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a b s t r a c t

In this paper, we consider the generalized Delannoy paths with steps E = (1, 0),
D = (1, 1), N = (0, 1), and N ′

= (0, 2), where each step is labelled with weights 1, a, b,
and d, respectively. By using Riordan array method to study enumeration of these paths
in general case and with the restriction that no step goes above the main diagonal, we
obtain three families of matrices. We consider the correlation between these matrices,
and obtain a Chung–Feller type theorem for these paths. By way of illustration, we give
several examples of Riordan arrays.

© 2020 Published by Elsevier B.V.

1. Introduction

We consider lattice paths in the plane Z × Z consisting of steps E = (1, 0), D = (1, 1), N = (0, 1), and N ′
= (0, 2),

where each step is labelled with weights 1, a, b, and d respectively. When a = b = 1 and d = 0, they are reduce to the
Delannoy paths [6,8,19]. So we call these paths the generalized Delannoy paths. The weight of a path is the product of the
weights of all its steps. Denote by |α| the weight of a path α. The weight of a set of paths is the sum of the total weights
of all paths. Denote by |S| the weight of a path set S. Let G(n, k) be the set of all generalized Delannoy paths from (0, 0)
to (k, n − k), and Gn,k = |G(n, k)|. Then, we obtain a infinite lower triangular array (Gn,k)n,k∈N in which the generalized
Fibonacci numbers appear in the first column. Some special cases of these matrices have been studied in [4,21,22].

The generalized Delannoy paths whose ending point is on the diagonal y = x are called generalized grand Schröder
paths. A generalized Schröder path is a generalized grand Schröder path which never goes above the diagonal y = x. In
Fig. 1, we give three examples of generalized Delannoy path, generalized grand Schröder path and generalized Schröder
path. Let U(n, k) be the set of all generalized grand Schröder paths from (0, 0) to (n, n − k), and Un,k = |U(n, k)|, and
let V (n, k) be the set of all generalized Schröder paths from (0, 0) to (n, n − k), and Vn,k = |V (n, k)|. Then, we obtain
two families of Riordan arrays (Un,k)n,k∈N and (Vn,k)n,k∈N. These families include the Catalan triangle, the Schroöder matrix
and some Riordan arrays recently studied (see [1,7,10,13,14,17,20,21]). When a = d = 0 and b = 1, we get the grand
Dyck paths consisting of east steps E = (1, 0) and north steps N = (0, 1). The classical Chung–Feller theorem [3,5] says
a property for grand Dyck paths: the number of grand Dyck paths from (0, 0) to (n, n) containing exactly m north steps
above the line y = x is the same as the nth Catalan number Cn =

1
n+1

(2n
n

)
for any m ∈ {0, 1, 2, . . . , n}, is independent

of m. Woan [20] presents a new uniformly distributed parameter based on the rightmost lowest point of the paths from
(0, 0) to (2n, 0) using steps (1, 1) and (1,−1).
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Fig. 1. Examples of generalized Delannoy path, generalized grand Schröder path and generalized Schröder path.

In this paper, by considering the correlation between these two matrices (Un,k)n,k∈N and (Vn,k)n,k∈N, we obtain a Chung–
Feller type theorem, that is, the set U(n, 0)

⋃
U(n, 1) can be partitioned uniformly into n+1 blocks, and each block has size

Vn,0 = |V (n, 0)|. This paper is organized as follows. In Section 2, we will recall the concept of Riordan matrix briefly and
consider the enumeration of the generalized Delannoy paths with step set {E = (1, 0),D = (1, 1),N = (0, 1),N ′

= (0, 2)}.
In Section 3, we enumerate the generalized grand Schröder paths and the generalized Schröder paths respectively. In
Section 4, we prove a Chung–Feller property for the generalized Schröder paths. In the last section, we give more examples
of Riordan arrays of combinatorial interest. Furthermore, we give a new interpretation of Catalan numbers.

2. Riordan array and a generalized Delannoy matrix

The concept of Riordan array was introduced in [15,18] as a generalization of the Pascal matrix. Recently, Riordan
arrays have been used widely in the enumeration of lattice paths [4,9,11,12,18,21]. Here we briefly recall the notion of
Riordan arrays. An infinite lower triangular matrix R = (rn,k)n,k∈N is called a Riordan array if its column k has generating
function g(t)f (t)k, where g(t) and f (t) are formal power series with g(0) = 1, f (0) = 0 and f ′(0) ̸= 0. The matrix
corresponding to the pair g(t), f (t) is denoted by R = (g(t), f (t)). The set of all Riordan arrays forms a group under the
ordinary row-by-column product with the multiplication identity (1, t), called the Riordan group (see [9,15,18,24]). The
multiplication rule of Riordan arrays is given by

(d(t), h(t))(g(t), f (t)) = (d(t)g(h(t)), f (h(t))), (2.1)

and the inverse of (g(t), f (t)) is

(g(t), f (t))−1
=

(
1

g(f̄ (t))
, f̄ (t)

)
, (2.2)

where f̄ (t) is the compositional inverse of f (t), i.e., f̄ (f (t)) = f (f̄ (t)) = t .
If (bn)n∈N is any sequence having b(t) =

∑
∞

n=0 bnt
n as its generating function, then for every Riordan array (g(t), f (t)) =

(rn,k)n,k∈N
n∑

k=0

rn,kbk = [tn]g(t)b(f (t)). (2.3)

This is called the fundamental theorem of Riordan arrays and it can be rewritten as

(g(t), f (t))b(t) = g(t)b(f (t)). (2.4)

For an infinite lower triangular matrix R = (rn,k)n,k∈N, the half of R is defined to be the infinite lower triangular matrix
(r2n−k,n)n,k∈N. It is known that if R = (p(t), tq(t)) is a Riordan array, then its half is also a Riordan array [2,21–23].

Lemma 2.1. Let R = (p(t), tq(t)) = (rn,k)n,k≥0 be a Riordan array and let f (t) be the generating function defined by the
functional equation f (t) = tq(f (t)). Then the half of Riordan array G is given by H =

(
tf ′(t)p(f (t))

f (t) , f (t)
)
.

Let G(n, k) be the set of all generalized Delannoy paths ending at the point (k, n− k), Gn,k = |G(n, k)| the weight of G(n, k),
and G = G(a, b, d) = (Gn,k)n,k∈N. In Fig. 2, we give a schematic illustration of dependence of Gn+1,k+1 on the other elements in
the array. From this, we get the recurrence:

Gn+1,k+1 = Gn,k + bGn,k+1 + aGn−1,k + dGn−1,k+1 (n, k ≥ 0) (2.5)

and initial conditions are G0,0 = 1,G1,0 = b and Gn+1,0 = bGn,0 + dGn−1,0.
The first few rows of the matrix G(a, b, d) = (Gn,k)n,k∈N are⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 · · ·

b 1 0 0 0 · · ·

b2 + d a + 2b 1 0 0 · · ·

b3 + 2bd 2ab + 3b2 + 2d 2a + 3b 1 0 · · ·

b4 + 3b2d + d2 3ab2 + 4b3 + 2ad + 6bd a2 + 6ab + 6b2 + 3d 3a + 4b 1 · · ·

...
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎠ .
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Fig. 2. The matrix (Gn,k) and recurrence relation of its entries.

For k ≥ 0, let gk(t) =
∑

∞

n=k Gn,ktn. Then, from (2.5) we obtain that

gk+1(t) = tgk(t) + btgk+1(t) + at2gk(t) + dt2gk+1(t).

Thus,

gk+1(t) =
t + at2

1 − bt − dt2
gk(t).

From this recurrence relation and the initial condition, we find that

g0(t) =

∞∑
n=k

Gn,0tn =
1

1 − bt − dt2
,

and so

gk(t) =

(
t + at2

1 − bt − dt2

)k 1
1 − bt − dt2

.

Therefore, we proved the following theorem.

Theorem 2.2. The matrix G(a, b, d) = (Gn,k)n,k∈N can be represented by Riordan array as

G(a, b, d) =

(
1

1 − bt − dt2
,

t + at2

1 − bt − dt2

)
.

For example, the case a = b = 1 and d = 0 gives the Delannoy matrix

G(1, 1, 0) =

(
1

1 − t
,
t + t2

1 − t

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 · · ·

1 1 0 0 0 0 0 · · ·

1 3 1 0 0 0 0 · · ·

1 5 5 1 0 0 0 · · ·

1 7 13 7 1 0 0 · · ·

1 9 25 25 9 1 0 · · ·

1 11 41 63 41 11 1 · · ·

...
...

...
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

In the case a = b = d = 1, the first few terms of the array G(1, 1, 1) are

(
1

1 − t − t2
,

t + t2

1 − t − t2

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 · · ·

1 1 0 0 0 0 0 · · ·

2 3 1 0 0 0 0 · · ·

3 7 5 1 0 0 0 · · ·

5 15 16 7 1 0 0 · · ·

8 30 43 29 9 1 0 · · ·

13 58 104 95 46 11 1 · · ·

...
...

...
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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Theorem 2.3. The general term of the array G(a, b, d) is

Gn,k =

n−k∑
i=0

k∑
j=0

(
i + k
i

)(
k
j

)(
i

2i + j + k − n

)
ajb2i+j+k−ndn−k−i−j. (2.6)

Proof. From the definition and Theorem 2.2, we have

Gn,k = [tn]
1

1 − bt − dt2

(
t + at2

1 − bt − dt2

)k

= [tn]
tk

(1 − bt − dt2)k+1 (1 + at)k

= [tn−k
]

∞∑
i=0

(
i + k
i

)
(bt + dt2)i

k∑
j=0

(
k
j

)
ajt j

= [tn−k
]

∞∑
i=0

k∑
j=0

(
i + k
i

)(
k
j

) i∑
p=0

(
i
p

)
bpdi−pt2i−pajt j

= [tn−k
]

∞∑
i=0

k∑
j=0

i∑
p=0

(
i + k
i

)(
k
j

)(
i
p

)
bpdi−pajt2i+j−p

=

n−k∑
i=0

k∑
j=0

(
i + k
i

)(
k
j

)(
i

2i + j + k − n

)
ajb2i+j+k−ndn−k−i−j. □

3. Grand Schröder matrix and Schröder matrix

Let U(n, k) be the set of all generalized grand Schröder paths ending at (n, n − k) with no other restriction. Let
Un,k = |U(n, k)|, the sum of all |α| with α in U(n, k). Then the array U(a, b, d) = (Un,k)n,k∈N is the half of the matrix
G(a, b, d) = (Gn,k)n,k∈N, i.e, Un,k = G2n−k,n. We call U(a, b, d) = (Un,k)n,k∈N the generalized grand Schröder matrix. The first
few rows of U(a, b, d) are⎛⎜⎜⎜⎜⎝

1 0 0 0 · · ·

a + 2b 1 0 0 · · ·

a2 + 6ab + 6b2 + 3d 2a + 3b 1 0 · · ·

a3 + 12a2b + 30ab2 + 20b3 + 12ad + 20bd 3a2 + 12ab + 10b2 + 4d 3a + 4b 1 · · ·

...
...

...
...

. . .

⎞⎟⎟⎟⎟⎠ .

Theorem 3.1. The matrix U(a, b, d) is a Riordan array given by

U(a, b, d) =

(
1

1 − at − 2btV (t) − 3dt2V (t)2
, tV (t)

)
, (3.1)

where V (t) is determined by the equation V (t) = 1 + atV (t) + btV (t)2 + dt2V (t)3, and

Un,k =

n−k∑
i=0

n∑
j=0

(
i + n
i

)(
n
j

)(
i

2i + j − n + k

)
ajb2i+j−n+kdn−k−i−j. (3.2)

Proof. By definition, U(a, b, d) is the half of G(a, b, d) =

(
1

1−bt−dt2
, t+at2

1−bt−dt2

)
. From Theorem 2.3, we get the formula

for Un,k. From Lemma 2.1, we obtain that U(a, b, d) is a Riordan array and U(a, b, d) =

(
tf ′(t)

f (t)(1−bf (t)−df (t)2)
, f (t)

)
, where f (t)

is the generating function defined by the functional equation f (t) =
t(1+af (t))

1−bf (t)−df (t)2
. Now we denote V (t) =

f (t)
t . Then V (t)

satisfies the equation V (t) = 1 + atV (t) + btV (t)2 + dt2V (t)3 and tf ′(t)
f (t)(1−bf (t)−df (t)2)

=
1

1−at−2btV (t)−3dt2V (t)2
. This completes

the proof. □

Recall that the generalized Delannoy paths ending at (n, n − k) never going above the diagonal y = x are called
generalized Schröder paths. Let V (n, k) be the set of all generalized Schröder paths ending at (n, n−k), and Vn,k = |V (n, k)|.
We call the matrix V (a, b, d) = (Vn,k)n,k∈N the generalized Schröder matrix.
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Fig. 3. The recurrence relation of entries of the generalized Schröder matrix (Vn,k).

The last step of any path from V (n, k) is one of the step set {E = (1, 0),D = (1, 1),N = (0, 1),N ′
= (0, 2)}, as shown

in Fig. 3.
Therefore, the numbers Vn,k satisfy the following recurrence relations

Vn+1,k+1 = Vn,k + aVn,k+1 + bVn+1,k+2 + dVn+1,k+3 (n > k ≥ 0), (3.3)

Vn+1,0 = aVn,0 + bVn+1,1 + dVn+1,2 (n ≥ 0), (3.4)

Vn,n = 1 (n ≥ 0), Vn,k = 0 (k > n > 0). (3.5)

The first rows of V (a, b, d) are⎛⎜⎜⎜⎜⎝
1 0 0 0 · · ·

a + b 1 0 0 · · ·

a2 + 3ab + 2b2 + d 2a + 2b 1 0 · · ·

a3 + 6a2b + 10ab2 + 5b3 + 4ad + 5bd 3a2 + 8ab + 5b2 + 2d 3a + 3b 1 · · ·

...
...

...
...

. . .

⎞⎟⎟⎟⎟⎠ .

Theorem 3.2. The generalized Schröder matrix V (a, b, d) = (Vn,k)n,k∈N is a Riordan array given by

V (a, b, d) = (V (t), tV (t)) ,

where V (t) is determined by the equation V (t) = 1 + atV (t) + btV (t)2 + dt2V (t)3.

Proof. Let (vn,k) = (V (t), tV (t)) in which V (t) satisfies the equation

V (t) = 1 + atV (t) + btV (t)2 + dt2V (t)3.

Then, by the definition of Riordan array, we have

vn+1,0 = [tn+1
]V (t)

= [tn+1
](1 + atV (t) + btV (t)2 + dt2V (t)3)

= a[tn]V (t) + (b[tn+1
]tV (t)2 + d[tn+1

]t2V (t)3)
= avn,0 + bvn+1,1 + dvn+1,2,

vn+1,k+1 = [tn+1
]V (t)(tV (t))k+1

= [tn+1
](1 + atV (t) + btV (t)2 + dt2V (t)3)(tV (t))k+1

= [tn−k
]V (t)k+1

+ a[tn−k−1
]V (t)k+2

+ b[tn−k−1
]V (t)k+3

+ d[tn−k−2
]V (t)k+4

= vn,k + avn,k+1 + bvn+1,k+2 + dvn+1,k+3.

This shows that (vn,k) satisfy the same recurrence relation and the boundary conditions with the generalized Schröder
matrix (Vn,k). Hence (Vn,k) = (vn,k) = (V (t), tV (t)). This completes the proof. □

The referee kindly supplied a proof using A-matrix (see [12]) of a Riordan array. The proof goes like this. By theorem 3.1
in [12], the matrix V (a, b, d) = (Vn,k)n,k∈N is a Riordan array (d(t), h(t)). The generating functions of rows of the A-matrix
are P [0](t) = 1+at , and P [i](t) = 0 for all i ≥ 1. The generating functions of associated sequences are Q [1](t) = b+dt , and
Q [i](t) = 0 for all i ≥ 2. Thus h(t) = t(1+ ah(t))+ bh(t)2 + dh(t)3, and consequently h(t) =

t(1+ah(t))
1−bh(t)−dh(t)2

. From recurrence
(3.4) and theorem 3.3 in [12], the generating function d(t) satisfies the equation d(t) =

1
1−at−bh(t)−dh(t)2

. It follows that
d(t) =

h(t)
t and d(t) = 1 + atd(t) + btd(t)2 + dt2d(t)3. Since d(t) and V (t) in Theorem 3.2 satisfy the same equation, then

d(t) = V (t). Hence, V (a, b, d) = (V (t), tV (t)).
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Theorem 3.3. The general term of the generalized Schröder matrix V (a, b, d) is given by

Vn,k =
k + 1
n + 1

n+1∑
i=0

n−k∑
j=0

(
n + 1

i

)(
n + j
j

)(
j

n − k − i − j

)
aibi+2j+k−ndn−k−i−j. (3.6)

Proof. We have V =
( f (t)

t , f (t)
)
, and V−1

=
( h(t)

t , h(t)
)
, where h(t) =

t−bt2−dt3
1+at . Using the definition of Riordan array and

Lagrange inversion formula (see [6,21]), we obtain

vn,k = [tn]
f (t)
t

f (t)k = [tn]
h̄(t)
t

h̄(t)
k
= [tn+1

]h̄(t)
k+1

=
k + 1
n + 1

[tn−k
]

(
t

h(t)

)n+1

= [tn−k
]
k + 1
n + 1

(1 + at)n+1(1 − bt − dt2)−(n+1)

= [tn−k
]
k + 1
n + 1

n+1∑
i=0

(
n + 1

i

)
ait i

∞∑
j=0

(
n + j
j

)
(bt + dt2)j

= [tn−k
]
k + 1
n + 1

n+1∑
i=0

(
n + 1

i

)
ait i

∞∑
j=0

(
n + j
j

) j∑
q=0

(
j
q

)
bj−qdqt j+q

= [tn−k
]
k + 1
n + 1

∞∑
j=0

n+1∑
i=0

j∑
q=0

(
n + 1

i

)(
n + j
j

)(
j
q

)
aibj−qdqt i+j+q

=
k + 1
n + 1

n+1∑
i=0

n−k∑
j=0

(
n + 1

i

)(
n + j
j

)(
j

n − k − i − j

)
aibi+2j+k−ndn−k−i−j.

This completes the proof. □

4. A Chung–Feller property

In this section, we will prove a Chung–Feller property for the generalized grand Schröder paths. First, we will prove
the Chung–Feller type theorem by using the generating function method. Then, we give a combinatorial proof.

Theorem 4.1. For n ≥ 0, we have

Un,0 + aUn,1 = (n + 1)Vn,0.

Proof. By the proof of Theorem 3.3, Vn,0 = [tn]
1

n + 1

(
1 + at

1 − bt − dt2

)n+1

.

By the proof of Theorem 2.2, Gn,k = [tn−k
]

1
1 − bt − dt2

(
1 + at

1 − bt − dt2

)k

. Hence,

Un,0 = G2n,n = [tn]
1

1 − bt − dt2

(
1 + at

1 − bt − dt2

)n

,

Un,1 = G2n−1,n = [tn]
t

1 − bt − dt2

(
1 + at

1 − bt − dt2

)n

.

Consequently, we have

Un,0 + aUn,1 = [tn]
1

1 − bt − dt2

(
1 + at

1 − bt − dt2

)n

+ [tn]
at

1 − bt − dt2

(
1 + at

1 − bt − dt2

)n

= [tn]
1 + at

1 − bt − dt2

(
1 + at

1 − bt − dt2

)n

= [tn]
(

1 + at
1 − bt − dt2

)n+1

= (n + 1)Vn,0. □

In order to give a bijection proof of Theorem 4.1, we will introduce a special point for a generalized Delannoy path.
By the definition, each generalized Delannoy path is coded by a word

α = α1α2 · · ·αm, (4.1)
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Fig. 4. The bijections from H(0) = V (2, 0) to H(1) and H(2).

with each αi ∈ {E,D,N,N ′
}, the step set. Alternatively, every generalized Delannoy path can also be viewed as a sequence

of lattice points. For instance, the path in (4.1) can also be written

α = (a0, b0) (a1, b1) . . . (am, bm), (4.2)

with αi = (ai − ai−1, bi − bi−1) for i = 1, 2, . . . ,m. For a given generalized Delannoy path α = (a0, b0) (a1, b1) . . . (an, bn),
we define a maximum point (ai, bi) as a point in the path α such that bi −ai ≥ bj −aj for all j = 0, 1, . . . , n, j ̸= i. A highest
maximum point (ai, bi) is a maximum point such that bi > bj if (aj, bj) also is a maximum point and j ̸= i. For example, in
Figs. 4 and 5, the red point is the highest maximum point of the corresponding path.

Now we give a bijection proof of Theorem 4.1 in the case a = b = d = 1. We state it as the following theorem. In the
coming proof, a path is regarded as a word of its steps.

Theorem 4.2. Let a = b = d = 1, U∗(n) = U(n, 0)
⋃

U(n, 1), and S ′
= {E,D}. For i = 0, 1, 2, . . . , n, let

H(i) = {α ∈ U∗(n) : there are i steps from S ′ after the highest maximum point of α}.

Then H(0) = V (n, 0) and {H(i) : 0 ≤ i ≤ n} uniformly partitions the set U∗(n). Consequently, Un,0 + Un,1 = (n + 1)Vn,0.

Proof. That H(0) = V (n, 0) follows directly from the definition. Let α ∈ H(0). For 1 ≤ i ≤ n, write α = βXiγ , where β is
an initial string, Xi is the ith appearance of alphabet in S ′

= {E,D}, and γ is a terminal string. We define a path ϕi(α) as
(see Figs. 4 and 5)

ϕi(α) = γ Eβ.

Then, ϕi(α) = γ Eβ has the starting point of E as the highest maximum point, since E moves the path right one unit and
β is a initial segment of lattice path never going above the line y = x. Hence ϕi(α) ∈ H(i).

To show that the mapping ϕi is a bijection, we describe the inverse ϕ−1
i as follows. Let α′

∈ H(i) ⊆ U(n, 0)
⋃

U(n, 1),
where i ̸= 0. Then we can decompose α′ as α′

= γ Eβ , where the starting point of E is the highest maximum point of α′,
and there are i steps from S ′ after this point. We define a path ϕ−1

i (α′) as

ϕ−1
i (α′) =

{
βEγ , if α′

∈ U(n, 0);
βDγ , if α′

∈ U(n, 1).

Hence, ϕ−1
i (α′) ∈ H(0). This completes the proof. □

By the proof of Theorem 4.2, we can easily have the following result.

Corollary 4.3. The total number of D steps in V (n, 0) is equal to Un,1, and the total number of E steps in V (n, 0) is equal to
Un,0 − Vn,0.
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Fig. 5. A path α ∈ H(0) = V (4, 0) and ϕi(α) ∈ H(i), i = 1, 2, 3, 4.

Bijective proof of Theorem 4.1. In the proof of Theorem 4.2, we have established a bijection ϕi between V (n, 0) and H(i)
by ϕi(α) = γ Eβ when α = βXiγ with Xi ∈ S ′

= {E,D}, i = 1, 2, . . . , n. When the steps are weighted, the weight |ϕi(α)|
is related to the weight |α| as follows

|ϕi(α)| =

{
|α|, if Xi = E;

1
a |α|, if Xi = D,

(4.3)

or equivalently,

|ϕ−1
i (α′)| =

{
|α′

|, if α′
∈ U(n, 0);

a|α′
|, if α′

∈ U(n, 1).
(4.4)

Let V (n) = V (n, 0)× {0, 1, 2, . . . , n}. An element (α, i) of V (n) is called a labelled path and its weight is defined as the
weight of α. Then, the weight of V (n) is

|V (n)| = (n + 1)|V (n, 0)| = (n + 1)Vn,0.

On the other hand, we define a map ψ from U∗(n) = U(n, 0)
⋃

U(n, 1) to V (n) = V (n, 0) × {0, 1, 2, . . . , n} such that for
every α′

∈ H(i), where U∗(n) = H(0)
⋃

H(1) · · ·H(n),

ψ(α′) = (ϕ−1
i (α′), i), i = 0, 1, . . . , n,

where ϕ0 is regarded as the identity map from V (n, 0) to H(0) = V (n, 0).
Clearly, ψ is a bijection. Hence, |V (n)| = |ψ(U∗(n))| = |ψ(U(n, 0))| + |ψ(U(n, 1))| = Un,0 + aUn,1. Therefore, we have

Un,0 + aUn,1 = (n + 1)Vn,0, as desired. □

If a = d = 0, b = 1, then

U(0, 1, 0) =

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 · · ·

2 1 0 0 0 · · ·

6 3 1 0 0 · · ·

20 10 4 1 0 · · ·

70 35 15 5 1 · · ·

...
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎠ , V (0, 1, 0) =

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 · · ·

1 1 0 0 0 · · ·

2 2 1 0 0 · · ·

5 5 3 1 0 · · ·

14 14 9 4 1 · · ·

...
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎠ .

The first column of the matrix U(0, 1, 0) corresponds to the central binomial coefficients
(2n
n

)
(sequence A000984 in [16]),

and that of V (0, 1, 0) corresponds to the Catalan numbers Cn (sequence A000108 in [16]). Thus, by Theorem 4.1, we have

Cn = Vn,0 =
1

n + 1
Un,0 =

1
n + 1

(
2n
n

)
.

This result is the famous Chung–Feller Theorem.
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If d = 0, a = b = 1, then

U(1, 1, 0) =

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 · · ·

3 1 0 0 0 · · ·

13 5 1 0 0 · · ·

63 25 7 1 0 · · ·

321 129 41 9 1 · · ·

...
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎠ , V (1, 1, 0) =

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 · · ·

2 1 0 0 0 · · ·

6 4 1 0 0 · · ·

22 16 6 1 0 · · ·

90 68 30 8 1 · · ·

...
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎠ .

The first column of the matrix U(1, 1, 0) corresponds to the central Delannoy numbers (sequence A001850 in [16]), and
that of V (1, 1, 0) corresponds to the Schröder numbers (sequence A006318 in [16]). Thus, by Theorem 3.1, we have

(n + 1)Vn,0 = Un,0 + Un,1.

5. More examples

Example 5.1. For a = b = d = 1, the first few rows of the matrices U(1, 1, 1) and V (1, 1, 1) are

U(1, 1, 1) =

(
1 − 2t − 4t2 − 2t3

1 + t
,
t − t2 − t3

1 + t

)−1

=

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 · · ·

3 1 0 0 0 · · ·

16 5 1 0 0 · · ·

95 29 7 1 0 · · ·

591 179 46 9 1 · · ·

...
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎠ ,

V (1, 1, 1) =

(
1 − t − t2

1 + t
,
t − t2 − t3

1 + t

)−1

=

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 · · ·

2 1 0 0 0 · · ·

7 4 1 0 0 · · ·

31 18 6 1 0 · · ·

154 90 33 8 1 · · ·

...
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎠ .

The first column of the matrix U(1, 1, 1) corresponds to sequence A137644 in [16], and that of V (1, 1, 1) corresponds to
sequence A007863 in [16]. It follows from Theorem 4.1 that

Un,0 + Un,1 = (n + 1)Vn,0.

Example 5.2. If b = 0, a = d = 1, then

U(1, 0, 1) =

(
1 − 3t2 − 2t3

1 + t
, t − t2

)−1

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 · · ·

1 1 0 0 0 0 0 · · ·

4 2 1 0 0 0 0 · · ·

13 7 3 1 0 0 0 · · ·

46 24 11 4 1 0 0 · · ·

166 86 40 16 5 1 0 · · ·

610 314 148 62 22 6 1 · · ·

...
...

...
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

V (1, 0, 1) =
(
1 − t, t − t2

)−1
= (C(t), tC(t)) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 · · ·

1 1 0 0 0 0 0 · · ·

2 2 1 0 0 0 0 · · ·

5 5 3 1 0 0 0 · · ·

14 14 9 4 1 0 0 · · ·

42 42 28 14 5 1 0 · · ·

132 132 90 48 20 6 1 · · ·

...
...

...
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The first column of the matrix U(1, 0, 1) corresponds to sequence A026641 in [16], and that of V (1, 0, 1) corresponds to
sequences A000108 in [16]. By Theorem 4.1, we have

Un,0 + Un,1 = (n + 1)Vn,0.

The matrix V (1, 0, 1) is the Catalan matrix of the first kind [21]. Therefore, we obtain a new interpretation for the Catalan
numbers.
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Corollary 5.1. The Catalan number Cn is equal to the number of lattice paths from (0, 0) to (n, n) using steps (1, 0), (1, 1) and
(0, 2) and staying on or below the line y = x.

Example 5.3. If a = b = 0, d = 1, then

U(0, 0, 1) = (1 − 3t2, t(1 − t2))−1
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 · · ·

0 1 0 0 0 0 0 · · ·

3 0 1 0 0 0 0 · · ·

0 4 0 1 0 0 0 · · ·

15 0 5 0 1 0 0 · · ·

0 21 0 6 0 1 0 · · ·

84 0 28 0 7 0 1 · · ·

...
...

...
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

V (0, 0, 1) = (1 − t2, t(1 − t2))−1
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 · · ·

0 1 0 0 0 0 0 · · ·

1 0 1 0 0 0 0 · · ·

0 2 0 1 0 0 0 · · ·

3 0 3 0 1 0 0 · · ·

0 7 0 4 0 1 0 · · ·

12 0 12 0 5 0 1 · · ·

...
...

...
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The first column of the matrix U(0, 0, 1) corresponds to sequence A005809 in [16], and that of V (0, 0, 1) corresponds to
sequence A001764 in [16]. It follows from Theorem 4.1 that

Un,0 = (n + 1)Vn,0.

Example 5.4. If a = 0, b = d = 1, then

U(0, 1, 1) =
(
1 − 2t − 3t2, t − t2 − t3

)−1
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 · · ·

2 1 0 0 0 0 0 · · ·

9 3 1 0 0 0 0 · · ·

40 14 4 1 0 0 0 · · ·

190 65 20 5 1 0 0 · · ·

924 315 98 27 6 1 0 · · ·

4578 1554 490 140 35 7 1 · · ·

...
...

...
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

V (0, 1, 1) =
(
1 − t − t2, t − t2 − t3

)−1
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 · · ·

1 1 0 0 0 0 0 · · ·

3 2 1 0 0 0 0 · · ·

10 7 3 1 0 0 0 · · ·

38 26 12 4 1 0 0 · · ·

154 105 49 18 5 1 0 · · ·

654 444 210 80 25 6 1 · · ·

...
...

...
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The first column of the matrix U(0, 1, 1) corresponds to sequence A038112 in [16], and that of V (0, 1, 1) corresponds to
sequence A001002 in [16]. It follows from Theorem 4.1 that

Un,0 = (n + 1)Vn,0.
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