglacial Processes, 2015, 26(2):175-187.
- [30] Xiao Z, Lai Y, Zhang M. Study on the freezing temperature of saline soil[J]. Acta Geotechnica, 2018, 13(1): 195-205.
- [31] Kozlowski T. Some factors affecting supercooling and the equilibrium freezing point in soil-water systems[J]. Cold Regions ence & Technology, 2009, 59(1):25-33.
- [32] Steiger M. Crystal growth in porous materials—I: The crystallization pressure of large crystals[J]. Journal of Crystal Growth, 2005, 282(3-4):455-469.
- [33] 周风玺,应赛,蔡袁强. 多孔介质中晶体的结晶压力分析[J]. 岩土 工程学报, 2019, 041(006):1158-1163. (Zhou F, Ying S, Cai Y. Crystallization pressure of crystals in porous media [J]. Chinese Journal of Geotechnical Engineering, 2019, 041(006): 1158-1163.)
- [34] Pitzer K S. Activity Coefficients in Electrolyte Solutions: 0[M]. CRC press, 2018.
- [35] Clegg, Simon L., and Michael Whitfield. "Activity coefficients in natural waters." Activity coefficients in electrolyte solutions 2 (1991): 279-434.
- [36] Steiger M .Crystal growth in porous materials—II: Influence of crystal size on the crystallization pressure [J]. Journal of Crystal Growth, 2005, 282(3-4):470-481.
- [37] Mullin J W. Crystallization[M]. Elsevier, 2001.
- [38] Fletcher N H J. Size effect in heterogeneous nucleation[J]. The Journal of chemical physics, 1958, 29(3): 572-576.
- [39] 万旭升.硫酸盐渍土盐晶体析出,盐分迁移及寒区路基防盐胀试 验研究[D]. 中国科学院大学, 2015. (Wan X. Labotory investigation on salt crystals precipitation of sulfate saline soil and salt transfer and salt-heaving mitigation of embankment in cold regions[D]. Chinese Academy of Sciences, 2015.)
- [40] 李星星,王思敬,肖锐铧,程东幸,严福章.硫酸钠溶液在降温结 晶过程中的盐胀与冻胀[J]. 岩土工程学报, 2015, 38(11). (Li X, Wang S, Xiao R, Cheng D, Yan F. Saline expansion and frost heave of sodium sulfate solution during cooling crystallization process[J]. Chinese Journal of Geotechnical Engineering, 2016.)