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compatibility of magnesium after surface modification by

Effect of hydrothermal time on hemocompatibility

of three -dimensional graphene

SUN Yanqiu, GONG Huanhuan,ZHAO Mengli, LI Dejun, KANG Yuanbin
(Faculty of Physics and Materials Sciences, Tianjin Normal University, Tianjin 300387 ,China)

Abstract ; Three-dimensional graphene were produced via the ethylenediamine hydrothermal reduction method by
using the two-dimensional graphene. And in this experiment, the hole’s diameter of three-dimensional graphene
was adjusted by the hydrothermal reaction time. In order to characterize the surface topography, the chemical
characteristics and components of three-dimensional graphene, scanning electron microscopy (SEM) and X-ray
photoelectron spectroscopy (XPS) were used. The protein absorption rate and the platelet conglutination rate of
three-dimensional graphene were also contrasted by protein electrophoresis test, platelet conglutination test and
hemolysis test. The hole’s diameter of three-dimensional graphene decreased from 340 to 230 pm with the in-
creasing of hydrothermal reaction time. The introduction of nitrogen into the three-dimensional graphene formed
new chemical bonds. When the hydrothermal time was extended from 6 to 24 h, the bovine serum albumin ab-
sorption rate of three-dimensional graphene was improved from 2.6% to 16.8% and the hemolysis ratio was de-
creased from 2.2% to 0.3%. In addition, the capability of resist platelet conglutination of three-dimensional gra-
phene was increased. With the increasing of hydrothermal reaction time, the hole’s diameter of three-dimen-
sional graphene was reduced and the specific surface area was increased. The ability of BSA absorption and the
capability of resist platelet conglutination were also improved. Furthermore, the hemolysis ratios were de-
creased. Therefore, the increasing of hydrothermal reaction time was conducive to enhance the hemocompatibili-
ty of three-dimensional graphene.

Key words: three-dimensional graphene; hydrothermal time; hemocompatibility; protein absorption; platelet con-

glutination; hemolysis ratio
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One-step preparation of graphene oxide/polyaniline/Au composites

and electrochemical properties

WAN Xiaona,ZHANG Long, LIU Fuqiang,LLI Hui,DU Xueyan
(State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals,

School of Materials & Science, Lanzhou University of Technology, Lanzhou 730050, China)
Abstract; The graphene oxide/polyaniline/gold (GO/PANI/Au) ternary composites were prepared successfully
by one step method. The graphene oxide prepared by the modified Hummers method was used as the substrate,
and the aniline monomer was polymerized in situ by using chloroauric acid as the oxidant and the gold source.
The morphology and composition analysis showed that chloroauric acid successfully oxidized aniline to polyani-
line and was reduced to gold nanoparticles. The electrochemical performance test showed that the specific capac-
itance of the ternary composites increased first and then decreased with the increase of the amount of oxidant.
When the oxidant was added in an amount of 0.03 mmol, the prepared ternary composite had the largest specific
capacitance. The specific capacity is 327 F/g at a current density of 1 A/g in 1 mol/L H,SO, electrolyte. When
the current density reached at 15 A/g, the capacity retention rate was still as high as 81% compared with initial
current density.

Key words: graphene oxide; polyaniline; nano gold; electrochemical performance



