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3 mm Pure titanium TA2 was joined to 3 mm pure copper T2 by Cold Metal Transfer (CMT) welding–braz-
ing process in the form of butt joint with a 1.2 mm diameter ERCuNiAl copper wire. The welding–brazing
joint between Ti and Cu base metals is composed of Cu–Cu welding joint and Cu–Ti brazing joint. Cu–Cu
welding joint can be formed between the Cu weld metal and the Cu groove surface, and the Cu–Ti brazing
interface can be formed between Cu weld metal and Ti groove surface. The microstructure and the inter-
metallic compounds distribution were observed and analyzed in details. Interfacial reaction layers of
brazing joint were composed of Ti2Cu, TiCu and AlCu2Ti. Furthermore, crystallization behavior of welding
joint and bonding mechanism of brazing interfacial reaction were also discussed. The effects of wire feed
speed and groove angle on the joint features and mechanical properties of the joints were investigated.
Three different fracture modes were observed: at the Cu interface, the Ti interface, and the Cu heat
affected zone (HAZ). The joints fractured at the Cu HAZ had higher tensile load than the others. The lower
tensile load fractured at the Cu interface or Ti interface was attributed to the weaker bonding degree at
the Cu interface or Ti interface.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Hybrid structures of dissimilar metals have been gradually
appreciated in national defense and civil industrial fields, such as
aerospace, shipbuilding, energy and electric power industry [1].
Hybrid structure of Ti/Cu dissimilar alloys not only satisfies the
requirements of heat conduction, electrical conduction, wear resis-
tance and corrosion resistance, but also meets demand of light
weight and high strength. However, fusion joining of titanium
and copper has a metallurgical challenge because of the great dif-
ferences in their chemical and physical properties, and mass of
brittle Ti–Cu intermetallic compounds (IMCs) are formed at ele-
vated temperatures seriously degrading the mechanical properties
of the joints [2–6]. It is necessary to control effectively formation
and growth of Ti–Cu IMCs. Solid-state welding methods, e.g. explo-
sive welding and friction welding, have been used to make Ti/Cu
dissimilar metals joint, but the shape and size of such solid-state
joints are extremely restricted [7–9].

In recent years, welding–brazing methods have been developed
for dissimilar metals with large difference in melting point, e.g.
tungsten inert gas (TIG) arc welding–brazing of Al to steel
[10,11], laser welding–brazing of Ti to Al [12] and electron beam
self-melting brazing of Ti to Cu [13]. In the welding–brazing pro-
cess, the metal with low melting point and filler metals were mol-
ten and mixed to form a fusion welding joint, the metal with high
melting point was little molten or maintain solid, and the liquid fil-
ler metal wetted and spread on the metal with high melting point
to form a brazing joint.

Nowadays, Cold metal transfer (CMT) process is a new tech-
nique and becomes a hot research field in dissimilar materials
welding [14,15]. CMT welding–brazing of Al to steel [16,17], CMT
welding–brazing of Al to Ti [18] have been carried out in recent
years. In this study, commercially pure titanium TA2 and commer-
cially pure copper T2 were joined using a 1.2 mm diameter ERCu-
NiAl (AWS A5.7/A5.7 M) copper wire through CMT welding–
brazing. Ti/Cu CMT welding–brazing butt joint was composed of
Cu–Cu welding joint in the Cu side and Cu–Ti brazing joint in the
Ti side. Three different configurations of Cu/Ti butt joints with var-
ious welding bevel grooves were adopted. The influence of differ-
ent groove angles of Cu side and wire feed speed on the features
and mechanical properties of the joint were investigated. After
welding, the weld appearance, tensile load, crystallization behavior
and bonding mechanism of joints were analyzed and discussed.
2. Experimental details

2.1. Materials

The materials used in the study include 3 mm thick commer-
cially pure titanium TA2 sheet and 3 mm thick commercially pure
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Table 2
Nominal chemical composition of ERCuNiAl copper wire (wt.%).

Alloy Al Ni Pb Fe Mn Cu

ERCuNiAl 8.0 6.0 0.038 3.0 1.0 Bal.

Fig. 1. Schematic diagram of Ti/Cu CMT butt joint: (a) joint I (Cu–T2–60�, Ti–TA2–
30�), (b) joint II (Cu–T2–45�, Ti–TA2–30�), and (c) joint III (Cu–T2–30�, Ti–TA2–30�)
(mm).
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copper T2 sheet. The corresponded compositions, per the manufac-
turer’s data sheet, are given in Table 1. Copper wire ERCuNiAl (AWS
A5.7/A5.7 M) having a diameter of 1.2 mm was used in this study.
Its chemical composition is shown in Table 2.

2.2. Welding procedure

The Ti and Cu sheets were machined to rectangular strips of
100 mm � 50 mm � 3 mm and designed as the butt joint configu-
ration, as shown in Fig. 1. The V shape grooves with different
groove angles were machined from the base metals. Three different
configurations of Cu/Ti butt joints (joint I (Cu–T2–60�, Ti–TA2–30�),
joint II (Cu–T2–45�, Ti–TA2–30�), joint III (Cu–T2–30�, Ti–TA2–30�))
with various groove angles were adopted in the experiments. In or-
der to control effectively formation and growth of Ti–Cu IMCs and
decrease the molten titanium, the wire was deviated from the edge
of Cu sheet edge, as shown in Fig. 1.

The two sheets were degreased by acetone and polished by
abrasive cloth first. Ti sheets were cleaned with HF 5% + HNO3

35% aqueous solution for 10–20 min, then wiped and rinsed with
ethanol and tap water. And the Cu sheets were wiped and rinsed
with ethanol and tap water.

The CMT welding–brazing joining was carried out using TPS-
3200 type CMT welding procedure. The welding parameters were
listed as follows: welding speed (vw) of 6 mm/s, wire feed speed
(vf) of 7.0–9.5 m/min, welding current (Iw) of 158–223 A, welding
voltage (Vw) of 14.7–20.3 V, 99.99% argon shielding gas flow rate
of 17 L/min. The various welding variables and the mechanical
properties of Ti/Cu CMT butt joints were given in Table 3.

2.3. Characterization methods

After welding, in order to investigate the mechanical properties
of the Ti/Cu CMT butt joints, tensile tests were carried out accord-
ing to ISO 4136-2012 [19]. Three or two tensile specimens depicted
in Fig. 2 were cut off from each weldment and tested on a
WDW-100E type universal testing machine at the tensile speed of
1 mm/min at room temperature. Average tensile load of tensile spec-
imens was taken to estimate the mechanical property of the joint.

According to ISO 9015-1: 2001 [20], the Vickers micro-hardness
of the Ti/Cu butt joints was measured by the HX-1000 micro-hard-
ness testing machine with a load of 200 gf for 5 s.

To study the microstructure and bonding mechanism of Ti/Cu
CMT butt joint, the cross-sections of the specimens were prepared
and examined. The microstructures of the welded joints and the
IMCs were observed and analyzed by scanning electron microscope
(i.e., Quanta FEG-450) equipped with energy dispersive X-ray spec-
trometer (EDS).

3. Results

3.1. Effects of wire feed speed and groove angle on the joint features

Fig. 3 shows the macroscopic cross-sections of three types of Ti/
Cu CMT butt joints with different welding parameters listed in Ta-
ble 3. For joint I (Cu–T2–60�, Ti–TA2–30�), at the vf of 7.0 m/min
and 8.0 m/min (Iw of 158 A and 184 A), the Cu base metal near
Cu groove surface was not molten due to the low weld heat input
Table 1
Nominal chemical compositions of commercially pure titanium TA2 and commercially pu

Materials Bi Pb Fe Mn C N

TA2 – – 0.30 – 0.10 0.0
T2 0.002 0.005 – – – –
and the high thermal conductivity coefficient of copper
(359.2 Wm�1K�1 [21]). For these low weld heat input, welding
joint cannot be formed at the Cu groove side. However, the Cu–Ti
interface between the liquid filler metal and the Ti groove surface
can be successfully brazed, as shown in Fig. 3(a0) and (b0). Increas-
ing the vf to 9.0 m/min (Iw = 210 A), the welding–brazing joint was
formed except only the root part of the Cu groove which was not
fully molten, as shown in Fig. 3(c0). At the high vf of 9.5 m/min
(Iw = 223 A), the excellent joint was formed as shown in Fig. 3(d0).
Based on Fig. 3(a1–d1), it was found that the formation process of
joint II with groove angle of (T2–45�, TA2–30�) was similar to that
of the joint I. But for joint III with lower groove angle on Cu side
(T2–30�, TA2–30�), even at the low vf of 7.0 m/min and 8.0 m/
min (Iw of 158 A and 184 A), the liquid filler metal spread on the
Cu groove surface to form the Cu–Cu weld metal. However, it still
incompletely spread on the Ti groove surface, as shown in Fig. 3(a2)
and (b2). Increasing the vf to 9.0 m/min (Iw = 210 A), Ti groove sur-
face was wetted by the molten Cu metal, yet the root region of the
Cu groove was still incompletely molten, as shown in Fig. 3(c2).
Further increasing the vf to 9.5 m/min (Iw = 223 A), the liquid filler
metal spread on the Cu groove surface, and mixed with molten Cu
re copper T2 (wt.%).

S P O H Ti Cu

5 – – 0.25 0.0015 Bal. –
0.005 0.03 – – – Bal.



Table 3
Welding variables and mechanical properties of Ti/Cu CMT butt joints.

Joint type Specimen No. Wire feed speed (m/min) Welding voltage (V) Welding current (A) Tensile load (kN) Fracture modes

Joint I (Cu–T2–60�, Ti–TA2–30�) 1 7.0 14.7 158 0.95 (0.46, 0.68, 1.70) Cu interface
2 8.0 17.0 184 2.14 (1.66, 2.62) Cu interface
3 9.0 19.4 210 4.99 (4.92, 5.08, 4.98) Cu-HAZ
4 9.5 20.3 223 5.07 (4.92, 5.16, 5.12) Cu-HAZ

Joint II (Cu–T2–45�, Ti–TA2–30�) 5 7.0 14.7 158 4.48 (4.86, 4.10) Cu interface
6 8.0 17.0 184 4.83 (5.16, 4.48, 4.84) Cu-HAZ
7 9.0 19.4 210 5.03 (5.16, 4.90, 5.04) Cu-HAZ
8 9.5 20.3 223 4.87 (4.92, 4.84, 4.86) Cu-HAZ

Joint III (Cu–T2–30�, Ti–TA2–30�) 9 7.0 14.7 158 2.99 (2.74, 3.24) Ti interface
10 8.0 17.0 184 4.09 (3.60, 4.58) Ti interface
11 9.0 19.4 210 4.91 (4.80, 4.98, 4.96) Cu-HAZ
12 9.5 20.3 223 5.10 (5.10, 5.14, 5.06) Cu-HAZ

Fig. 2. The geometry of the tensile test samples (mm).
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base metal, to form the Cu–Cu welding joint. Moreover, the liquid
filler metal wetted and spread on the Ti groove surface, i.e. the Cu–
Ti brazing interface was formed, as shown in Fig. 3(d2).
Fig. 3. Macroscopic cross section of the Ti/Cu CMT butt j
Finally a fusion welding joint is formed in the Cu side. At the
same time, liquid mixed metal interacts with Ti alloy in solid state,
and a brazing joint is formed in the Ti side. Therefore, Ti/Cu CMT
welding–brazing butt joint has dual characteristics of fusion weld-
ing and brazing.

In summary, the larger groove angle makes the fully melt of Cu
difficult. The high welding current will be used to make fully mol-
ten and wetted welding–brazing joint.
3.2. Effects of wire feed speed and groove angle on the mechanical
properties of the joint

In order to evaluate the mechanical property of the Ti/Cu CMT
butt joints, tensile tests were conducted according to ISO 4136-
2012 [19]. And the results were also given in Table 3. Fig. 4 shows
5 mm

oints in different welding variables listed in Table 3.
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the effects of the wire feed speed and the weld heat input on the
tensile load. Fig. 5 presents the fracture modes of the joints after
tensile test. Combined Fig. 4 and Table 3, it indicates that the ten-
sile load increases with the increasing of the weld heat input (wire
feed speed). For example, joint I and joint II with low weld heat in-
put (wire feed speed) were fractured at the Cu interface with lower
tensile load (as shown in Fig. 5(a)) due to un-fully molten Cu at Cu
groove surface. For joint III with low groove angles of 30� on Cu
side, the Cu base metal was fully molten. In this case, at low weld
heat input (wire feed speed), the joint was fractured at the Ti braz-
ing interface (see Fig. 5(b)) because the liquid filler metal incom-
pletely spreading on the Ti groove surface produces weaker
bonding at the Ti side. However, with the weld heat input increas-
ing, the fracture locations of the joints were moved to the Cu HAZ
with plastic fracture mode.

Comparing the weld appearance and mechanical properties, to
join Ti and Cu at the larger range of welding variables, the joint II
(T2–45�, TA2–30�) is the best choice. However, no matter which
groove is designed, such as joint I, joint II or joint III, only if wire
feed speed is controlled in range of 9.0–9.5 m/min (Iw = 210–
223 A), the satisfied weld appearance and tensile load can be
achieved. In these cases, the corresponded joint with high strength
is fractured at the Cu HAZ.

In short, to obtain satisfied weld appearance and tensile
strength, enough volume of weld metal should be produced. So,
the principle to choose various groove angles and corresponded
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Fig. 4. The tensile load of Ti/Cu CMT butt joints in different welding variables listed in Tab
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Fig. 5. Fracture modes of the joints: (a) the Cu in
welding variables should guarantee to produce enough weld metal
making satisfied joining between weld metal and Ti sheet, and sat-
isfied joining between weld metal and Cu sheet.

In order to analyze the reason why higher strength is obtained
in some specimens fractured in the Cu HAZ, according to ISO
9015-1: 2001 [20], the micro-hardness measurement was carried
out on the HX-1000 micro-hardness testing machine along tita-
nium base metal, weld metal zone to copper base metal for spec-
imen #12 in Table 3. The results are shown in Fig. 6. Obviously, it
is found that the hardness in the Cu HAZ with 9 mm width is
lower than that of Cu base metal, i.e. the soften phenomena ap-
pear in the Cu HAZ. The result also shows that the micro-hard-
ness of titanium base metal and weld metal are about 175 HV
and 170 HV, respectively. However, the brazing interface zone
reaches a micro-hardness of 500 HV. Tetsui [22] also found that
a variety of IMCs of Ti and Cu formed near the brazing zone en-
dowed its high hardness.

Based on the results, at the proper weld heat input (i.e., 680–
754 J/mm, wire feed speed 9.0–9.5 m/min (Iw = 210–223 A)), the
Ti/Cu CMT butt joint has tensile load of 5.10 kN, and fractures in
the Cu HAZ during tensile test. The reason is attributed to the
increasing of the strengths of Cu interface and Ti interface and
the soften of Cu HAZ with increasing of weld heat input. During
the CMT welding–brazing process, dynamic recrystallizations are
done and crystalline grains grow rapidly at the Cu HAZ, resulting
in the serious softening phenomena of Cu HAZ [8,23].
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section subfigure. (For interpretation of the references to colour in this figure
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Fig. 8. Macroscopic cross-section of the Ti/Cu CMT butt joint III (Cu–T2–30, Ti–TA2–
30) at the wire feed speed of 9.5 m/min.
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3.3. Microstructure and bonding mechanism of the optimized Ti/Cu
CMT welding–brazing butt joint

Fig. 7 shows weld appearance of the Ti/Cu CMT butt joint III (T2–
30�, TA2–30�) with highest strength at the wire feed speed of
9.5 m/min. As shown in Fig. 7, the Ti/Cu CMT welding–brazing butt
joint has a good front and back appearance. The molten ERCuNiAl
copper filler metal had fully spread on the Ti surface, and no cracks
appear on surface of welded joint at this heat input. Fig. 8 shows
the macroscopic cross-section of Ti/Cu CMT welding–brazing butt
joint indicated by a white dotted line location in Fig. 7(a).

Fig. 9(a) shows the magnified features of fusion zone (region A
in Fig. 8), part of Cu base metal was molten and mixed with filler
metal. In solidification, the solidified molten metal was nucleated
on the fusion line between weld metal and Cu base metal and grew
up quickly in cylindrical-like style. Fig. 9(b) shows the microstruc-
tures of weld metal (region B in Fig. 8), which are composed of a-
Cu solid solutions (denoted by arrow 1) and Cu–Al–Ti–Fe–Ni multi-
phase (denoted by arrow 2). The compositions of these regions
were listed in Table 4.

Figs. 10 and 11 show the SEM microstructures of brazing inter-
face. Fig. 10 shows the magnified features of the brazing interface
at the middle part of the groove surface (region C in Fig. 8). From
Fig. 10(a), it is found that the IMCs layer thickness of the brazing
interface at middle groove surface was about 117–129 lm.
Fig. 10(b) presents higher magnification of zone C. According to
their different morphological characteristics, the zone C could be
divided into two reaction zones, which were marked as zone E
close to Ti base metal and zone F next to the weld metal. The com-
positions of each zone (denoted by number 1–7 in Fig. 10) were
analyzed by SEM–EDS. Based on the Ti–Cu binary phase diagram
[24] and Ti–Cu–Al ternary phase diagram [25], the results were
analyzed and listed in Table 5. Fig. 10(c) shows the microstructure
of zone E (marked in Fig. 10(b)) near Ti base metal. The zone E con-
sisted of gray Ti2Cu phase (denoted by region 1) growing from the
titanium base metal, big blocky TiCu phase (denoted by region 2)
Ti-TA2 

Cu-T2 (a)

10mm

C

T

cross section 

Fig. 7. Weld appearance of the Ti/Cu CMT butt joint III (T2–30, TA2–30) a
and white a-Cu solid solution (denoted by arrow 3). Fig. 10(d)
shows the microstructure of zone F (marked in Fig. 10(b)) near to
weld metal. Zone F contained gray Ti2Cu phase (denoted by arrow
4), big blocky TiCu phase (denoted by arrow 5), big gray blocky
AlCu2Ti phase (denoted by arrow 6) and white base a-Cu solid
solution (denoted by arrow 7). Thus, the brazing interface mainly
consisted of Ti2Cu, TiCu and AlCu2Ti orderly from the Ti base metal
to the weld metal. The results obtained in this study were in agree-
ment with the previously published results [2–5].

Fig. 11 shows the magnified features of the brazing interface at
root groove surface (region D in Fig. 8). As shown in Fig. 11(a), it is
found the IMCs layer thickness of the brazing interface at root
groove surface was about 80–100 lm. The SEM–EDS results were
given in Table 6. From Fig. 11 and Table 6, the bonding microstruc-
ture of the brazing interface zone D is similar to that of brazing
interface zone C. It can be seen that the general macro-features
and microstructures are similar, but the thickness of the IMCs lay-
ers in different locations is different due to their various tempera-
ture gradient and interfacial reaction time during the brazing
process.

In order to confirm the distribution of elements Ti, Cu and Al at
the brazing interface, the SEM–EDS line analysis were carried out,
as shown in Fig. 12. As seen, from the Ti base metal to the weld me-
tal, the content of Cu element increases gradually while the con-
tent of Ti decreases gradually as a whole, and the distribution of
elements Cu and Ti presents wavy. Furthermore, the SEM–EDS line
analysis of brazing interfacial microstructure of Ti/Cu CMT butt
joint indicated that Al element was enriched in the brazing inter-
face between Ti base metal and the weld metal. Base on
Fig. 12(a–b), it is also found that the thickness of IMCs layer in
interface zone C and D was different. Ref. [6] also presented the
thickness of IMCs layer was different during different temperature
and reaction time. Though the thickness of IMCs layers with good
reaction bonding reached 100 lm, the satisfied Cu–Ti welded
joints were not fractured at the Cu–Ti IMCs layer, which was con-
cerned with two aspects. On the one hand, the Cu–Ti IMCs layer
between weld metal and Ti sheet was not straight, but curve, thus,
the larger area IMCs layer with curved shape was not perpendicu-
lar to the tensile normal stress. On the contrary, the fracture was
produced at the soften Cu HAZ due to higher tensile stress.
(b) 

10mm 

u-T2

i-TA2

t the wire feed speed of 9.5 m/min: (a) front side, and (b) back side.
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Fig. 9. Microstructures of fusion welding joint: (a) fusion line zone A in Fig. 8, and (b) weld metal zone B in Fig. 8.

Table 4
EDS results of weld metal from Fig. 9(b) (at%).

Points in Fig. 9(b) Ti Cu Al Ni Fe Phase

1 1.4 83.5 13.2 1.0 0.9 a-Cu solid solution
2 26.2 24.5 22.1 15.0 12.1 Ti–Cu–Al–Ni–Fe multi-phase
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weld metal
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Fig. 10. Microstructures of middle groove part of brazing interface C: (a) Zone C in Fig. 8, (b) higher magnification of zone C in Fig. 8, (c) higher magnification of zone E in (b),
and (d) higher magnification of zone F in (b).
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4. Discussion

4.1. Crystallization behavior of Ti/Cu CMT welding–brazing joint

According to the analysis of preceding context, microstructures
of fusion welding joint consists of a-Cu solid solutions and Cu–Al–
Ti–Fe–Ni multi-phases distributed at the grain boundaries. And the
solidification process of fusion welding joint may be described as
following:
(i) During melting and mixing of ERCuNiAl filler metal and Cu
alloy for CMT welding–brazing, partial Cu base metal is mol-
ten in fusion zone. Thus, the metals in this zone are a semi-
molten state mixed by solid and liquid metal, as shown in
Fig. 13(a). At the same time, Ti atoms diffuse into weld pool.

(ii) With decreasing of temperature, preferential heterogeneous
nucleations of grains are carried out at the solid/liquid inter-
face. Because the highest temperature gradient is produced
along the direction perpendicular to the solid/liquid
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Fig. 11. Microstructures of the root groove surface of brazing interface D: (a) Zone D in Fig. 8, (b) higher magnification of zone D in Fig. 8, (c) higher magnification of zone G in
(b), and (d) higher magnification of zone H in (b).

Table 5
EDS results of brazing interface zone C from Fig. 10 (at%).

Points in Fig. 10 Ti Cu Al Ni Fe Possible phase

1 62.9 31.9 4.0 0.8 0.4 Ti2Cu
2 48.6 39.4 5.4 2.7 4.0 TiCu
3 13.7 80.7 3.9 0.9 0.7 a-Cu solid solution
4 57.4 34.8 6.6 1.0 0.2 Ti2Cu
5 44.8 40.5 6.1 3.0 5.6 TiCu
6 25.5 49.1 17.9 4.4 3.1 AlCu2Ti
7 1.5 85.8 11.2 0.8 0.7 a-Cu solid solution

Table 6
EDS results of brazing interface zone D from Fig. 11 (at%).

Points in Fig. 11 Ti Cu Al Ni Fe Possible phase

1 58.8 33.1 5.3 1.4 1.5 Ti2Cu
2 46.8 40.3 5.6 2.7 4.5 TiCu
3 16.5 77.0 3.9 1.4 1.1 a-Cu solid solution
4 11.9 82.4 4.3 0.8 0.6 a-Cu solid solution
5 43.6 39.5 7.0 5.5 4.4 TiCu
6 24.8 52.5 16.4 3.6 2.6 AlCu2Ti
7 5.9 88.3 5.0 0.5 0.3 a-Cu solid solution
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interface, a-Cu gains grow rapidly along this direction,
which induces formation of the coarse columnar crystal
structures. The liquid filler metal wets the solid Ti surface,
and form the IMCs layer, as shown in Fig. 13(b).

(iii) With further decreasing of the temperature, the degree of
supercooling increases in the weld pool. Thus, homogeneous
nucleation starts to proceed and weld pool begins to crystal-
lize. As a joining method with filler wire, weld pool is stirred
sharply during the solidification. For this reason, the temper-
ature distribution is uniform. Hence, a-Cu grains are
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precipitated from liquid phase firstly, and the Al, Ti, Fe and
Ni atoms gather to liquid phase, and then Cu–Al–Ti–Fe–Ni
multi-phases are formed, as shown in Fig. 13(c).

(iv) After liquid metal solidifies completely, fusion welding joint
is formed, as shown in Fig. 13(d).

The wire and Cu sheet were molten and mixed to form a fusion
welding joint. Moreover, Ti sheet was little molten or maintain so-
lid, and the liquid filler metal wetted and spread on the Ti sheet to
form a brazing joint. Then, welding–brazing joints were produced
between Ti and Cu. Song et al. [10,11] reported that sheets of Al
5A06 and steel AISI 321 were butt-joined by melting the Al
sheet alone using TIG welding–brazing process, which was similar
to the obtained results in this study. The studies carried out on la-
ser welding–brazing of Ti to Al [12] and electron beam self-melting
brazing of Ti to Cu [13] also found similar results.

4.2. Mechanism of brazing interfacial reaction

The brazing joint is formed by interfacial reaction between li-
quid filler metal and solid Ti base metal. The interfacial reaction
process may be described as following:
Fig. 13. Crystallization behavior of Ti/Cu CMT welding–brazing joint: (a) formation of we
layer, (c) solidification of the seam, and (d) formation of the joint.

Fig. 14. Growth process of the IMCs layers during Ti/Cu CMT welding–brazing: (a) disso
growth of Ti2Cu, (c) nucleation and growth of TiCu, and (d) nucleation and growth of A
(i) The liquid filler metal wets and spreads at the solid Ti sur-
face in the wetting process of liquid flux film. Ti atoms dis-
solve into the liquid filler metal and subsequently diffuse
in the liquid filler metal. Because enthalpy of mixing of Al
in Ti is �119 kJ/mole more negative than �34 kJ/mole of Al
in Cu [26], Al atoms continually aggregate to the brazing
interface close to Ti base metal from weld pool, as shown
in Fig. 14(a).

(ii) In the solidifying process of brazing interface and with rich
content of Ti close Ti base metal, the Ti2Cu phase with a high
melting point of 1005 �C, nucleates and grows up in the
interface between Ti base metal and liquid filler metal, as
shown in Fig. 14(b).

(iii) As the decreasing of the temperature and Ti content, the
TiCu phase with a melting point of 982 �C, nucleates and
grows up. Heterogeneous nucleation is achieved easily at
solid/liquid interface, as shown in Fig. 14(c).

(iv) With further extending to weld pool, when the contents of
Al atoms in the liquid filler metal gathered to enough level,
ternary IMC AlCu2Ti phases begin to crystallize at the inter-
face. After liquid metal solidifies completely, the welding–
brazing joint is formed, as shown in Fig. 14(d).
ld pool and diffusion of element Ti, (b) formation of columnar crystal zone and IMCs

lution and diffusion of Ti and aggregation of Al in the interface, (b) nucleation and
lCu2Ti and solidification of fusion brazing joint.
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In short, with the decreasing of Ti content and temperature, and
the diffusion of Al, IMCs layers including Ti2Cu, TiCu, AlCu2Ti
phases between Ti base metal and weld metal were formed in or-
der. Shiue et al. [2,3] reported infrared brazing commercially pure
titanium and oxygen free copper. When using pure Ag as filler me-
tal, Ti2Cu and TiCu phases were observed near Ti base metal. While
using pure 95Ag–5Al as filler metal, the zone near Ti base metal
consisted of Ti2Cu and AlCu2Ti phases. The results were seen to
be in agreement with the obtained results in this study.

5. Conclusions

According to the study on cold metal transfer welding–brazing
of titanium to copper, the followed conclusions can be
summarized:

(1) A satisfied Ti/Cu CMT welding–brazing butt joint was suc-
cessfully obtained by CMT welding–brazing with ERCuNiAl
copper wire as filler metal when wire feed speed was con-
trolled at 9.0 m/min –9.5 m/min (Iw = 210–223 A).

(2) The welding joint was formed at Cu alloy side, while brazing
joint was formed in titanium alloy side, i.e. welding–brazing
joints were produced between Ti TA2 and Cu T2.

(3) The thickness of the IMCs layer was ununiformed: 117–
129 lm in middle groove surface, and 80–100 lm in root
groove surface. The IMCs layers at the brazing interface
mainly consisted of Ti2Cu, TiCu and AlCu2Ti orderly from
the Ti base metal to the weld metal.

(4) At the optimized welding variables, the type of the groove
and the IMCs layer of Cu–Ti brazing interface have no effects
on the tensile load of the joints. The sufficient strength at
interlamellar layers makes the fracture move to HAZ of Cu
base metal. In this case, the tensile load of the joints is only
concerned about the soften degree of Cu HAZ. The Cu/Ti CMT
butt joints at the optimized welding variables can reach ten-
sile load of 5.10 kN, and fractured in Cu HAZ.
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