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Abstract
This paper is concerned with the following boundary value problem of nonlinear
fractional differential equation with integral boundary conditions:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(CDq
0+u)(t) + f (t,u(t)) = 0, t ∈ [0, 1],

u′′(0) = 0,

αu(0) – βu′(0) =
∫ 1
0 h1(s)u(s)ds,

γ u(1) + δ(CDσ
0+u)(1) =

∫ 1
0 h2(s)u(s)ds,

where 2 < q≤ 3, 0 < σ ≤ 1, α,γ ,δ ≥ 0, and β > 0 satisfying
0 < ρ := (α + β)γ + αδ

Γ (2–σ ) < β[γ + δΓ (q)
Γ (q–σ ) ].

CDq
0+ denotes the standard Caputo

fractional derivative. First, Green’s function of the corresponding linear boundary
value problem is constructed. Next, some useful properties of the Green’s function are
obtained. Finally, existence results of at least one positive solution for the above
problem are established by imposing some suitable conditions on f and hi (i = 1, 2).
The method employed is Guo–Krasnoselskii’s fixed point theorem. An example is also
included to illustrate the main results of this paper.
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1 Introduction
Fractional calculus has widespread applications in many fields of science and engineer-
ing, for example, physics, viscoelasticity, continuum mechanics, bioengineering, rheology,
electrical networks, control theory of dynamical systems, optics and signal processing, and
so on [1, 2].

Since the discussion of many problems can be summed up in the study of boundary
value problems (BVPs for short) to nonlinear fractional differential equations, recently,
the existence of solutions or positive solutions of BVPs for nonlinear fractional differen-

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-020-02618-9
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-020-02618-9&domain=pdf
mailto:jpsun@lut.cn


Li et al. Advances in Difference Equations        (2020) 2020:177 Page 2 of 13

tial equations has received considerable attention from many authors, see [3–26] and the
references therein.

In particular, in 2009, by using nonlinear alternative of Leray–Schauder type and Guo–
Krasnoselskii’s fixed point theorem, Bai and Qiu [5] obtained the existence of a positive
solution to the singular BVP

⎧
⎨

⎩

(CDq
0+u)(t) + f (t, u(t)) = 0, t ∈ (0, 1),

u(0) = u′(1) = u′′(0) = 0,
(1)

where 2 < q ≤ 3 is a real number, f : (0, 1] × [0, +∞) → [0, +∞) is continuous, and
limt→0+ f (t, ·) = +∞.

In 2012, Cabada and Wang [7] studied the existence of a positive solution for the BVP
with integral boundary conditions

⎧
⎨

⎩

(CDq
0+u)(t) + f (t, u(t)) = 0, t ∈ (0, 1),

u(0) = u′′(0) = 0, u(1) = λ
∫ 1

0 u(s) ds,
(2)

where 2 < q < 3, 0 < λ < 2, and f : [0, 1] × [0, +∞) → [0, +∞) is continuous. Their analysis
relied on Guo–Krasnoselskii’s fixed point theorem.

In 2014, Cabada and Hamdi [25] investigated the BVP with integral boundary conditions

⎧
⎨

⎩

(Dq
0+u)(t) + f (t, u(t)) = 0, t ∈ (0, 1),

u(0) = u′(0) = 0, u(1) = λ
∫ 1

0 u(s) ds,
(3)

where 2 < q ≤ 3, Dq
0+ denotes the Riemann–Liouville fractional derivative, 0 < λ < q, and

f : [0, 1] × [0, +∞) → [0, +∞) is a continuous function. The authors proved the existence
of a positive solution to BVP (3) by employing Guo–Krasnoselskii’s fixed point theorem.

As it has been stated in [7], BVPs with integral boundary conditions have various ap-
plications in applied fields such as blood flow problems, chemical engineering, thermo-
elasticity, underground water flow, population dynamics, and so forth. Motivated by the
above-mentioned works, in this paper, we consider the existence of a positive solution
for the following BVP of nonlinear fractional differential equation with integral boundary
conditions:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(CDq
0+u)(t) + f (t, u(t)) = 0, t ∈ [0, 1],

u′′(0) = 0,

αu(0) – βu′(0) =
∫ 1

0 h1(s)u(s) ds,

γ u(1) + δ(CDσ
0+u)(1) =

∫ 1
0 h2(s)u(s) ds.

(4)

Throughout this paper, we always assume that 2 < q ≤ 3, 0 < σ ≤ 1, α,γ , δ ≥ 0, and β > 0
satisfying 0 < ρ := (α + β)γ + αδ

Γ (2–σ ) < β[γ + δΓ (q)
Γ (q–σ ) ], f : [0, 1] × [0, +∞) → [0, +∞) and hi

(i = 1, 2): [0, 1] → [0, +∞) are continuous.
The main tool used is the following well-known Guo–Krasnoselskii’s fixed point theo-

rem [27, 28].
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Theorem 1.1 Let E be a Banach space and K be a cone in E. Assume that Ω1 and Ω2 are
bounded open subsets of E such that 0 ∈ Ω1, Ω1 ⊂ Ω2, and let T : K ∩ (Ω2\Ω1) → K be a
completely continuous operator such that either

(1) ‖Tu‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω2, or
(2) ‖Tu‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω2.

Then T has a fixed point in K ∩ (Ω2 \ Ω1).

2 Preliminaries
Let [a, b] (–∞ < a < b < +∞) be a finite interval on the real axis R, N = {1, 2, 3, . . .}, μ > 0
and [μ] be the integer part of μ.

First, we present definitions of some spaces.
Let AC[a, b] be the space of functions u which are absolutely continuous on [a, b]. For

n ∈N, we denote by ACn[a, b] the space of functions u which have continuous derivatives
up to order n – 1 on [a, b] such that u(n–1) ∈ AC[a, b]. In particular, AC1[a, b] = AC[a, b].

For m ∈ N0 = {0, 1, 2, . . .}, we denote by Cm[a, b] the space of functions u which are m
times continuously differentiable on [a, b]. In particular, for m = 0, C0[a, b] = C[a, b] is the
space of continuous functions u on [a, b].

Next, we give the definitions of the Riemann–Liouville fractional integrals and fractional
derivatives and the Caputo fractional derivatives on [a, b], which may be found in [1].

Definition 2.1 The Riemann–Liouville fractional integrals Iμ
a+u and Iμ

b–u of order μ are
defined by

(
Iμ

a+u
)
(t) :=

1
Γ (μ)

∫ t

a

u(s) ds
(t – s)1–μ

(t > a)

and

(
Iμ

b–u
)
(t) :=

1
Γ (μ)

∫ b

t

u(s) ds
(s – t)1–μ

(t < b),

respectively, where

Γ (μ) =
∫ +∞

0
sμ–1e–s ds.

Definition 2.2 The Riemann–Liouville fractional derivatives Dμ
a+u and Dμ

b–u of order μ

are defined by

(
Dμ

a+u
)
(t) :=

(
d
dt

)n(
In–μ

a+ u
)
(t) =

1
Γ (n – μ)

(
d
dt

)n ∫ t

a

u(s) ds
(t – s)μ–n+1 (t > a)

and

(
Dμ

b–u
)
(t) :=

(

–
d
dt

)n(
In–μ

b– u
)
(t) =

1
Γ (n – μ)

(

–
d
dt

)n ∫ b

t

u(s) ds
(s – t)μ–n+1 (t < b),

respectively, where n = [μ] + 1.
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Definition 2.3 Let Dμ
a+[u(s)](t) ≡ (Dμ

a+u)(t) and Dμ

b–[u(s)](t) ≡ (Dμ

b–u)(t) be the Riemann–
Liouville fractional derivatives of order μ, respectively. The Caputo fractional derivatives
CDμ

a+u and CDμ

b–u of order μ on [a, b] are defined by

(CDμ
a+u

)
(t) :=

(

Dμ
a+

[

u(s) –
n–1∑

k=0

u(k)(a)
k!

(s – a)k

])

(t)

and

(CDμ

b–u
)
(t) :=

(

Dμ

b–

[

u(s) –
n–1∑

k=0

u(k)(b)
k!

(b – s)k

])

(t),

respectively, where

n =

⎧
⎨

⎩

[μ] + 1, μ /∈N,

μ, μ ∈N.
(5)

Lemma 2.1 (see [2]) Let ν > μ. Then the equation (CDμ
0+Iν

0+u)(t) = (Iν–μ
0+ u)(t), t ∈ [0, 1] is

satisfied for u ∈ C[0, 1].

Lemma 2.2 (see [1]) Let n be given by (5). Then the following relations hold:
(1) for k ∈ {0, 1, 2, . . . , n – 1}, CDμ

0+tk = 0;
(2) if ν > n, CDμ

0+tν–1 = Γ (ν)
Γ (ν–μ) tν–μ–1.

Lemma 2.3 (see [1]) Let n be given by (5). If u ∈ ACn[0, 1] or u ∈ Cn[0, 1], then

(
Iμ

0+
CDμ

0+u
)
(t) = u(t) –

n–1∑

k=0

uk(0)
k!

tk .

For convenience, we denote

Pi =
1
ρ

∫ 1

0
(αs + β)hi(s) ds

and

Qi =
1

ρΓ (2 – σ )

∫ 1

0

[
γΓ (2 – σ )(1 – s) + δ

]
hi(s) ds, i = 1, 2.

Lemma 2.4 Let (1 – Q1)(1 – P2) �= P1Q2. Then, for any y ∈ C[0, 1], the BVP

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(CDq
0+u)(t) + y(t) = 0, t ∈ [0, 1],

u′′(0) = 0,

αu(0) – βu′(0) =
∫ 1

0 h1(s)u(s) ds,

γ u(1) + δ(CDσ
0+u)(1) =

∫ 1
0 h2(s)u(s) ds

(6)
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has a unique solution

u(t) =
∫ 1

0
H(t, s)y(s) ds, t ∈ [0, 1],

here

H(t, s) = G(t, s) +
2∑

i=1

φi(t)
∫ 1

0
G(τ , s)hi(τ ) dτ , (t, s) ∈ [0, 1] × [0, 1],

where

G(t, s) =
αt + β

ρ

[
γ (1 – s)q–1

Γ (q)
+

δ(1 – s)q–σ–1

Γ (q – σ )

]

–

⎧
⎨

⎩

(t–s)q–1

Γ (q) , 0 ≤ s ≤ t ≤ 1,

0, 0 ≤ t ≤ s ≤ 1,

φ1(t) =
Γ (2 – σ )Q2(αt + β) + (1 – P2)[γΓ (2 – σ )(1 – t) + δ]

ρΓ (2 – σ )[(1 – Q1)(1 – P2) – P1Q2]
, t ∈ [0, 1],

and

φ2(t) =
Γ (2 – σ )(1 – Q1)(αt + β) + P1[γΓ (2 – σ )(1 – t) + δ]

ρΓ (2 – σ )[(1 – Q1)(1 – P2) – P1Q2]
, t ∈ [0, 1].

Proof In view of the equation in (6), Lemma 2.3, and u′′(0) = 0, we have

u(t) = –
(
Iq

0+y
)
(t) + u(0) + u′(0)t, t ∈ [0, 1]. (7)

By (7), Lemma 2.1, and Lemma 2.2, we obtain

(CDσ
0+u

)
(t) = –

(
Iq–σ

0+ y
)
(t) +

u′(0)
Γ (2 – σ )

t1–σ , t ∈ [0, 1]. (8)

It follows from (7), (8), and the boundary conditions in (6) that

u(0) =
1
ρ

[

βγ
(
Iq

0+y
)
(1) + βδ

(
Iq–σ

0+ y
)
(1) +

γΓ (2 – σ ) + δ

Γ (2 – σ )

∫ 1

0
h1(s)u(s) ds

+ β

∫ 1

0
h2(s)u(s) ds

]

and

u′(0) =
1
ρ

[

αγ
(
Iq

0+y
)
(1) + αδ

(
Iq–σ

0+ y
)
(1) – γ

∫ 1

0
h1(s)u(s) ds + α

∫ 1

0
h2(s)u(s) ds

]

,

which together with (7) shows that

u(t) =
∫ t

0

{

–
(t – s)q–1

Γ (q)
+

αt + β

ρ

[
γ (1 – s)q–1

Γ (q)
+

δ(1 – s)q–σ–1

Γ (q – σ )

]}

y(s) ds

+
∫ 1

t

{
αt + β

ρ

[
γ (1 – s)q–1

Γ (q)
+

δ(1 – s)q–σ–1

Γ (q – σ )

]}

y(s) ds
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+
γΓ (2 – σ )(1 – t) + δ

ρΓ (2 – σ )

∫ 1

0
h1(s)u(s) ds +

αt + β

ρ

∫ 1

0
h2(s)u(s) ds

=
∫ 1

0
G(t, s)y(s) ds +

γΓ (2 – σ )(1 – t) + δ

ρΓ (2 – σ )

∫ 1

0
h1(s)u(s) ds

+
αt + β

ρ

∫ 1

0
h2(s)u(s) ds, t ∈ [0, 1]. (9)

From (9), we get

(1 – Q1)
∫ 1

0
h1(s)u(s) ds – P1

∫ 1

0
h2(s)u(s) ds =

∫ 1

0
h1(s)

∫ 1

0
G(s, τ )y(τ ) dτ ds

and

–Q2

∫ 1

0
h1(s)u(s) ds + (1 – P2)

∫ 1

0
h2(s)u(s) ds =

∫ 1

0
h2(s)

∫ 1

0
G(s, τ )y(τ ) dτ ds,

and so,

∫ 1

0
h1(s)u(s) ds

=
(1 – P2)

∫ 1
0 h1(s)

∫ 1
0 G(s, τ )y(τ ) dτ ds + P1

∫ 1
0 h2(s)

∫ 1
0 G(s, τ )y(τ ) dτ ds

(1 – Q1)(1 – P2) – P1Q2

and
∫ 1

0
h2(s)u(s) ds

=
Q2

∫ 1
0 h1(s)

∫ 1
0 G(s, τ )y(τ ) dτ ds + (1 – Q1)

∫ 1
0 h2(s)

∫ 1
0 G(s, τ )y(τ ) dτ ds

(1 – Q1)(1 – P2) – P1Q2
,

which together with (9) implies that

u(t) =
∫ 1

0
G(t, s)y(s) ds +

2∑

i=1

φi(t)
∫ 1

0
hi(s)

∫ 1

0
G(s, τ )y(τ ) dτ ds

=
∫ 1

0
G(t, s)y(s) ds +

2∑

i=1

φi(t)
∫ 1

0
hi(τ )

∫ 1

0
G(τ , s)y(s) ds dτ

=
∫ 1

0
G(t, s)y(s) ds +

2∑

i=1

φi(t)
∫ 1

0
y(s)

∫ 1

0
G(τ , s)hi(τ ) dτ ds

=
∫ 1

0

[

G(t, s) +
2∑

i=1

φi(t)
∫ 1

0
G(τ , s)hi(τ ) dτ

]

y(s) ds

=
∫ 1

0
H(t, s)y(s) ds, t ∈ [0, 1]. �

In what follows, we let

g(s) =
α + β

ρ

[
γ (1 – s)q–1

Γ (q)
+

δ(1 – s)q–σ–1

Γ (q – σ )

]

, s ∈ [0, 1]
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and

η(s) =
βδΓ (q) – Γ (q – σ )(ρ – βγ )(1 – s)σ

(α + β)[γΓ (q – σ ) + δΓ (q)]
, s ∈ [0, 1].

Lemma 2.5 G(t, s) satisfies the following properties:
(1) G(t, s) ≤ g(s), (t, s) ∈ [0, 1] × [0, 1];
(2) G(t, s) ≥ η(s)g(s), (t, s) ∈ [0, 1] × [0, 1].

Proof Since (1) is obvious, we only need to prove that (2) holds.
First, it is clear that G(t, 1) ≥ η(1)g(1) for t ∈ [0, 1].
Now, we verify that G(t, s) ≥ η(s)g(s) for (t, s) ∈ [0, 1] × [0, 1). In fact, if s ≤ t, then

G(t, s)
g(s)

=
(αt + β)[γΓ (q – σ )(1 – s)q–1 + δΓ (q)(1 – s)q–σ–1] – ρΓ (q – σ )(t – s)q–1

(α + β)[γΓ (q – σ )(1 – s)q–1 + δΓ (q)(1 – s)q–σ–1]

≥ βγΓ (q – σ )(1 – s)σ + βδΓ (q) – ρΓ (q – σ )(1 – s)σ

(α + β)[γΓ (q – σ )(1 – s)σ + δΓ (q)]

≥ βδΓ (q) – Γ (q – σ )(ρ – βγ )(1 – s)σ

(α + β)[γΓ (q – σ ) + δΓ (q)]

= η(s)

and if t ≤ s, then

G(t, s)
g(s)

=
(αt + β)[γΓ (q – σ )(1 – s)q–1 + δΓ (q)(1 – s)q–σ–1]
(α + β)[γΓ (q – σ )(1 – s)q–1 + δΓ (q)(1 – s)q–σ–1]

≥ βγΓ (q – σ )(1 – s)σ + βδΓ (q)
(α + β)[γΓ (q – σ )(1 – s)σ + δΓ (q)]

≥ βγΓ (q – σ )(1 – s)σ + βδΓ (q) – ρΓ (q – σ )(1 – s)σ

(α + β)[γΓ (q – σ )(1 – s)σ + δΓ (q)]

≥ βδΓ (q) – Γ (q – σ )(ρ – βγ )(1 – s)σ

(α + β)[γΓ (q – σ ) + δΓ (q)]

= η(s). �

By the definition of η and the condition 0 < ρ < β[γ + δΓ (q)
Γ (q–σ ) ], we may obtain the follow-

ing remark.

Remark 2.1 η is increasing on [0, 1] and 0 < η(s) < 1 for s ∈ [0, 1].

In the remainder of this paper, we always assume that the following conditions are sat-
isfied:

Q1 < 1, P2 < 1 and (1 – Q1)(1 – P2) > P1Q2.

Lemma 2.6 H(t, s) has the following property:

mη(s)g(s) ≤ H(t, s) ≤ Mg(s), (t, s) ∈ [0, 1] × [0, 1],
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where

m = 1 +
2∑

i=1

min
t∈[0,1]

φi(t)
∫ 1

0
hi(τ ) dτ

and

M = 1 +
2∑

i=1

max
t∈[0,1]

φi(t)
∫ 1

0
hi(τ ) dτ .

Proof On the one hand, in view of (1) of Lemma 2.5, we have

H(t, s) = G(t, s) +
2∑

i=1

φi(t)
∫ 1

0
G(τ , s)hi(τ ) dτ

≤
(

1 +
2∑

i=1

φi(t)
∫ 1

0
hi(τ ) dτ

)

g(s)

≤ Mg(s), (t, s) ∈ [0, 1] × [0, 1].

On the other hand, by (2) of Lemma 2.5, we get

H(t, s) = G(t, s) +
2∑

i=1

φi(t)
∫ 1

0
G(τ , s)hi(τ ) dτ

≥
(

1 +
2∑

i=1

φi(t)
∫ 1

0
hi(τ ) dτ

)

η(s)g(s)

≥ mη(s)g(s), (t, s) ∈ [0, 1] × [0, 1]. �

Let E = C[0, 1] be equipped with norm ‖u‖ = maxt∈[0,1] |u(t)| and

K =
{

u ∈ E : u(t) ≥ θ‖u‖, t ∈ [0, 1]
}

,

where 0 < θ = mη(0)
M < 1. Then it is easy to check that E is a Banach space and K is a cone

in E.
Now, we define an operator T on K by

(Tu)(t) =
∫ 1

0
H(t, s)f

(
s, u(s)

)
ds, u ∈ K , t ∈ [0, 1].

Obviously, if u is a fixed point of T , then u is a nonnegative solution of BVP (4).

Lemma 2.7 T : K → K is completely continuous.

Proof Let u ∈ K . Then, in view of Lemma 2.6, we have

‖Tu‖ ≤ M
∫ 1

0
g(s)f

(
s, u(s)

)
ds,
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which together with Lemma 2.6 and Remark 2.1 implies that

(Tu)(t) ≥ m
∫ 1

0
η(s)g(s)f

(
s, u(s)

)
ds

≥ mη(0)
∫ 1

0
g(s)f

(
s, u(s)

)
ds

≥ θ‖Tu‖, t ∈ [0, 1].

This indicates that Tu ∈ K . Furthermore, it is easy to prove that T is completely continuous
by an application of Arzela–Ascoli theorem [29]. �

3 Main results
Define

f 0 = lim sup
u→0+

max
t∈[0,1]

f (t, u)
u

, f ∞ = lim sup
u→+∞

max
t∈[0,1]

f (t, u)
u

,

f0 = lim inf
u→0+

min
t∈[0,1]

f (t, u)
u

, f∞ = lim inf
u→+∞ min

t∈[0,1]

f (t, u)
u

.

Theorem 3.1 Suppose that one of the following conditions is satisfied:
(i) f0 = +∞ and f ∞ = 0, or

(ii) f 0 = 0 and f∞ = +∞.
Then BVP (4) has at least one positive solution.

Proof First, we consider case (i): f0 = +∞ and f ∞ = 0.
In view of f0 = +∞, there exists r1 > 0 such that

f (t, u) ≥ G1u, (t, u) ∈ [0, 1] × [0, r1], (10)

where G1 ≥ 1
mθ

∫ 1
0 η(s)g(s) ds

.
Let Ω1 = {u ∈ E : ‖u‖ < r1}. Then, for any u ∈ K ∩ ∂Ω1, by Lemma 2.6 and (10), we get

(Tu)(t) ≥ m
∫ 1

0
η(s)g(s)f

(
s, u(s)

)
ds

≥ mG1

∫ 1

0
η(s)g(s)u(s) ds

≥ mG1θ‖u‖
∫ 1

0
η(s)g(s) ds

≥ ‖u‖, t ∈ [0, 1],

which shows that

‖Tu‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω1. (11)

On the other hand, since f ∞ = 0, there exists U1 > 0 such that

f (t, u) ≤ ε1u, (t, u) ∈ [0, 1] × (U1, +∞),

where ε1 > 0 satisfies ε1 ≤ 1
2M

∫ 1
0 g(s) ds

.
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Let M∗ = max(t,u)∈[0,1]×[0,U1] f (t, u). Then we have

f (t, u) ≤ M∗ + ε1u, (t, u) ∈ [0, 1] × [0, +∞). (12)

If we choose r2 = max {2r1, 2MM∗ ∫ 1
0 g(s) ds} and let Ω2 = {u ∈ E : ‖u‖ < r2}, then for any

u ∈ K ∩ ∂Ω2, from Lemma 2.6 and (12), we obtain

(Tu)(t) ≤ M
∫ 1

0
g(s)f

(
s, u(s)

)
ds

≤ MM∗
∫ 1

0
g(s) ds + Mε1‖u‖

∫ 1

0
g(s) ds

≤ ‖u‖
2

+
‖u‖

2

= ‖u‖, t ∈ [0, 1],

which indicates that

‖Tu‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω2. (13)

Therefore, it follows from Theorem 1.1, Lemma 2.7, (11), and (13) that T has a fixed
point u ∈ K ∩ (Ω2 \ Ω1), which is a desired positive solution of BVP (4).

Next, we consider case (ii): f 0 = 0 and f∞ = +∞.
In view of f 0 = 0, there exists r3 > 0 such that

f (t, u) ≤ ε2u, (t, u) ∈ [0, 1] × [0, r3], (14)

where ε2 > 0 satisfies ε2 ≤ 1
M

∫ 1
0 g(s) ds

.
Let Ω3 = {u ∈ E : ‖u‖ < r3}. Then, for any u ∈ K ∩ ∂Ω3, by Lemma 2.6 and (14), we get

(Tu)(t) ≤ M
∫ 1

0
g(s)f

(
s, u(s)

)
ds

≤ Mε2

∫ 1

0
g(s)u(s) ds

≤ Mε2‖u‖
∫ 1

0
g(s) ds

≤ ‖u‖, t ∈ [0, 1],

which shows that

‖Tu‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω3. (15)

On the other hand, since f∞ = +∞, there exists U2 > 0 such that

f (t, u) ≥ G2u, (t, u) ∈ [0, 1] × [U2, +∞), (16)

where G2 ≥ 1
mθ

∫ 1
0 η(s)g(s) ds

.
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If we choose r4 = max{U2
θ

, 2r3} and let Ω4 = {u ∈ E : ‖u‖ < r4}, then for any u ∈ K ∩ ∂Ω4,
we know

u(t) ≥ θ‖u‖ = θr4 ≥ U2, t ∈ [0, 1],

which together with Lemma 2.6 and (16) implies that

(Tu)(t) ≥ m
∫ 1

0
η(s)g(s)f

(
s, u(s)

)
ds

≥ mG2

∫ 1

0
η(s)g(s)u(s) ds

≥ mG2θ‖u‖
∫ 1

0
η(s)g(s) ds

≥ ‖u‖, t ∈ [0, 1].

This indicates that

‖Tu‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω4. (17)

Therefore, it follows from Theorem 1.1, Lemma 2.7, (15), and (17) that T has a fixed
point u ∈ K ∩ (Ω4 \ Ω3), which is a desired positive solution of BVP (4). �

Example 3.1 Consider the following BVP:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(CD
5
2
0+u)(t) + [sin( π t

2 ) + 1]u2(t) = 0, t ∈ [0, 1],

u′′(0) = 0,

u(0) – 4u′(0) =
∫ 1

0 su(s) ds,

u(1) + (CD
1
2
0+u)(1) =

∫ 1
0 (1 – s)u(s) ds.

(18)

In view of q = 5
2 , σ = 1

2 , α = γ = δ = 1, β = 4, h1(s) = s, and h2(s) = 1 – s, s ∈ [0, 1], a simple
calculation shows that

0 < ρ = 5 +
2
π

√
π < β

[

γ +
δΓ (q)

Γ (q – σ )

]

= 4 + 3
√

π

and

P1 =
7
√

π

3(5
√

π + 2)
, P2 =

13
√

π

6(5
√

π + 2)
,

Q1 =
√

π + 6
6(5

√
π + 2)

, Q2 =
√

π + 3
3(5

√
π + 2)

.

Obviously, Q1 < 1, P2 < 1 and

(1 – Q1)(1 – P2) =
(29

√
π + 6)(17

√
π + 12)

36(5
√

π + 2)2 > P1Q2 =
7
√

π (
√

π + 3)
9(5

√
π + 2)2 .
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Moreover, since f (t, u) = [sin( π t
2 ) + 1]u2, (t, u) ∈ [0, 1] × [0, +∞), it is easy to know that

f : [0, 1] × [0, +∞) → [0, +∞) is continuous and

f 0 = 0, f∞ = +∞.

Therefore, it follows from Theorem 3.1 that BVP (18) has at least one positive solution.

4 Conclusion
In this paper, by applying Guo–Krasnoselskii’s fixed point theorem, we obtain the exis-
tence of at least one positive solution for a class of nonlinear boundary value problems
involving fractional differential equation and integral boundary conditions. An illustra-
tive example is also given to show the effectiveness of theoretical results.
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