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+e HL-RF algorithm of the first-order reliability method (FORM) is a widely useful tool in structural reliability analysis.
However, the iteration results of HL-RF algorithm may not converge due to periodic cycles for some highly nonlinear reliability
problems. In this paper, an adaptive first-order reliability method (AFORM) is proposed to improve solution efficiency for some
highly nonlinear reliability problems by introducing an adaptive factor. In AFORM, based on the two-parameter approximate
first-order reliability method, the new iteration point and the previous iteration point are used to obtain the corresponding angle,
and the result of convergence is judged by angle condition. According to the convergence degree of the results, two iteration
parameters of the approximate reliability method are adjusted continuously by adaptive factor. Moreover, iteration step size is
adjusted by changing the parameters to improve the efficiency and robustness of FORM. Finally, four numerical examples and one
mechanical reliability analysis example are used to verify the proposed method. Compared with the different algorithms, the
results show that AFORM has better efficiency and robustness for some highly nonlinear reliability problems.

1. Introduction

In engineering practice, with the improvement of product
performance requirements and the complexity of service
environment, its safety has become a growing concern. In
general, the safety factor method is usually used in engi-
neering design where design variables are regarded as de-
terministic variables according to experience. However,
because of the influence of machining errors, internal dis-
persion of materials, and accidental factors, the dimensional
parameters, material characteristics, and external loads of
the structure all have certain uncertainties [1–5]. +erefore,
when there are many uncertain factors in structure design, it
is difficult to ensure the reliability of the structures when
using the safety factor method without considering these
uncertain factors. Unlike the safety factor method, the re-
liability method is an effective tool to ensure the safety of
structures by considering the impact of structural uncer-
tainties [6–9].

+e reliability methods including the simulation method
and approximation method are mainly used in reliability

analysis [10, 11]. Among them, the simulation method is a
traditional method. +e common simulation methods in-
clude direct Monte Carlo simulation (MCS) [12, 13] and
important sampling (IS) [14, 15]. +e sampling points of IS
are concentrated on the important area, so IS has a smaller
number of sampling and a higher calculation efficiency when
the accuracy is the same. However, in engineering practice,
since the failure probability of engineering structure is very
small, large amount of simulations are needed to solve the
reliability problems of a small failure probability when using
the simulation method. +erefore, the simulation method
has certain limitations in the reliability engineering analysis.
Unlike the simulation method, the approximation method is
widely used in reliability engineering because of its sim-
plicity. +e common approximation methods include the
response surface method [16–18] and moment method
[19–21], such as the FORM and second-order reliability
method (SORM). +e response surface method is mainly
aimed at the reliability evaluation problem in the case of
implicit function, while the moment method is aimed to
avoid the iteration procedure and difficulty to obtain the
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design point both for explicit and implicit performance
functions.

Among moment approximate reliability methods,
FORM is often used in structural reliability analysis [22, 23].
+e Hasofer-Lind and Rakwitz-Fiessler (HL–RF) method is
widely used in engineering practice because of its simplicity
and high efficiency [24, 25]. However, in reliability analysis,
the HL–RF method may produce periodic and chaotic so-
lutions for highly nonlinear performance functions. To
improve the convergence of HL–RF in solving nonlinear
problems, Elegbede [26] applied the particle swarm opti-
mization method to calculate the failure probability of the
structure, which can obtain relatively higher accurate results.
Santosh et al. [27] proposed a modified HL-RF method by
using step size selection criteria. +e chaos control method
was introduced by Yang [28] in FORM, which can make the
solution results of nonlinear reliability problems converge
well, but the convergence speed is slow. To control iterative
convergence speed, an improved HL-RF method with finite
step size robust iterative algorithm was proposed by Gong
and Yi [24]. +e conjugate gradient optimization technique
was applied by Keshtegar and Miri [29] in HL–RF, and they
proposed a modified HL–RF in order to overcome the
problem that the results of HL-RF do not converge in the
reliability analysis of complex structures. Recently, there are
some new FORM algorithms in the literature. Keshtegar [30]
developed a new FORM which controls instability solutions
using chaotic conjugate map. Meng et al. [31] proposed a
new directional stability transformation method of chaos
control for first-order reliability analysis. Besides, Keshtegar
and Chakraborty [32] improved FORM by introducing a
conjugate search direction approach. Moreover, Roudak
et al. [33] proposed an approximate first-order reliability
method with two parameters for nonlinear reliability
problems, which has good robustness and efficiency.
However, for different nonlinear problems, different pa-
rameter values have great influence on the solution results.
+erefore, how to get the proper parameters becomes a
problem to be solved.

Based on the two-parameter approximate first-order
reliability method, an AFORM method for nonlinear
problems is proposed in this paper. To measure the con-
vergence degree of the result, AFORM judges the conver-
gence degree of iteration by the angle condition. To improve
the efficiency and robustness of convergence, according to
the convergence degree of iteration results, the iteration
parameters are constantly updated by introducing adaptive
factors. +en, the iteration step size is adaptively changed.
Finally, the method is verified by highly nonlinear numerical
examples and mechanical engineering examples. +e results
show that the proposed AFORM is efficient and stable
compared with other methods.

2. Approximation of Failure Probability and
First-Order Reliability Methods

2.1. Approximation of Failure Probability. To ensure the
safety of structures with various uncertainties, it is usually
necessary to carry out reliability analysis. In the reliability

analysis, the failure probability Pf of the structure can be
used to measure the reliability of the structure by

Pf � 􏽚
g(X)≤0

fX(X)dX, (1)

where g(X) is performance function and fX (X) is proba-
bility density function of random variable X.

However, in the actual engineering reliability analysis,
because the structural performance function contains
multiple random variables, the multidimensional integral
calculation is very complicated, especially for the perfor-
mance function of complex structures. On the contrary, the
approximate reliability method is simple and efficient. +e
approximation for the failure probability can be expressed as

Pf ≈ Φ(− β) � Φ − U∗
����

����􏼐 􏼑, (2)

where V(·) represents the cumulative distribution function
of the standard normal distribution, β is reliability index,
and U∗ is the most probable point (MPP).

2.2. HL–RF Method. +e HL–RF method is widely used in
engineering practice, which mainly includes two parts of
standard normal space transformation and linear approxi-
mation [34, 35]. Standard normal space transformation is
mainly to transform nonstandard normal space into stan-
dard normal space. +e conversion principle is

μi �
xi − μXi
′

σXi
′

, (3)

where xi is the ith random variable in the nonstandard
normal space (X-space), µi is the ith random variable in the
standard normal space (U-space) corresponding to Xi, and
σXi
′ and μXi

′ are the equivalent standard deviation and mean
of ith normal random variables, which can be respectively
expressed as [36, 37]

σXi
′ �

φ Φ− 1 FXi
x∗i( 􏼁􏽨 􏽩􏽮 􏽯

fXi
x∗i( 􏼁

, (4)

μXi
′ � x

∗
i − σXi
′ Φ− 1

FXi
x
∗
i( 􏼁􏽨 􏽩, (5)

where φ(·) represents the probability density function of the
standard normal distribution. x∗i is the design point, which
represents the nonstandard random variable. Also, Φ− 1(·) is
the inverse function of the standard normal distribution.
FXi

(x∗i ) and fXi
(x∗i ) are the cumulative distribution

function and probability density function of Xi, respectively.
+e linear approximation of HL–RF mainly uses Taylor

expansion at the most probable point (MPP) of the per-
formance function, which can be expressed as

g(U) ≈ g(U) � g U∗( 􏼁 + ∇T
g U∗( 􏼁 U − U∗( 􏼁, (6)

where g(·) stands for linear approximation expressions of
the performance function.∇g(U∗) is the gradient vector and
U∗ represents MPP.

According to (6), let g(·) � 0, and then the new design
point is obtained by
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Uk+1 �
∇Tg Uk( 􏼁Uk − g Uk( 􏼁

∇g Uk( 􏼁
����

����
2 ∇g Uk( 􏼁. (7)

Equation (7) is an algorithm for searching MPP by
HL–RF. When the iteration point Uk+1 converges, the MPP
can be obtained.

2.3. CC Method. To overcome the problem of non-
convergence when HL–RF is used to solve highly nonlinear
structural performance function, Yang [28] applied the
theory of chaotic dynamics in FORM and proposed a FORM
based on chaos control (CC). Although it can converge to
the results of nonlinear reliability problems, it has a relatively
low efficiency.+is method gives a new iteration point which
can be computed by

Uk+1 � Uk + αC f Uk( 􏼁 − Uk􏼂 􏼃, (8)

f Uk( 􏼁 �
∇Tg Uk( 􏼁Uk − g Uk( 􏼁

∇g Uk( 􏼁
����

����
2 ∇g Uk( 􏼁, (9)

where α is the control factor ranging from 0 to 1, C rep-
resents the m×m dimensional involution matrix, usually
taken as the identity matrix I, and f(·) stands for the iterative
function vector.

2.4. Approximate FORMwith Two Parameters. To overcome
the instability of HL-RF with highly nonlinear reliability
problems, Roudak et al. [33] proposed an efficient and
robust algorithm by introducing two adjustable parameters
based on HL–RF. We call this method proposed by Roudak
as the Roudak method in the following paper. Based on (6),
the parameter λ is introduced in this method, and then
equation (6) is reformulated as

g Uk+1( 􏼁 � g Uk( 􏼁 + ∇T
g Uk( 􏼁 Uk+1 − Uk( 􏼁 � λg Uk( 􏼁.

(10)

+e Roudak method also introduces a parameter ξ and
defines a auxiliary point by

Ak+1 � Uk − ξ
∇g Uk( 􏼁

∇g Uk( 􏼁
����

����
, (11)

where ξ is the step size in the opposite direction of the
gradient vector.

To solve the new iteration point, let the direction of Uk
cosine vector be

Vk+1 �
Ak+1

Ak+1
����

����
. (12)

According to (12), the new iteration point is computed
by

Uk+1 �
∇Tg Uk( 􏼁Uk − (1 − λ)g Uk( 􏼁

∇Tg Uk( 􏼁Vk+1
Vk+1. (13)

2.5. Adaptive First-Order Reliability Method (AFORM).
Although the approximate first-order reliability method
with two parameters has the characteristics of fast conver-
gence and high accuracy for nonlinear reliability problems,
the choice of parameters for different nonlinear problems
greatly affects the results and efficiency. +erefore, how to
choose appropriate parameters is still a problem needed to
be solved. To overcome this problem, this paper updates the
iteration parameters by using the angle θk+1 between the
iteration points Uk and Uk+1 and by introducing an adaptive
factor δ. Obviously, only the initial values of the parameters
ξS and λS are given, and the iteration value of each parameter
can be automatically updated according to the following
formula. +e algorithm is described as

λS
�

δλS, δθk+1 > θk,

λS θk

θk+1
, δθk+1 ≤ θk < θk+1,

max λS, 0.2􏼐 􏼑, θk+1 ≤ θk,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

ξS
�

δξS
, δθk+1 > θk,

ξS θk

θk+1
, δθk+1 ≤ θk < θk+1,

max ξS
, 0.2􏼐 􏼑, θk+1 ≤ θk.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(15)

To avoid nonconvergence of the iteration result as the
parameters ξS and λS are too small, let ξS and λS be not less
than 0.2. Moreover, to measure the degree of convergence of
the iteration result, θk+1 is used as a condition for updating
parameters. From the algorithm, it can be found that θk+1
reflects the convergence of Uk. When the error between Uk
and Uk+1 approaches 0, the corresponding value of θk+1 also
tends to 0. θk+1 can be expressed as

θk+1 � cos− 1 Uk+1 · Uk

Uk+1
����

���� · Uk

����
����

􏼢 􏼣. (16)

By continuously adjusting the parameters ξS and λS in
each iteration, (11) and (12) are rewritten as

AS
k+1 � Uk − ξS ∇g Uk( 􏼁

∇g Uk( 􏼁
����

����
, (17)

VS
k+1 �

AS
k+1

AS
k+1

����
����
. (18)

Equation (13) is reformulated as

Uk+1 �
∇Tg Uk( 􏼁Uk − 1 − λS

􏼐 􏼑g Uk( 􏼁

∇Tg Uk( 􏼁Uk+1
VS

k+1. (19)

In this paper, the initial values of the parameters in the
proposed AFORM algorithm are ξS � 0.6 and λS � 0.8. In
order to improve the efficiency of the algorithm, the initial
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adaptive factor δ � 0.4 is taken. +e specific flowchart of the
algorithm is shown in Figure 1.

3. Example Analyses

3.1. Nonlinear Numerical Example 1. To test the perfor-
mance of the reliability algorithm, a common nonlinear
function is used to verify it. +is example uses a cubic
polynomial function, which can be expressed as [30]

g � x
3
1 + x

2
1x2 + x

3
2 − 18, (20)

where x1 and x2 follow the normal distribution with means
μ1 � 10.0, μ2 � 9.9 and standard deviations σ1 � σ2 � 5.0.

Reliability index calculated by Wang and Grandhi [36]
and Gong et al. [6] is 2.2983. Meng et al. [31] and
Keshtegar and Miri [29] obtain that the result of the
reliability index is 2.2983. In the reliability analysis of
example 1, the reliability index obtained by Monte Carlo
simulation using 106 samples is 2.5265. +e computation
results and iterative process of reliability index using the
different methods in example 1 are shown in Table 1 and

Figure 2, respectively. We can see that it can quickly
converge to 1.5355 using the HL–RF method to solve the
reliability index. However, it has a larger error compared
with the other methods. +e reliability indexes calculated
by the CC method and Roudak method are 2.2982 and
2.2983, respectively. But the efficiency of these two
methods is relatively low (the number of iterations is 144
and 35, respectively). Unlike HL–RF, CC, and Roudak, the
reliability index calculated by the AFORM not only has a
small error but also has a high efficiency. +e number of
iterations is about 8 times and 4 times less than the CC
method and Roudak method, respectively. +erefore, for
nonlinear reliability problems, the proposed AFORM
method has the characteristics of high efficiency and small
error.

Input ξS = 0.6, λS = 0.8, δ = 0.4, g(X) = 0 and ε = 10–6

Convert X-space to U-space to get g (U) = 0

Calculate g (Uk) and ∇g (Uk) by equation (10)

Compute As
k+1 by equation (17)

ObtainVs
k+1 by equation (18)

Get new iteration point Uk+1 by equation (19)

Compute reliability index βk+1 = ||Uk+1||2 according to equation (2)

Yes

Calculate θk+1 by equation 16No

k = k+1

Update ξS and λS by equations (15) and (14)

||βk+1 – βk|| ≤ ε

U∗ = Uk+1,β = βk+1

Figure 1: Flowchart of AFORM algorithm.

Table 1: Calculation results of different methods in example 1.

HL–RF CC Roudak AFORM
β 1.5355 2.2982 2.2983 2.2983
Iteration number 40 144 35 17

4 Mathematical Problems in Engineering



3.2. Nonlinear Numerical Example 2. +is example uses a
nonlinear performance function with a fourth-order poly-
nomial, which is described as [27]

g � x
4
1 + 2x

4
2 − 20, (21)

where x1 and x2 follow a normal distribution with means
μ1 � μ2 �10.0 and standard deviations σ1 � σ2 � 5.0.

+e reliability index calculated in [36] is 2.3633. +e
calculated result in [6] is 2.3628. Moreover, the reliability
index given in reference [38] is 2.3654. +e reliability
indexes obtained in [33, 39] are 2.3655. +e reliability
index obtained after 106 calculations is 2.8404 by Monte
Carlo simulation. We also give the computation results
and iterative process of reliability index by different
methods for example 2 in Table 2 and Figure 3, respec-
tively. As shown in Figure 3, the results show a second-
order periodic oscillation by HL–RF. +is is because that it
is difficult for HL–RF to solve the reliability model with
high nonlinearity. Unlike HL–RF, all reliability indexes of
CC, Roudak, and AFORM are converged, and their con-
vergence results are 2.3654, 2.3655, and 2.3655, respec-
tively. However, their efficiency is different. CC has the
lowest efficiency with 163 iterations. Also, Roudak is more
efficient than CC. AFORM has the highest efficiency.
+erefore, the AFORM has higher efficiency for nonlinear
reliability problems.

3.3. Nonlinear Numerical Example 3. A highly nonlinear
performance function of a pipeline is obtained by response
surface fitting, which can be formulated by [6]

g � 1.1 − 0.00115x1x2 + 0.00157x
2
2 + 0.00117x

2
1 + 0.0135x2x3

− 0.0705x2 − 0.00534x1 − 0.0149x1x3 − 0.0611x2x4

+ 0.0717x1x4 − 0.226x3 + 0.0333x
2
3 − 0.558x3x4

+ 0.998x4 − 1.339x
2
4,

(22)

where x1 follows the extreme-II distribution with means
μ1 � 10 and standard deviations σ1 � 5, x2 and x3 are normal
random variables with means μ2 �10, μ3 � 0.8 and standard
deviations σ2 � 5, σ3 � 0.2, and x4 is a lognormal distri-
bution random variable with means μ4 � 0.0625 and
standard deviations σ4 � 0.0625. According to [33], the
reliability index is 1.3961 computed by MCS using 106
samples. +e calculating results and iterative process for
different methods are shown in Table 3 and Figure 4,
respectively. Although reliability indexes computed by
CC, Roudak, and AFORM are almost convergent to the
same value, the convergence rate is not the same. From
Table 3, it can be seen that the efficiency of the CC and
Roudak method is low, but the AFORM method has the
highest efficiency which is about 2 times faster than CC
and Roudak. +erefore, compared with other methods, the
proposed AFORM method has better efficiency and ro-
bustness for example 3 with highly nonlinear performance
function.

3.4. Nonlinear Numerical Example 4. A nonlinear perfor-
mance function with nonnormal random variables is used in
this example, which is expressed as [30]

g � x
4
1 + x

2
2 − 50, (23)

where x1 follows the lognormal distribution with mean
μ1 � 5 and standard deviation σ1 � 1, respectively; moreover,
x2 follows the Gumbel distribution with mean μ2 �10 and
standard deviation σ2 �10, respectively.

Table 4 and Figure 5 show the computation results and
iterative process of reliability index with different methods
for example 4, respectively. As shown in Figure 5, the re-
liability index of the traditional HL–RF method has a pe-
riodic cycle, which produces unstable results as chaotic
solutions in example 4. Although the results of CC and
Roudak methods can reach convergence, their efficiency is
relatively low. For the nonlinear reliability problems of
nonnormal distribution, the results of AFORM can both
converge and have high efficiency. +e number of iterations
of AFORM is only 17. +erefore, for this example, the
AFORM method is more efficient than other methods.

3.5.Example5aboutReliabilityAnalysis of theTwo-Degree-of-
Freedom Primary-Secondary Dynamic System. +is example
uses a highly nonlinear performance function to validate the
proposed method. +e performance function represents the
performance of the two-degree-of-freedom primary and
secondary power system based on the force capacity of the
second spring. +e dynamic system is shown in Figure 6.
Moreover, the performance function corresponding to
Figure 6 is expressed as [33]

g � Fs − ksP E x
2
s􏼐 􏼑􏽨 􏽩

0.5
, (24)

where the subscripts p and s represent the primary and
secondary springs, respectively. Fs and ks, which represent
the force and stiffness of the secondary spring, are random
variables, P is a deterministic peak factor and equals to 3, and
E(x2

s ) is the mean square response of the relative dis-
placement of secondary spring, which can be computed by

E x
2
s􏼐 􏼑 �

πS0

4ζsω3
s

ζsζa

ζpζs 4ζ2a + η2􏼐 􏼑 + υζ2a

ζpω3
p + ζsω3

s􏼐 􏼑ωp

4ζaω4
a

⎡⎢⎣ ⎤⎥⎦,

(25)

where S0 is the intensity of a white noise base excitation of
the system and ζp and ζs represent the damping ratios of the
primary and secondary springs, respectively. ωp � (kp/mp)0.5

and ωs � (ks/ms)0.5 represent the natural frequency of the
primary and secondary oscillators, respectively. kp is the
stiffness of the secondary spring, andms andmp are themass.
ζa � (ζp+ ζs)/2 and ωa � (ωp+ωs)/2 represent the average
frequency and damping coefficient, respectively.
η� (ωp − ωs)/ωa and v �ms/mp are the mass ratio and the
tuning parameter, respectively, where, S0, kp, mp, ms, ζp, and
ζs are random variables. Also, distribution characteristics of
each random variable are shown in Table 5.
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For this dynamic system, we give the computation re-
sults and iterative process of reliability index using the
different methods in Table 6 and Figure 7, respectively. As
shown in Figure 7, the results obtained by HL–RF method

show a periodic oscillation. It shows that the HL–RFmethod
has certain limitations in reliability evaluation of the
complex highly nonlinear performance function. Although
CC, Roudak, and AFORM all obtained convergence results,
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Figure 2: Iterative process of reliability index of example 1.

Table 2: Calculation results of different methods in example 2.

HL–RF CC Roudak AFORM
β — 2.3654 2.3655 2.3655
Iteration number — 163 40 18
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Figure 3: Iterative process of reliability index of example 2.

Table 3: Calculation results of different methods in example 3.

HL–RF CC Roudak AFORM
β — 1.3303 1.3303 1.3304
Iteration number — 110 109 44
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the CC and Roudak methods converge slowly. +is shows
that CC and Roudak methods are inefficient for nonlinear
reliability problems. According to Table 6, the reliability
indexes obtained by CC, Roudak, and AFORM methods all
converge to 2.1231. However, the number of iterations of the
CC and Roudak methods is 118 and 116, respectively, which
is about twice of the AFORM method. +erefore, the
AFORM method is significantly better than the other
methods.

In order to select the proper initial values of the pa-
rameters in the AFORM method, the effects of different
initial values of λS, ξS, and δ on the calculation results of
different examples are analyzed.

+e influence of the initial value λS on the iteration
results of each example is shown in Figure 8 when the initial
values ξS � 0.6 and δ � 0.4. Figure 8 shows that when the
initial values ξS � 0.6 and δ � 0.4, the changes of the initial
value λS have little effect on the iteration results of example 2,
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Figure 4: Iterative process of reliability index of example 3.

Table 4: Calculation results of different methods in example 4.

HL–RF CC Roudak AFORM
β — 3.2593 3.2593 3.2593
Iteration number — 138 33 17
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Figure 5: Iterative process of reliability index of example 4.
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but have an obvious impact on examples 1, 3, 4, and 5.When
the initial value λS � 0.8, the iteration result of each example
is relatively low. +erefore, the value of λS is recommended
to be 0.8.

+e effect of the initial value ξS on the iteration results of
each example is given in Figure 9 when the initial values

λS � 0.8 and δ � 0.4. When λS � 0.8, δ � 0.4, and ξS � 0.7, the
solution does not converge for example 5, so the number of
iterations is defined as 0. Figure 9 suggests that when the
initial values λS � 0.8 and δ � 0.4, the changes of initial values
ξS have little effect on the iteration results of examples 1 and
2, but have an apparent effect on examples 3, 4, and 5. Also,
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Figure 7: Iterative process of reliability index of example 5.

xs

mp ms

xp

cp = 2ξpωpmp cs = 2ξsωsms

ks = ω2
smskp = ω2

pmp

Figure 6: Diagram of the primary and secondary dynamic system.

Table 5: Distribution characteristics of each random variable.

Random variable Distribution Mean Standard deviation
kp Lognormal 1 0.2
ks Lognormal 0.01 0.002
mp Lognormal 1 0.1
ms Lognormal 0.01 0.001
ζp Lognormal 0.05 0.02
ζs Lognormal 0.02 0.01
Fs Lognormal 15 1.5
S0 Lognormal 100 10

Table 6: Calculation results of different methods for the dynamic system.

HL-RF CC Roudak AFORM
β — 2.1231 2.1231 2.1231
Iteration number — 118 116 43

8 Mathematical Problems in Engineering



when the initial value ξS � 0.6, the number of iterations for
solving each example is low, so it can be used as the initial
parameter value for the AFORM method.

In addition, Figure 10 shows the effect of the initial
value δ on the iteration results of each example when the
initial values λS � 0.8 and ξS � 0.6. Among them, when
δ � 0.6 and δ � 0.5, the calculation results of the example 5
do not converge, so the number of iterations of example 5 is
defined as 0. Figure 10 shows that there is a big difference in
iteration number for each example when using the AFORM
method with the different δ. When δ � 0.4, the number of
iterations of the AFORM method to solve each example is
low, so δ � 0.4 can be used as the parameter value of the
AFORM method.

4. Conclusions

Traditional HL-RF algorithm in FORM is convergent or has
inefficient solution for some highly nonlinear reliability
evaluation problems. In this paper, an adaptive first-order
reliability method is developed to improve the efficiency and
stability of FORM for highly nonlinear reliability evaluation
problems. In AFORM, iteration parameters are continu-
ously updated by introducing adaptive factors and angular
conditions. Besides, to select the proper initial values of the
parameters in the AFORM method, the effects of different
initial values of parameters on the calculation results of
different examples are analyzed. +e rationality of the
method is verified by four numerical examples and one
engineering example. Compared with the other methods
(HL–RF, CC, and Roudak methods), the results show that
the proposed AFORM method has better efficiency and
robustness for some highly nonlinear reliability evaluation
problems.
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