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Abstract: Traditional modal parameter identifi cation methods have many disadvantages, especially when used for 
processing nonlinear and non-stationary signals. In addition, they are usually not able to accurately identify the damping 
ratio and damage. In this study, methods based on the Hilbert-Huang transform (HHT) are investigated for structural modal 
parameter identifi cation and damage diagnosis. First, mirror extension and prediction via a radial basis function (RBF) 
neural network are used to restrain the troublesome end-effect issue in empirical mode decomposition (EMD), which is a 
crucial part of HHT. Then, the approaches based on HHT combined with other techniques, such as the random decrement 
technique (RDT), natural excitation technique (NExT) and stochastic subspace identifi cation (SSI), are proposed to identify 
modal parameters of structures. Furthermore, a damage diagnosis method based on the HHT is also proposed. Time-varying 
instantaneous frequency and instantaneous energy are used to identify the damage evolution of the structure. The relative 
amplitude of the Hilbert marginal spectrum is used to identify the damage location of the structure. Finally, acceleration 
records at gauge points from shaking table testing of a 12-story reinforced concrete frame model are taken to validate the 
proposed approaches. The results show that the proposed approaches based on HHT for modal parameter identifi cation and 
damage diagnosis are reliable and practical.
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1   Introduction

Identifying modal parameters and damage via 
processing vibration signals is one of the mainstream 
approaches for structural health monitoring and 
damage diagnosis. The methods of damage diagnosis 
by monitoring the changes in the dynamic properties 
(frequencies, mode shapes and modal damping) 
of structures have received considerable attention 
(Doebling et al., 1996; Curadelli et al., 2008).

The traditional processing approaches based 
on Fourier analysis are not capable of dealing with 
nonlinear and non-stationary signals. Furthermore, most 
of traditional identifi cation methods suffer from low 
precision in identifying damping ratios. They also have 
practical limitations in variation of modal parameters, 
which are insensitive to damage development. For 

example, from tests on a bridge, Farrar and Jauegui 
(1998) concluded that for a reduction in the bending 
stiffness of the overall bridge with 21% cross section, 
no signifi cant reduction in the modal frequencies was 
observed. Chen et al. (2005), based on the observation 
of changes in natural frequencies of steel space 
structures subjected to atmospheric corrosion, found 
that atmospheric corrosion does not perceptibly affect 
the natural frequencies of the structure. 

The advanced time-frequency analysis methods, 
such as wavelet transform (WT) and Hilbert-Huang 
transform (HHT), have been rapidly developing in 
recent years in structural health monitoring (SHM) of 
civil engineering structures. These methods are suitable 
for processing nonlinear and non-stationary signals. 
HHT is capable of decomposing a signal more precisely 
than wavelet analysis because the former provides 
multi-resolution in various frequency scales and takes 
the signal frequency contents and their variation into 
consideration. In addition, the HHT has an adaptive 
nature in analyzing the nonlinear and non-stationary 
data that is not available in Wavelet transform. Due to 
these features, the HHT is much more attractive and 
has already been applied in many fi elds, such as ocean, 
earthquake, biology and structural health monitoring 
(Huang et al., 1998). It consists of two main parts, 
namely empirical mode decomposition (EMD) and 
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Hilbert transform (HT). And the crucial step is EMD, 
by which any vibration signal can be decomposed into 
several intrinsic mode functions (IMFs). Each IMF is a 
mono-component and can be treated as an approximate 
modal response. The analytical signal is constructed via 
HT and then the instantaneous characteristics of the 
signal are obtained. However, there is a troublesome 
end-effect issue in the EMD process resulting in an error 
in each decomposed component. In this study, mirror 
extension and prediction via radial basis function (RBF) 
neural networks are proposed to restrain the end-effect 
issue. 

A modal parameter identifi cation method using the 
HHT is based on the free-decay response or impulse 
response of an SDOF system. Generally, the measured 
data are the responses obtained under random excitation. 
Each IMF obtained from the EMD is a modal response 
component of the structure, which is not an ideal free-
decay response. It consists of free-decay response and 
forced vibration response induced by external excitation 
(Yang and Lei, 2000). The accuracy of the approach 
based on EMD, random decrement technique (RDT) 
and Ibrahim Time Domain (ITD) in identifying natural 
frequencies and damping ratios has been verifi ed to be 
remarkable (Liu et al., 2012). In this study, for each 
obtained IMF, RDT is applied to obtain the free-decay 
response of the corresponding mode. Alternatively, 
the natural excitation technique (NExT) is applied to 
obtain the impulse response of the corresponding mode. 
Then, for the obtained free-decay response or impulse 
response, the analytical signal is built via the HT to 
identify the modal parameters. 

In addition, although the stochastic subspace 
identifi cation (SSI) method is viewed as an advanced 
modal parameter identifi cation method in the time 
domain, it also has some drawbacks. For example, the 
stabilization diagram from SSI is not clear and the stable 
pole is scattered due to the interference of other modal 
components and unwanted noise (Yu and Ren, 2005). In 
order to overcome this problem, an approach based on 
the EMD is proposed to improve the results identifi ed 
from the SSI method. 

Finally, the approaches based on HHT to identify 
the damage evolution and damage location are also 
proposed. When the structure is subjected to damage, the 
instantaneous frequency of the structure and the interior 
energy distribution of the structure will both change. 
The sensitivity of HHT for initial damage detection 
was examined by Hsu et al. (2013) and the results show 
that the HHT is a powerful method for analyzing the 
acceleration data for steel structures with initial damage 
from earthquakes. In this study, the time-varying 
instantaneous frequency and Hilbert instantaneous 
energy obtained by the HT are used to identify the 
damage evolution, and the relative amplitude of Hilbert 
marginal spectrum is used to identify the damage 
location. Finally, all the proposed approaches are 
validated via case studies of acceleration records from 

the shaking table tests of a 12-story reinforced concrete 
frame model.

2 Brief description of the Hilbert-Huang 
     transform (HHT)

2.1 Empirical mode decomposition

The EMD is the crucial step of the HHT. It is based on 
the assumption that any complex time-series is composed 
of intrinsic mode functions which are different, simple 
and non-sinusoidal. Using EMD, any of the original 
time-series x(t) can be decomposed into n IMFs and 
a residual (Huang et al., 1998; Rilling et al., 2003).

x t C t r tj n
j

n

( ) ( ) ( )= +
=

∑
1

                     (1)

where Cj(t) for j=1,…, n are IMFs of the original signal 
x(t), and rn(t) is the residual. 

Each IMF represents the time-series with a different 
characteristic scale. Thus, the whole process is the 
superposition of fl uctuations with different characteristic 
scales.

However, in the EMD, the Cj(t) component has 
unavoidable error because of the infl uence of the end-
effect issue. In the process of the EMD, it is necessary 
to fi t all maxima and minima with cubic splines to 
construct the upper and lower envelopes of the signal. 
However, there are some practical diffi culties in dealing 
with the boundaries of the signal. Furthermore, because 
the subsequent IMF components are decomposed based 
on the previous IMF components and the residual, the 
error that existed in the previous decomposition will 
propagate into the later decomposition. Thus with 
the decomposition process, the error generated from 
the end swings can eventually propagate inwards and 
corrupt the whole signal, especially in the low frequency 
components. As a result, the IMFs will be unreliable in 
the serious cases. 

In this study, mirror extension and prediction via a 
radial basis function (RBF) neural network are proposed 
to restrain the end-effect issue in EMD (Han et al., 
2010):

(1) Mirror extension. First, partial curves near to 
the right and left ends and corresponding extrema are 
investigated and the locations for the mirrors are decided 
according to distribution characteristics of the curve. For 
example, one mirror is placed on the l-th and another 
on the r-th extreme point located at the left and right 
end of the signal, respectively. Then, the signal between 
the two mirrors is mapped outwards and the periodical 
signal, which is twice as long as the signal between the 
two mirrors, will be obtained. The signal after the mirror 
extension is periodical and does not contain the end 
points of the original signal.

(2) RBF neural network prediction. The prediction 
proceeded by the characteristics of the whole time series 
and specifi c form of time series on the endpoints to 
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obtain extreme values. The fi rst step is a learning process 
and the second is an extending process. The basic idea of 
an RBF neural network is to use the radial basis function 
as the base of the hidden layer to constitute the hidden 
layer space. Thus, the input vector is directly mapped to 
the hidden layer space and this mapping relationship will 
be confi rmed while the center of the radial basis function 
is determined. The mapping from the hidden layer space 
to the input layer space is linear and the network output 
is the linear weighted summation of the hidden layer 
outputs.

2.2 Hilbert transform (HT)

For a given signal x(t), its HT can be expressed as

y t HT x t P x
t

( ) [ ( )] ( )= =
−−∞

+∞

∫
1
π



d             (2)

where P indicates the Cauchy principal value.
Thus, the analytical signal can be constructed as

Z t x t y t A t t( ) ( ) ( ) ( ) ( )= + =i ei                    (3)

in which
A t A t tt( ) , ( )= = −0e

i                         (4)

 ( ) ( ) /t t t= d d                                 (5)

From the equations above, the instantaneous 
amplitude, the instantaneous phase and the instantaneous 
frequency can be obtained. 

The amplitude of the frequency-time decomposition 
of x(t), that is the Hilbert-Huang spectrum of x(t), is 
given by

A t x A tj j
j

n

( , ; ) ( , ) =
=

∑
1

                  (6)

where Aj(t, ωj) is the instantaneous amplitude of the jth 
IMF at time t with frequency ωj.

Hilbert marginal spectrum h(ω, x) can be obtained 
by integrating the amplitude A(t, ω; x) with respect to 
time,

h x A t x t
T

( , ) ( , ; ) = ∫ d
0

                 (7)

Hilbert instantaneous energy IE(t) can be obtained 
by integrating the square of amplitude with respect to 
frequency,

IE t A t x( ) ( , ; )= ∫ 2  


d                 (8)

3  Brief introduction of RDT, NExT and SSI

3.1 Random decrement technique (RDT)

RDT is a time domain signal processing approach 
which is developed to construct a characteristic signal 
from the ensemble average of sample segments 
preselected from random response signals (Ibrahim, 
1977). 

For a single degree of freedom (SDOF) linear 

system, forced vibration response of a test point under 
random excitation can be expressed as

y t y D t y V t h t f
t

( ) ( ) ( ( ) ( ) ( )= + + −∫0 0
0

) ( )   d     (9)

in which D(t) is the free vibration response of system 
with initial displacement 1 and initial velocity 0, V(t)  
is the free vibration response of system with initial 
displacement 0 and initial velocity 1, y(0)  and y( )0  are 
the initial displacement and initial velocity of the system, 
respectively, h(t) is the unit impulse response function of 
the system, and f(t) is the external excitation. 

An appropriate parameter is adopted to eliminate 
the vibration response y(t) of the system. The response 
displacement y(t-ti) starting from time ti can be expressed 
as follows:

y t t y t D t t y t V t t h t fi i i i i t

t

i
( ) ( ) ( ) ( ) ( ) ( )− = − + − + −∫ ( )   d   

(10)
After moving the initial time point at t1 to the origin 

coordinate, a series of function xi(t)=(i=1,2,...N) can be 
given as follows:

x t AD y t V t h t fi i

t
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      (11)

Then, the statistical average of xi(t) is calculated and 
the following equation is obtained,
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in which f(t) is the stationary random excitation with 
zero mean value, and y(t) is the vibration response of the 
system. y ti( )  is also the stationary random process with 
zero mean value. 

Finally, the free vibration response can be obtained 
as

x t AD t( ) ( )=                             (13)

in which A is the initial displacement of x(t).

3.2 Natural excitation technique (NExT)

In the NExT process, the impulse response function 
is replaced by the cross-correlation function of the 
responses of the linear system at two points under white 
noise excitation (Caicedo et al., 2004).

For a linear system with N degrees of freedom, when 
the kth point of system is subjected to the excitation fk(t), 
the response at the ith point xik(t) can be expressed as

x t a f p pik ir
r

N

kr
r t pt

k( ) ( )( )=
=

−
−∞∑ ∫ 

1

2
e d           (14)

where ir is the rth mode displacement at the ith point 
and akr is the constant only related to k and r. 
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When the kth point of the system is subjected to the 
unit impulse excitation, the impulse response function 
hik(t) at the ith point can be expressed as

h t aik ir
r

N
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tr( ) =

=
∑ 

1

2
e                      (15)

Cross-correlation function of the response xik(t) and  
xjk(t)at the ith and jth points under the excitation fk(t) can 
be expressed as
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If the excitation fk(t) is the ideal white noise, the 
equation E f p f q a p qk k k( ) ( ) ( )[ ] = −  can be obtained, 
in which δ is the unit impulse excitation and ak is the 
constant related to k only. Thus, Rijk(τ) can be expressed 
as follows: 
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3.3   Stochastic subspace identifi cation (SSI)

SSI is a relatively advanced time domain method for 
modal parameter identifi cation under ambient excitation. 
Its mathematical model is constructed by the state space 
equation. The modal parameters of the system are 
obtained by solving the system matrix and output matrix 
of the state space equation (Van and De Moor, 1996).

In the process of sampling signals, after sampling 
discretely and introducing random noise, a continuous 
state-space equation turns into a discrete random state-
space equation, 

x Ax Bu w

y Cx Du v
k k k k

k k k k

+ = + +
= + +

⎧
⎨
⎩

1   (18)

in which x xk k t= ( )Δ  is the discrete state vector, and 
y yk k t= Δ( ) and u uk k t= Δ( )  are the discrete input vector 

and the discrete output vector, respectively. A A= e c tΔ  is 
the discrete state matrix, and B A I A B= − −[ ] c c

1  is the 
input infl uence matrix, C is the output infl uence matrix, 
D is the direct transmission matrix, wk is the process 
noise and vk is the measurement noise. wk and vk are 
assumed to be two correlated zero-mean Gaussian white 
noise processes, defi ned by their covariance matrices as
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in which E is the mathematic expectation and δpq is the 
Kronecker delta function.

For Eq. (18), if the input term uk can be merged with 
the noise terms wk and vk, the discrete-time stochastic 

state-space model of a vibrating structure is obtained,
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1                       (20)

4   Modal parameter identifi cation approaches 
     based on HHT

4.1 Modal frequency identifi cation using HHT

From the Fourier spectrum of the acceleration 
response x(t), the range of each modal frequency can 
be determined approximately, i.e.,   j j jL H< < . 
First, x(t) is processed through the band-pass fi lters 
with a frequency band   j j jL H< < . Then, the signal 
obtained from the jth band-pass fi lter is processed 
through EMD, and the resulting fi rst IMF is quite close 
to the jth modal response. Repeating the same procedures 
for j = 1,2,...,n, n modal responses can be obtained. 

By performing HT for each modal response, the 
analytical signal is constructed. Based on Eq. (3), the 
plot of the phase angle θj(t) vs. time t is fi tted by a 
straight line using the linear least-square fi t procedure. 
Then, the slope of the fi tted straight line is the modal 
frequency ωj.

4.2 Modal parameter identifi cation using HHT and 
       NExT or RDT

The method using HHT and NExT or RDT is that 
each modal response is obtained through a band-pass 
fi lter and EMD is used to fi rst obtain the free-decay 
response via RDT or NExT. Then, the free-decay 
response is adopted to perform HT in order to identify 
modal parameters. The procedure for identifying modal 
parameters using HHT and NExT or RDT is explained 
as follows.

First, for each modal response x'j(t) obtained from 
EMD, the free-decay response x''j(t) is obtained by using 
RDT or NExT. Then, it can be expressed as follows:

x t R tj j
t

j j
j j’’ ( ) cos( )= −−e    d              

(21)

HT is conducted for the equation above and then 
analytical signal Yj(t) is constructed,

Y t A t Rj j
t

j
t tj j j j j( ) ( ) ( ) ( )= = − −e e ei i    d

          
(22)

The natural logarithm of the decaying amplitude 
Aj(t) in the above equation can be written as follows:

ln ( ) lnA t t Rj j j j= − +                         (23)

Then, the plot of Aj(t) vs. time t is fi tted by a straight 
line using the linear least-square fi t procedure. ζjωj can 
be estimated from the slope of the fi tted straight line. 
Damping ratio ξj of the jth mode can be obtained because 
the modal frequency ωj is already known. 
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4.3  Modal parameter identifi cation using EMD and SSI

The rationale of the modal parameter identifi cation 
approach using EMD and SSI is different from the 
rationale of the identifi cation approach using HHT and 
NExT or RDT. As mentioned before, SSI is an advanced 
time-domain approach to analyze the response signal. 
It is based on a time-invariant linear state space model 
and the modal parameters are identifi ed by solving 
the state matrix and output matrix of the state space 
equation via some effective mathematical tools, such 
as QR decomposition of the matrix, singular value 
decomposition and least squares. However, it is diffi cult 
to identify modal parameters accurately using only SSI 
because the input is assumed to be white noise and the 
stability diagram of SSI includes modal information of 
all orders. 

The approach using EMD and SSI is that the original 
response data are dealt with EMD fi rst to obtain the single 
modal response. Then, the signal obtained through EMD 
is used to identify modal parameters using SSI. After 
processing by EMD, the signal consists of a stationary 
response of a single mode. Thus, this approach can take 
a full  advantage of the SSI. There are some obviously 
stable axes in the stability diagram from this approach 
and modal parameters can be identifi ed more precisely.

4.4   Case study based on the shaking table test data of 
        a reinforced concrete frame model

In order to validate the applicability of the proposed 
approaches in restraining the end-effect in the EMD and 
to identify the modal parameters, recorded acceleration 
data from shaking table tests of a 12-story reinforced 
concrete frame model at 1/10 scale (Lu et al., 2004) are 
taken as the case study. The model beam is 30 mm×60 
mm and column is 50 mm×60 mm; the thickness of fl oor 
slab is 12 mm. As shown in Fig. 1, accelerometers were 
positioned along the X, Y and Z directions. The El Centro 
record during the 1940 Imperial Valley earthquake, the 
Kobe record during 1995 Kobe earthquake and the 
Shanghai artifi cial ground motion record with different 
peak accelerations are selected as shaking table inputs.

The X-direction acceleration data at gauge point A7 

from the case under El Centro record excitation with 
peak acceleration 0.09g is used as an example. The 
aceleration signal from the gauge point A7 at the top 
fl oor is shown in Fig. 2. Fourier spectrum of the original 
signal is shown in Fig. 3. 

The original signal is preprocessed through a band-
pass fi lter and predicted via RBF neural network and 
mirror extension. Then, EMD is performed on each 
preprocessed signal. The EMD results of the fi ltered 
acceleration signal at gauge point A7 that deal with and 
without end-effect are shown in Fig. 4, respectively. 
After preprocessing, 7 IMFs are obtained and distortion 
at the ends of all IMFs is obviously decreased.

After decomposing by EMD, modal responses x'
j(t) 

(j=1,2...) can be obtained. The 1st modal response x'
1(t) 

is processed through RDT and the free-decay response  
x''

1(t) is obtained, as shown in Fig. 5. The free-decay 
response x''

1(t) of the 1st mode is also obtained through 
NExT, which is shown in Fig. 6.

Each free-decay response is performed by Hilbert 
transform. The frequency and damping ratio of each 
mode can be identifi ed by the approaches above. The 
phase of the free-decay response of the 1st mode 
obtained through EMD and RDT is shown in Fig. 7. The 
instantaneous frequency ω1 of the 1st mode is shown in 
Fig. 8. Figures 9 and 10 show the ln A1(t)–t curves and 
their linear least-squares fi tting from HHT and RDT, and 
HHT and NExT, respectively. Using the same methods, 
modal parameters of the other modes can be identifi ed. 

A stability diagram through SSI with EMD is shown 
in Fig. 11. It seems that the method using SSI and EMD 
is reliable because the real model is the one whose 
frequency does not change when system orders are 
selected differently.

The identifi ed modal frequencies of the fi rst 
three modes and a comparison with the results from 
eigensystem realization algorithm (ERA), rational 
fraction polynomial (RFP) and fi nite element analysis 
are shown in Table 1. The identifi ed modal damping 
ratios of the fi rst three modes and a comparison with 
the results from the other identifi cation approaches are 
shown in Table 2 (Han et al., 2009). It is obvious that 
the identifi ed frequencies from ERA and FRP are less 

                              (a) Parallel to the shaking direction                                      (b) Perpendicular to the shaking direction

Fig. 1   Position of accelerometers in the shaking table model
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                linear least-squares fi tting
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than the results from a simple FFT. It also indicates that 
stiffness of the structure is underestimated using ERA 
and RFP. Inversely, comparison between the identifi ed 
frequencies from the proposed methods and those 
from simple FFT indicates that the proposed approaches 
are more reliable in identifying modal frequencies. 
For the modal damping ratios, although the identifi ed 
results are improved by comparison with the half-power 
bandwidth method, there is an obvious difference in the 
results of the different identifi cation approaches. 

5  Structural damage diagnosis methods based 
    on the HHT

5.1 Damage evolution identifi cation via instantaneous 
      frequency and instantaneous energy

When structural damage occurs, stiffness 
degradation inevitably leads to a change of vibration 
frequency. Damage evolution can be identifi ed by 
investigating frequency changes of the structure. In 

addition, energy transformation characteristics during 
the structural damage process can be refl ected by 
analyzing Hilbert instantaneous energy of input and 
output of the structure. 

5.2 Damage location identifi cation via the relative 
       amplitude of Hilbert marginal spectrum

The Hilbert-Huang spectrum describes the signal 
amplitude and refl ects the energy distribution of 
vibration signals in the time-frequency domain. And, 
the Hilbert marginal spectrum h(ω,x) refl ects signal 
amplitude changes in the frequency domain. It also can 
show the energy contribution of different frequency 
components in the whole time domain. Consequently, 
damage locations can be identifi ed by comparing the 
relative amplitudes of Hilbert marginal spectra at all 
gauge points before and after damage.

5.3 Case study based on shaking table model test data

5.3.1 Damage evolution identifi cation of the model 
           structure

The acceleration signals of the 12-story reinforced 
concrete frame model at gauge Point A7 under the 
excitation cases of No. 2, 8, 17, 26, 35, 44 and 53, in 
which peak acceleration of the NS component at El 
Centro station (1940) were scaled to the corresponding 
values shown in Table 2, is used as an example. The 
signals under these cases are supposed to be sampled 
continuously. The fi ltered acceleration signal is shown 
in Fig. 12 with appropriate cut-off frequencies. The fi rst 
four IMFs by processing the fi ltered acceleration signal 
with EMD are shown in Fig. 13.

The Hilbert-Huang spectrum obtained by 

Table 1  Identifi ed modal frequencies and comparison with the results from the other identifi cation approaches and fi nite element analysis

Mode No.
Modal frequency (Hz)

HHT+RDT HHT+NExT EMD+SSI ERA RFP FFT FEM
1 3.76 4.17 4.32 3.56 3.55 4.18 3.80
2 14.33 14.56 14.79 14.08 13.96 14.52 14.43
3 27.48 27.99 27.82 27.18 27.17 27.61 27.82

Table 2  Identifi ed modal damping ratios and comparison with the results from the other identifi cation approaches

Mode No.
Modal damping ratio (%)

HHT+RDT HHT+NExT EMD+SSI ERA RFP FFT
1 3.87 6.80 1.66 5.93 5.46 11.91
2 2.51 6.37 1.81 4.14 4.80 5.81
3 1.93 4.89 1.69 3.69 3.81 4.68

Table 3  Peak table acceleration under Case No. 2, 8, 17, 26, 35, 44 and 53

Case No. 2 8 17 26 35 44 53
Peak table acceleration (g) 0.090 0.258 0.388 0.517 0.646 0.775 0.904

Fig. 11   Stability diagram using SSI and EMD
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transforming IMF1 is shown in Fig. 14. It shows the 1st 
modal frequency has an obvious drop at 21s and 32s. 
This indicates that structural damage occurred during the 
17th excitation and continued as the excitation increased. 
This  shows good agreement with the experimental 
observation (Lu et al., 2004).

The Hilbert instantaneous energy of input and 
output are shown in Fig. 15. From Fig. 15, it is seen 
that input with relatively lower energy caused a larger 
energy response of the structure before 42s. But after 

Fig. 12  Filtered acceleration response with supposed continuous 
             sampling at gauge Point A7
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Fig. 13  EMD results of fi ltered acceleration response at gauge Point A7
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42s, the Hilbert instantaneous energy of output is 
signifi cantly reduced under the higher excitation. At 53s, 
the Hilbert instantaneous energy amplitude of output 

is 1.184×105 while its input is 3.705×105. This result 
shows that the developing structural damage converts 
the stiff model structure to be soft. This softening 
increases deformation and dissipates a large amount 
of input energy. This also shows good agreement with 
the experimental observation. During the shaking table 
test, vertical cracks propagated at the beam end after the 
17th excitation. The cracks continued growing and the 
number of cracked beams also increased as the input 
excitation increased (Lu et al., 2004).
5.3.2 Damage location identifi cation of the model 
           structure

Experimental results show that no cracks were found 
on the model structure under the fi rst seven excitation 

Fig. 14  Hilbert-Huang spectrum of fi ltered acceleration 
                   response at A7
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Fig. 15  Hilbert instantaneous energy of input and output
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cases and fi ne cracks occurred at the end of the 4th 
fl oor frame beam after the 9th excitation case. Thus, the 
acceleration response signals of the A3, A4, A5 and A6 
gauge points under the 7th, 8th, 9th and 10th excitations 
as shown in Table 4 are selected to verify the capability 
to identify damage location by the relative amplitudes of 
the Hilbert marginal spectra. 

Relative amplitudes of the Hilbert marginal spectra 
at A3, A4, A5 and A6 gauge points under four excitation 

Table 4  Peak table acceleration under Case No. 7, 8, 9 and 10

Case No. 7 8 9 10
Original ground motion record White noise El Centro, 1940 Kobe, 1995 Shanghai artifi cial ground motion

Peak table acceleration (g) 0.090 0.258

Table 5  Absolute and relative amplitudes of Hilbert marginal spectra at A3, A4, A5 and A6 gauge points 
                                   under 4 excitation cases

Gauge point/Floor A3 / 5 A4 / 7  A5 / 9     A6 / 11
Under the 7th excitation Absolute  8.9420 14.6300 19.4300 22.23

Relative 0.4022 0.6581 0.8740 1.00
Under the 8th excitation Absolute 15.1800 25.3700 33.3100 37.97

Relative 0.3998 0.6681 0.8773 1.00
Under the 9th excitation Absolute 47.7700 80.8000 107.1000 119.20

Relative 0.4008 0.6778 0.8985 1.00

Under the 10th excitation Absolute 5.4870 13.5000 18.8800 21.00
Relative 0.2602 0.6401 0.8952 1.00

cases, respectively, are shown in Fig. 16. Absolute and 
relative amplitudes of the Hilbert marginal spectra at 
these four gauge points under different excitations are 
shown in Table 5. Figure 16 and Table 5 show that there 
is little change in the relative amplitudes of the Hilbert 
marginal spectrum at the A3, A4, A5 and A6 gauge 
points from the 7th excitation to the 9th excitation. 
But there is obvious change at the A3 gauge point 
between the 9th and 10th excitation. This agrees well 

Fig. 16  Relative amplitudes of Hilbert marginal spectra at A3, A4, A5 and A6 gauge points under 4 excitation cases
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(c) 9th excitation case
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(d) 10th excitation case
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with the experimental observations (Lu et al., 2004). 
This indicates that relative amplitudes of the Hilbert 
marginal spectra can refl ect the energy distribution 
of the vibrating structure. Thus, damage locations in 
the structure can be identifi ed by comparing relative 
amplitudes of the Hilbert marginal spectra before and 
after structural damage.

6   Conclusions

In this study, modal parameter identifi cation 
approaches and damage diagnosis methods, which are 
all based on HHT, are proposed. Acceleration records 
at gauge points from shaking table tests of a 12-story 
reinforced concrete frame model are processed, and 
modal parameter identifi cation and damage diagnosis 
of the model structure are conducted. The proposed 
approaches based on HHT have their own obvious 
advantages in identifying modal parameters because 
the stationary data which contained the modal response 
signal of the single mode are obtained through EMD. In 
addition, in this study, mirror extension and prediction 
via a radial basis function (RBF) neural network are used 
to restrain the troublesome end-effect issue in EMD. 
Modal parameters from the proposed approaches are 
more reliable. A comparison of the identifi cation results 
with the results from the other identifi cation algorithms, 
such as ERA and RFP, and fi nite element analysis 
indicates that the proposed approaches are reliable to 
identify modal frequencies. Although identifi cation of 
modal damping ratios is improved by comparison with 
the half-power bandwidth method, it is still diffi cult to 
confi rm the precision of the results. 

Damage evolution of the structure is identifi ed 
by investigating the time-varying characteristics 
of instantaneous frequency and comparing Hilbert 
instantaneous energy of input and output. The damage 
location of the structure is identifi ed directly by 
comparing relative amplitudes of the Hilbert marginal 
spectra before and after the damage. Damage evolution 
and damage location are very easy and simple to 
identify with the proposed methods and they show good 
agreement with the experimental observations. 

In conclusion, HHT and the approaches based on 
HHT are promising in modal parameter identifi cation 
and damage diagnosis, and can be applied in the fi eld 
of structural health monitoring. However, further studies 
are needed in order to precisely identify the damping 
ratios. 
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