Highly Productive Electrosynthesis of Ammonia by Admolecule-Targeting Single Ag Sites
Chen, Ying1; Guo, Ruijie1; Peng, Xianyun1; Wang, Xiaoqian2; Liu, Xijun1; Ren, Junqiang3; He, Jia1; Zhuo, Longchao4; Sun, Jiaqiang5; Liu, Yifan6
2020-06-23
发表期刊ACS Nano
ISSN19360851
卷号14期号:6页码:6938-6946
摘要The ambient electrocatalytic N2 reduction reaction (NRR) is a promising alternative to the Haber-Bosch process for producing NH3. However, a guideless search for single-atom-based and other electrocatalysts cannot promote the NH3 yield rates by NRR efficiently. Herein, our first-principles calculations reveal that the successive emergence of vertical end-on *N2 and oblique end-on *NNH admolecules on single metal sites is key to high-performance NRR. By targeting the admolecules, single Ag sites with the Ag-N4 coordination are found and synthesized massively. They exhibit a record-high NH3 yield rate (270.9 μg h-1 mgcat.-1 or 69.4 mg h-1 mgAg-1) and a desirable Faradaic efficiency (21.9%) in HCl aqueous solution under ambient conditions. The generation rate of NH3 is stable during 20 consecutive reaction cycles, and the reduction current density is almost constant for 60 h. This work provides an effective targeting-design principle to purposefully synthesize active and durable single-atom-based NRR electrocatalysts. © 2020 American Chemical Society.
关键词Ammonia Calculations Chlorine compounds Electrocatalysts Ambient conditions Consecutive reaction Design Principles Faradaic efficiencies First-principles calculation Haber-Bosch process Reduction current Reduction reaction
DOI10.1021/acsnano.0c01340
收录类别EI
语种英语
出版者American Chemical Society
EI入藏号20202808909347
EI主题词Silver
来源库Compendex
分类代码547.1 Precious Metals - 803 Chemical Agents and Basic Industrial Chemicals - 804.2 Inorganic Compounds - 921 Mathematics
引用统计
被引频次:108[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://ir.lut.edu.cn/handle/2XXMBERH/115789
专题省部共建有色金属先进加工与再利用国家重点实验室
材料科学与工程学院
继续教育学院
作者单位1.Center for Electron Microscopy, Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin; 300384, China;
2.School of Chemistry and Materials Science, IChEM, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at the Microscale, Hefei; 230026, China;
3.State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou; 730050, China;
4.School of Materials Science and Engineering, Xi'An University of Technology, Xi'an; 710048, China;
5.State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan; 030001, China;
6.College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen; 518060, China
第一作者单位材料科学与工程学院
第一作者的第一单位材料科学与工程学院
推荐引用方式
GB/T 7714
Chen, Ying,Guo, Ruijie,Peng, Xianyun,et al. Highly Productive Electrosynthesis of Ammonia by Admolecule-Targeting Single Ag Sites[J]. ACS Nano,2020,14(6):6938-6946.
APA Chen, Ying.,Guo, Ruijie.,Peng, Xianyun.,Wang, Xiaoqian.,Liu, Xijun.,...&Luo, Jun.(2020).Highly Productive Electrosynthesis of Ammonia by Admolecule-Targeting Single Ag Sites.ACS Nano,14(6),6938-6946.
MLA Chen, Ying,et al."Highly Productive Electrosynthesis of Ammonia by Admolecule-Targeting Single Ag Sites".ACS Nano 14.6(2020):6938-6946.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Chen, Ying]的文章
[Guo, Ruijie]的文章
[Peng, Xianyun]的文章
百度学术
百度学术中相似的文章
[Chen, Ying]的文章
[Guo, Ruijie]的文章
[Peng, Xianyun]的文章
必应学术
必应学术中相似的文章
[Chen, Ying]的文章
[Guo, Ruijie]的文章
[Peng, Xianyun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。