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Abstract
In this paper, we revisit the perspective-n-line problem and propose a closed-form solution that is fast, robust and generally
applicable. Ourmain idea is to formulate the pose estimation problem into an optimal problem. Ourmethod only needs to solve
a fifteenth-order and a fourth-order univariate polynomial, respectively, whichmakes the processesmore easily understood and
significantly improves the performance. Experiment results show that our method offers accuracy and precision comparable
or better than existing state-of-the-art methods, but with significantly lower computational cost. This superior computational
efficiency is particularly suitable for real applications.

Keywords Perspective-n-line problem (PnL) · Camera pose estimation · Absolute position and orientation · Computer vision

1 Introduction

Determining the position and orientation of a calibrated
camera from n correspondences between 3D reference fea-
tures and their 2D projections, where the features are either
points or lines, is an important step in many vision-based
tasks such as robot location [3], augmented reality [4],
structure-from-motion (SfM) [25], and spacecraft pose esti-
mation during descent and landing [21]. For point features,
the problem becomes the well-known Perspective-n-point
(PnP) problem, which has been well studied in recent years
[12,14,17–19,22,27,31]. For line features, it corresponds to
the Perspective-n-Line (PnL) problem,which remains a chal-
lenging topic.
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In this paper,wepropose a fast, robust, and generalmethod
for the PnL problem. Our proposed method has several
advantages compared to existing methods:

– Optimality Some recent works (i.e., [2,20]) formulate the
PnL problem into a unconstrained optimization prob-
lem and compute all stationary points by solving the
first-order optimal conditions of the object function. The
first-order optimality conditions are usually a complex
polynomial equation system, and are solved by using
matrix resultant technique (i.e., the Gröbner basis tech-
nique [15]).However, this processingwill take significant
time and is difficult to assure reliability. Similarly, to these
recent works, our method also transfers the PnL problem
into an optimal one. However, our method only needs to
solve a fifteenth-order and a fourth-order univariate poly-
nomialwithout solving the complex polynomial equation
systems. The number of the solutions for our method is
substantially smaller than existing globally optimalmeth-
ods. All of thesemake our methodmore easily applicable
and significantly improve the performance.

– Universal applicability Our method achieves accurate
results for both non-redundant line sets (n = 4 or 5)
and redundant line sets (n ≥ 6). In contrast, some exist-
ing methods have poor results when n = 4 or 5 (e.g.,
[2,20,30]), and other methods can only work for n ≥ 6
(e.g., [1,23,26]).

– High accuracy and efficiency Experiment results show
that our method offers accuracy and precision compa-
rable or better than existing state-of-the-art methods.
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Additionally, our method, in terms of computational
efficiency, is significantly better than existing globally
optimal methods. The computational efficiency of our
method is evenbetter than some linear-formulation-based
PnL methods [1,26], with increasing number of lines.
This superior computational efficiency is particularly
suitable for real applications.

The rest of the paper is organized as follows: Sect. 2 pro-
vides an overview of the related work on PnL. We describe
our proposed method in Sect. 3, while we present a thorough
analysis of the proposedmethod by simulated and real exper-
iments in Sect. 4. Lastly, we conclude the work in Sect. 5.

2 Related work

As the minimal case, P3L (n = 3) has been thoroughly
investigated in the literature. In one of the earliest meth-
ods, Dhome et al. [8] proposed an analytical method to
solve the P3L problem. They transformed 3D lines and 2D
lines into a model coordinate system and a virtual viewer
coordinate system, respectively, and then derived a eighth-
order polynomial to determine the closed-form solution of
the P3L problem. However, its mathematical expression is
too complex to solve. In Chen [7] investigated the necessary
conditions under which the P3L problem has finite number
of solutions, and proposed an algebraic method to the P3L
problem. Unfortunately, this method is highly unstable in the
presences of noise. Caglioti [6] addressed a special case of
the P3L problem where three lines lie in a common plane
and intersect at a common point, which is called the pla-
nar 3-line junction perspective problem. Qin and Zhu [24]
proposed a solution of another special situation of the P3L
problem, where three lines form a Z -shape in space, i.e., two
lines are parallel and the 3rd line intersects with both of them.
Recently, Zhang et al. [30] decomposed the overall rotation
from the world frame to the camera frame into a sequence
of simple rotations, and proposed a geometric method to the
P3L method. In practice, a P3L solution is usually used in
combination with RANSAC to remove outliers, because the
solutions of P3L problem are not uniquely determined [7].

Considering that data redundancy generally contributes to
improving accuracy, most of existing works on PnL focus on
overconstrained cases with more than three lines. To prop-
erly account for the recent works, we would like to roughly
categorize them into two groups—the iterative methods and
the non-iterative methods.

Typically, the iterative methods [9,13,16] formulate the
PnLproblem into a nonlinear least-squares problem, and then

solve it using iterative optimization methods, i.e., Gauss–
Newton andLevenberg–Marquardtmethod [5].However, the
iterative methods are sensitive to the initialization and are
easily trapped into a local minimum, which will lead to poor
accuracy, especially when no redundant lines (n = 4 or 5)
are available.

For the non-iterative methods, the most straight-forward
method is the Direct Linear Transformation (DLT) method
[1,26], which transforms the measured line correspondences
into a homogeneous system of linear equations and solves the
linear equations using singular value decomposition (SVD)
method [11]. As the improved method, DLT-Plücker-Lines
was presented in [23]. DLT-Plücker-Lines parameterizes 3D
reference lines usingPlücker coordinates and uses linear least
squares to estimate the camera projection matrix. Recently,
Xu et al. [28] explored the similarity between PnL and PnP
(Perspective n point problem) in terms of linear formula-
tion, and proposed a series of linear-formulation-based PnL
methods.

To sum up, all the aforementioned linear methods have
an advantage of less computing costs, but are sensitive to
noise, and cannot deal with small line sets (n = 4 or
5). To overcome these problems, Ansar and Daniilidis [2]
developed a method that is able to handle n = 4 or more
lines, with computational complexity O(n2). However, this
method is still inaccurate for small line sets, due to its under-
lying linearization scheme. To improve accuracy, Mirzaei
and Roumeliotis [20] proposed the first globally optimal and
non-iterative method (called AlgLS) with complexity O(n),
which formulates the PnL problem into a multivariate poly-
nomial system using the camera measurement equations and
employs the matrix resultant technique to determine all roots
of the system. Unfortunately, they parameterized rotation by
using the Cayley Gibbs Rodriguez (CGR) representation,
which leads to unstable results because the CGR representa-
tion has a singularity for any 180◦ rotations. To resolve these
drawbacks, Zhang et al. [30] proposed another non-iterative
O(n) solution, named RPnL, which transfers the PnL prob-
lem into a suboptimal problem by solving a fifteenth-order
polynomial. RPnL is very efficient and works well for both
non-redundant (n = 4 or 5) and redundant (n ≥ 6) lines
cases. Even more recently, the RPnL method was modi-
fied by Xu et al. [28] into the Accurate Subset-based PnL
(ASPnL) method, which acts more accurately on small line
sets. To our knowledge, ASPnL is one of the most accu-
rate non-iterative methods until now, which represents the
state-of-the-art solution. However, ASPnL has a primary dis-
advantage that its computational time increases strongly for
higher number of lines, which will limit its applications for
scenarios with many lines.
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Fig. 1 Illustration of the PnL problem

3 Proposedmethod

3.1 Problem statement

The problem considered in this paper is illustrated in Fig. 1.
Given a calibrated camera and n known 3D reference lines
Li (i = 1, 2, . . . , n) with their corresponding 2D projections
on the image plane as li . The goal is to recover the rotation
R and translation t of the camera. Let Li = (Vw

i , Pi ) be the
known 3D line in the world frame, where Vw

i ∈ R
3 is the

normalized vector giving the direction of the line and Pi ∈ R
3

is any point on the line. Let li = (si , pi ) be the corresponding
2D projection of Li on the image plane, where si and pi are
the endpoints of li . For a given li , a projection plane �i is
determined which passes through the projection center O ,
li and Li . The normal of �i is denoted as nci ∈ R

3 in the
camera frame, which can be easily calculated using the cross
product of si and pi .

3.2 Defining an intermediate rotation from
correspondences

The first step involves the definition of a new, intermediate
rotation matrix Rm from the reference lines Li and their cor-
responding normals nci . To obtain the intermediate rotation
Rm , we select a line Li = (Vw

i , Pi ) with the longest projec-
tion length |si pi |, and create an intermediate model frame
[Om − Xm,Ym,Zm] (see Fig. 1), where

Ym = nci
‖nci ‖

Xm = nci × Vw
i

‖nci × Vw
i ‖

Zm = Xm × Ym

‖Xm × Ym‖ . (1)

The Y -axis of the model frame aligns with nci , and the ori-
gin of the model frame is located at the origin of the world
frame. Hence, the intermediate rotation matrix Rm can be
determined as Rm = [Xm,Ym,Zm]T .

Via the rotation matrix Rm , feature vectors Vw
i and their

corresponding normals nci can be easily rotated into a new
world frame and a new camera frame using

Vwn
i = RmVw

i i = 1, 2, . . . , n, (2)

ncni = Rmnci i = 1, 2, . . . , n. (3)

Let’s define the rotation matrix between the newworld frame
and the new camera frame as Rc. Now if we are able to obtain
the Rc, and the complete rotation R can be easily given by
Rc and Rm . We use the Euler Angle to express the rotation
Rc as

Rc = Rot(Y , β)Rot(Z , γ )Rot(X , α)

=
⎡
⎣

cosβ 0 sin β

0 1 0
− sin β 0 cosβ

⎤
⎦

⎡
⎣
cos γ − sin γ 0
sin γ cos γ 0
0 0 1

⎤
⎦

⎡
⎣
1 0 0
0 cosα − sin α

0 sin α cosα

⎤
⎦ ,

(4)

in which Rot(X , α), Rot(Y , β) and Rot(Z , γ ) denote rota-
tion around the X -axis, Y -axis and Z -axis, respectively.
Rot(X , α) can be easily calculated because α is the angle
between Z -axis and Vwn

i . Hence, the Rc can be determined
by two unknown variables β and γ .

3.3 Determining Rot(Z,�) by using least-square
residual

In the following, we select another line L j , whose projec-
tion |s j p j | is the second longest, as an auxiliary line. Every
remaining line Lk together with the Li and L j forms a 3-
line subsets {Li L j Lk |k = 1, . . . , n; k �= i&k �= j}, and the
line set {Li , i = 1, 2, . . . , n} is finally divided into n − 2
subsets. By using the P3L (perspective-three-line) constraint
[30], and letting x = cos γ , each subset can build an eighth-
order polynomial as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f1(x) = ∑8
k=0 δ1k xk = 0

f2(x) = ∑8
k=0 δ2k xk = 0

· · ·
fn−2(x) = ∑8

k=0 δ(n−2)k xk = 0

, (5)

where δk is known coefficients.
Instead of directly solving a series of eighth-order poly-

nomials, a cost function F = ∑n−2
i=1 f 2i (x) is defined as

the square sum of these polynomials. The minima of F
can then be determined by finding the roots of its derivative
F ′ = ∑n−2

i=1 fi (x) f ′
i (x) = 0. F ′ is a fifteenth-order polyno-

mial, which has at most 8 minima, and can be easily solved

123



P. Wang et al.

by the eigenvalue method [10]. Once the minimal of F is
determined, the Rot(Z , γ ) in Eq. (4) can be easily calculated
by the sine and cosine of the rotation angle γ .

3.4 Retrieving Rot(Y,ˇ) by solving an optimal
problem

When the Rot(Z , γ ) is determined, from Eq. (4), the Rc can
be expressed as:

Rc = Rot(Y , β)R′ =
⎡
⎣

s1 0 s2
0 1 0

−s2 0 s1

⎤
⎦

⎡
⎣
r1 r2 r3
r4 r5 r6
r7 r8 r9

⎤
⎦ , (6)

in which R′ = Rot(Z , γ )Rot(X , α), s1 = cosβ and s2 =
sin β.

As Li lies on the plane �i , the line direction vector Vwn
i

is perpendicular to the plane normal ncni . Hence, the rotation
matrix Rc must satisfy the constraint that

(
ncni

)T
RcV

wn
i = 0 i = 1, 2, . . . , n. (7)

By substituting Eq. (6) into Eq. (7), and letting ncni =
[xi , yi , zi ]T and (R′Vwn

i ) = [Xi ,Yi , Zi ]T , we have

[
xi yi zi

]
⎡
⎣

s1 0 s2
0 1 0

−s2 0 s1

⎤
⎦

⎡
⎣
Xi

Yi
Zi

⎤
⎦ = 0 (8)

By denoting a new unknown s = [s1, s2, 1]T , Eq. (8) can be
represented as

Ai s = 0, (9)

where

Ai = [
xi Xi + zi Zi , xi Zi − zi Xi , yiYi

]
.

Equation (9) is satisfied for every reference lines, hence

⎡
⎢⎢⎢⎣

A1

A2
...

An

⎤
⎥⎥⎥⎦ s = 0 ⇐⇒ As = 0 (10)

Note that Eq. (10) is not perfectly satisfied due to the noise.
The residual of Eq. (10) can be expressed as

η = As (11)

In addition, there is a constraint that s21 + s22 = 1. Hence, we
directly minimize the sum of the squared residuals to build a

cost function with a constraint. The simplified cost function
is

ε = sT Gs + λ(1 − s21 − s22 ) i = 1, 2, . . . , n, (12)

in which

G = AT A =
⎡
⎣
G11 G12 G13

G12 G22 G23

G13 G23 G33

⎤
⎦

is a know 3× 3 symmetric matrix, and λ is a Lagrange mul-
tiplier. The minima of Eq. (12) can be determined by solving
the polynomial system of its first-order optimality condition.

∂ε

∂s1
= G11s1 + G12s2 − λs1 + G13 = 0

∂ε

∂s2
= G12s1 + G22s2 − λs2 + G23 = 0

∂ε

∂λ
= 1 − s21 − s22 = 0 (13)

By eliminating λ, we can express s2 via

s2 = 2G12s21 + G23s1 − G12

(G11 − G22)s1 + G13
. (14)

By squaring both sides of Eq. (14), and substituting s22 =
1− s21 into it, we finally obtain a fourth-order polynomial of
the form

s41F4 + s31F3 + s21F2 + s1F1 + F0 = 0, (15)

where

F4 = 4G2
12 + G2

22 + G2
11 − 2G11G22

F3 = 4G12G23 + 2G11G13 − 2G13G22

F2 = G2
23 + 2G11G22 + G2

13 − 4G2
12 − G2

11 − G2
22

F1 = 2G13G22 − 2G11G13 − 2G12G23

F0 = G2
12 − G2

13.

s1 can be easily solved from Eq. (15) by using the eigenvalue
method [10]. After plugging s1 back into Eq. (14), s2 can also
be determined. Eq. (15) has at most 2 minima, and up to 16
minima can be obtained in our method. For each minimum,
we first evaluate the rotation Rc via Eq. (6) and then calculate
the orthogonal error Eer as the following equation

Eer =
n∑

i=1

((
ncni

)T
RcV

wn
i

)2
. (16)

When n ≥ 6, the PnL problem has a unique solution. There-
fore, we choose the Rc with smallest objective value in
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Eq. (16) as the final solution, and retrieve the complete R
between the camera frame and the world frame by using
R = RT

m RcRm . When 4 ≤ n < 6, the PnL problem has mul-
tiple solutions in general, and we return all Rc to calculate
the complete R.

3.5 Rotation refinement and translation estimation

To further polish the estimated R, we reformulate the pose
estimation problem into a least-squares problem with three
variables, then solve the least-squares problem via a single
Gauss–Newton step. According to the projection from 3D
lines to 2D lines in the normalized image plane [29], we
obtain

(
nci

)T
RVw

i = 0 i = 1, 2, . . . , n,
(
nci

)T
(RPi + t) = 0 i = 1, 2, . . . , n, (17)

in which nci = [x̂i , ŷi , ẑi ]T , Vw
i = [X̂i , Ŷi , Ẑi ]T and Pi =

[Pxi , Pyi , Pzi ]T . We adopt the Cayley parameterization to
express the rotation R, which is given by

R = 1

H

⎡
⎣
1 + b2 − c2 − d2 2bc − 2d 2bd + 2c

2bc + 2d 1 − b2 + c2 − d2 2cd − 2b
2bd − 2c 2cd + 2b 1 − b2 − c2 + d2

⎤
⎦ ,

(18)

where H = 1 + b2 + c2 + d2.
Now letting ŝ = [1, b, c, d, b2, bc, bd, c2, cd, d2]T , and

Eq. (17) can be transformed into the following matrix form

QT
i ŝ = Ni t i = 1, 2, . . . , n, (19)

in which

Qi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̂i X̂i + ŷi Ŷi + ẑi Ẑi , x̂i Pxi + ŷi Pyi + ẑi Pzi

2ẑi Ŷi − 2 ŷi Ẑi , 2ẑi Pyi − 2 ŷi Pzi

2x̂i Ẑi − 2ẑi X̂i , 2x̂i Pzi − 2ẑi Pxi

2 ŷi X̂i − 2x̂i Ŷi , 2 ŷi Pxi − 2x̂i Pyi

x̂i X̂i − ŷi Ŷi − ẑi Ẑi , x̂i Pxi − ŷi Pyi − ẑi Pzi

2 ŷi X̂i + 2x̂i Ŷi , 2 ŷi Pxi + 2x̂i Pyi

2ẑi X̂i + 2x̂i Ẑi , 2ẑi Pxi + 2x̂i Pzi

ŷi Ŷi − x̂i X̂i − ẑi Ẑi , ŷi Pyi − x̂i Pxi − ẑi Pzi

2ẑi Ŷi + 2 ŷi Ẑi , 2ẑi Pyi + 2 ŷi Pzi

ẑi Ẑi − x̂i X̂i − ŷi Ŷi , ẑi Pzi − x̂i Pxi − ŷi Pyi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

Ni =
[

0

− (
nci

)T
]

.
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Fig. 2 Numerical stability of the proposed solver. The horizontal axis
shows the log10 value of the absolute rotation error (left) and the absolute
translation error (right)

Equation (19) is also satisfied for every reference lines, hence

⎡
⎢⎢⎢⎣

QT
1

QT
2
...

QT
n

⎤
⎥⎥⎥⎦ ŝ =

⎡
⎢⎢⎢⎣

N1

N2
...

Nn

⎤
⎥⎥⎥⎦ t ⇐⇒ Qŝ = Nt ⇐⇒ t = Cŝ, (20)

where Ĉ = (NT N )−1NT Q̂.
After plugging t = Cŝ back into Eq. (19), we finally

obtain the least-squares problem as follows

ε̂ =
n∑

i=1

‖(QT
i − NiC)ŝ‖2 =

n∑
i=1

‖Ei ŝ‖2, (21)

where Êi is a 3× 10 matrix that can be computed ahead. We
then use the typical Gauss–Newtonmethod to solve the least-
squares problem. Since the initialization is accurate enough,
only one-step iteration is used. Specifically, assuming that
ŝ is a stationary point of Eq. (21), we refine ŝ through the
updating rule ŝ = ŝ+�ŝ. The increment�ŝ is determined by
�ŝ = −[J T J ]−1 J T F(ŝ), where F = [E1, E2, . . . , En]T
and J is the Jacobian matrix of F .

Once the refined ŝ is obtained, and the complete R and
t are finally given by substituting ŝ into Eqs. (18) and (20).
The refined results are shown in Fig. 2 and show that the
polishing step can drastically improve the numerical preci-
sion, although only one-step iteration is used. Additionally,
to improve the efficiency of our method, we construct all
rows of Q and N in Eq. (19) simultaneously by using vector-
ization method, instead of every two rows in an iterative way.
Similarly, the matrix A in Eq. (10) can also be constructed
by using this strategy.
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Centred
n=
4,5,...,20
δ=5

Uncentred
n=
4,5,...,20
δ=5

Fig. 3 Synthetic experimental results. n denotes the number of lines, and δ denotes the standard deviation of image noise. The accuracies of the
compared methods were tested in centered and uncentered cases by varing n from 4 to 20

Centred
n=10
δ=
1,2,...,15

Uncentred
n=10
δ=
1,2,...,15

Fig. 4 Synthetic experimental results. n denotes the number of lines, and δ denotes the standard deviation of image noise. The robustness against
noisy was tested in centered and uncentered cases by varing δ from 1 to 15 pixels

4 Experiment results

In this section, we investigated the performance of the pro-
posed method, referred to as SRPnL,1 by means of synthetic
data and real images, and compared the accuracy and effi-
ciency with the leading PnL methods:

– DLT-Lines An efficient linear method, which uses lin-
ear least squares to estimate the camera pose parameters.

1 The source code of the proposedmethod (SRPnL) can be downloaded
from https://sites.google.com/view/ping-wang-homepage.

This method requires at least 6 line correspondences
[1,26].

– Lift An efficient linear method, which converts the
polynomial system to a set of linear systems by re-
parameterizing the nonlinear terms with new variables.
Lift method is sensitive to the measurement-noise [2].

– AlgLS One of the most accurate non-iterative method,
which estimates the camera’s pose by directly solving the
corresponding least-squares problem algebraically. This
method is very time-consuming when n is large [20].

– RPnLA robust and efficient non-iterative method, which
works well for both non-redundant (n ≤ 6) and redun-
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Centred
n=4
δ=
1,2,...,15

Centred
n=5
δ=
1,2,...,15

Fig. 5 Synthetic experimental results. n denotes the number of lines. δ denotes the standard deviation of image noise, and δ varies from 1 to 15
pixels. The robustness against small line set was tested in centered case

Centred
f=
0.2k,0.4k,...,2k
δ=5

Uncentred
f=
0.2k,0.4k,...,2k
δ=5

Fig. 6 Synthetic experimental results. f denotes the focal length, and δ denotes the standard deviation of image noise. The accuracies of the
compared methods were tested in centered and uncentered cases by varing f from 200 to 2000 pixels

dant line correspondences. However, this method is not
accurate enough in most cases, because it is a suboptimal
method [30].

– LPnL-Bar-LSAn efficient linear method, which parame-
terizes reference lines using barycentric coordinates, and
uses homogeneous linear least squares to solve the PnL
problem. This method also needs at least 6 lines [28].

– ASPnL An accurate subset-based PnL method, which is
the improved version of RPnL method and represents
the state-of-the-art method. A drawback of this method is
that the computational time increases strongly for higher
number of lines [28].

All methods are implemented via MATLAB, and are exe-
cuted on a quad-core notebook with 2.5 GHz CPU and 4 GB
RAM.The source code can be downloaded from https://sites.
google.com/view/ping-wang-homepage.

4.1 Experiments with synthetic data

4.1.1 Synthetic data

We synthesized a virtual perspective camera with an image
size of 640× 480 pixels and generated n 3D reference lines,
which are randomly distributed in the range of [−2, 2] ×
[−2, 2] × [4, 8], in the camera frame. The focal length is
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Centred
outlier rate=
5%,10%,...,50%
n=50

Uncentred
outlier rate=
5%,10%,...,50%
n=50

Fig. 7 Synthetic experimental results. n denotes the number of lines. The robustness against outliers was tested by varying outlier rate from 5 to
50%

Fig. 8 The first shows a
comparison of the
computational efficiency of all
methods. The second plot shows
a zoomed-in version to clarify
the comparison between the
most efficient methods
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chosen in the range from 200 to 2000 pixels. Then, we
transformed these 3D lines into the world frame using the
ground-truth of rotation Rtrue and translation Ttrue. Finally,
we projected these 3D lines into the 2D image plane using the
virtual calibrated camera. In the centered case, the 2D pro-
jections of the 3D lines spread in region [0, 640] × [0, 480]
pixels on image plane. In the uncentered case, the 2D pro-
jections scatter in region [0, 320] × [0, 240] pixels on image
plane.Depending on the experiment, a different level ofwhite
Gaussian noise was added to the 2D image plane.

The estimated rotation and translation were defined as R
and T , respectively, and the errors of each were calculated as

Erot(degrees) = max
k∈{1,2,3} cos

−1
(
rTk,truerk

)
× 180

π

Etrans(%) = ‖ttrue − t‖
‖t‖ × 100 (22)

where rk,true and rk are the k-th columnof Rtrue and R, respec-
tively. Note that this error metric might not be standard, but
we use it in order to remain consistent with previous works.

4.1.2 The effect with the varying number of lines

The first simulated experiment investigated the performance
of all methods with the varying number of reference lines for
centered and uncentered cases. We varied the line number
n from 4 to 20, and added zero-mean Gaussian noise with
fixed deviation δ = 5 pixels onto the image projections. At
each n, 500 independent test sets were generated. We pre-
sented the mean and median rotation and translation error in
Fig. 3. Generally speaking, the measured accuracy of Lift
is very poor for all cases, even when the redundant lines are
available.DLT-Lines andLPnL-Bar-Ls also offer poor esti-
mation results for centered and uncentered cases, especially
when n is small, because they are linear methods and ignore
some nonlinear constraints.AlgLs is inaccurate on the mean
rotation and translation error, due to the singularities of the
Cayley parameterization. RPnL is also not accurate enough
in most case, because it is a suboptimal method. Besides,
RPnL sometimes produce a degenerate pose estimate very
far from the ground-truth (See the mean translation error). In
contrast, the SRPnL method stably reaches highly accurate

123



Camera pose estimation from lines: a fast, robust and general method

Table 1 Results of the methods
on the VGG dataset in terms of
average camera rotation error
and average position error

1 2 3 4 5 6 7 8 9 10

AlgLS

�θ (◦) 0.969 0.475 1.031 1.119 4.289 1.510 3.244 1.031 0.969 0.475

�T (m) 0.452 0.267 0.558 0.432 1.486 0.745 1.656 0.558 0.452 0.266

DLT-Lines

�θ (◦) 0.273 0.066 0.078 0.293 0.233 0.081 0.259 0.077 0.273 0.066

�T (m) 0.160 0.041 0.091 0.168 0.073 0.065 0.046 0.091 0.149 0.041

LPnL-Bar-LS

�θ (◦) 0.109 0.186 0.172 0.344 0.088 0.408 0.913 0.172 0.108 0.187

�T (m) 0.056 0.148 0.096 0.175 0.026 0.179 0.372 0.096 0.056 0.148

RPnL

�θ (◦) 0.474 0.288 0.156 1.379 1.570 0.829 2.580 0.156 0.474 0.288

�T (m) 0.206 0.144 0.056 0.645 0.711 0.439 1.403 0.055 0.206 0.144

ASPnL

�θ (◦) 0.164 0.163 0.564 1.453 0.143 1.023 3.059 0.564 0.164 0.163

�T (m) 0.065 0.088 0.245 0.696 0.045 0.438 1.073 0.244 0.065 0.088

SRPnL

�θ (◦) 0.082 0.151 0.066 0.124 0.082 0.138 0.079 0.065 0.082 0.151

�T (m) 0.039 0.076 0.033 0.055 0.023 0.061 0.012 0.033 0.034 0.076

Best results are in bold

results from n = 4 to 20, and offers accuracy comparable
to the examined state-of-the-art method (ASPnL) for both
centered and uncentered configurations.

4.1.3 The effect with the varying noise

The second simulated experiment tested the effects of noise
on the accuracy of all methods. We fixed n = 10 and varied
the noise deviation level δ from 1 to 15 pixels. At each noise
level, we conducted 500 independent tests and reported the
mean and median rotation and translation error for centered
and uncentered cases. The results are shown in Fig. 4 and
show that the mean rotation and translation error increased
almost linearlywith addition of noise for allmethods. Similar
to the previous experiment, the SRPnL method offers accu-
racy comparable or slightly better than that of the ASPnL
method, and is still much better than others.

4.1.4 The small line set

Testing PnL methods are necessary when the input are noise
small line sets, i.e., n = 4 or n = 5, because there are
many applications, i.e., spacecraft pose estimation, satellite
navigation [21], in which only 4 or 5 line features are pro-
vided. As can be seen in Fig. 5, only SRPnL and ASPnL
can achieve highly accurate results when n = 4 or 5, and the
mean rotation and translation error of our method is slightly
better than ASPnL. The remaining methods are sensitive to
the increased noise and have poor results. Note that DLT-

Lines and LPnL-Bar-Ls can not be applied to n = 4 or 5,
because they are linear method, which needs at least 6 lines.

4.1.5 The effect with the varying focal length

In this test, the focal length f was varied from 200 to 2000
pixels, and the standard deviation of image noise was fixed to
5 pixels. Figure 6 shows the result of evaluation. Most of the
methods are not stable for centered and uncentered caseswith
varying focal length. On the contrary, the accuracy ofSRPnL
is comparable to ASPnL for both centered and uncentered
cases, which is much better than other methods.

4.1.6 The robustness against outliers

This section tested the robustness to outlying correspon-
dences for all methods. We used n = 50 lines and varied
the outlier rate from 5 to 50%. As indicated in Fig. 7, Lift
yields unstable results with low accuracy in overall evalu-
ations. Note that the mean and median translation errors of
Lift are out of the range.AlgLS andRPnL have high rotation
accuracy but with low translation accuracy. DLT-Lines and
LPnL-Bar-LS are stable in centered case, but are not sta-
ble in uncentered case. In contrast, SRPnL achieves reliable
results in centered and uncentered cases, slightly outperform-
ing ASPnL.
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Fig. 9 Images from the VGG dataset overlaid with reprojections of 3D line segments using our estimated camera pose

4.1.7 Computational efficiency

Figure 8 shows the computational time with varying 4 ≤
n ≤ 2000 and fixed δ = 2. For each n, we conducted
500 tests and showed the average running time in millisec-
onds (ms). As evident, our method has high efficiency and
is even faster than linear DLT-Lines method for n ≥ 800
lines. This is primarily due to two reasons: our method only
needs to solve a fifteenth-order and fourth-order univariate
polynomial; and the vectorization strategy is implemented,
instead of the iterative way. This result indicates that our
method is suitable for real-time applications such as aug-
mented reality and visual SLAM,where n ≥ 100 is not a rare
situation. LPnP-Bar-Ls is faster than our method, However,
our method is still very competitive, especially considering
its high accuracy and general applicability. Faster perfor-
mance can also be acquired for the SRPnL by using a
C++ implementation, which will be published upon com-
pletion.

4.2 Experiments with real images

We also tested our and other methods using ten real images
from the VGG Multiview Dataset. VGG dataset contains
image sequences of buildings with detected 2D line seg-
ments, their reconstructed 3D line segments, and camera
projection matrices. Each method was run on these images,
and the mean camera orientation error �θ = |�θ | and the
mean position error �T = ‖Testimation − Ttrue‖ are given
in Table 1. The top results for each image were typeset in
bold, from which we can observe that our SRPnL method
provided accuracy and precision comparable or better than
other state-of-the-art methods. In addition, the our estimated
camera poses were used to reproject the 3D lines onto the
images to visualize the results. As shown in Fig. 9, it demon-
strates that the proposed method can recover the camera
pose.

5 Conclusion

In this work, we developed a novel closed-form solution to
the perspective-n-line pose problem. The key process of our
method is to solve univariate polynomials, and the deriva-
tions of our method are easy to understand. The experiment
results also demonstrated that our method is substantially
faster, yet equally accurate and robust compared with the
state-of-the-art methods. Future work involves examination
of the degenerate line configurations. To facilitate further
improvement, we have made the source code publicly avail-
able.
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