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a b s t r a c t

Image enhancement is a very significant issue in image processing and analysis. In practice, many images
(e.g.images captured from X-ray systems) are of low quality, such a slow-luminance and low-contrast,
which must be enhanced before further processing. Fuzzy set theory is a useful tool for handling the
ambiguity or uncertainty. Many researchers use the maximum Shannon entropy and fuzzy complement
for image enhancement. But these methods are easy to be over-enhanced or under-enhanced or time-
consuming. In this paper, a flexible method is proposed, which utilizes the maximum fuzzy Sure entropy,
fuzzy c-partition and fuzzy complement (MSRM). Furthermore, a positive threshold value selection al-
gorithm is developed to tune the enhancement performance of the proposed method. A variety of highly
degraded images have been experimented by the proposed method. The comparisons of those experi-
mental results show that the performance of our method overwhelms those of the existing ones.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

In practice, the quality of images is easy to be effected by several
factors, such as the shooting angle, the shooting condition and the
capturing approaches. Generally, the original images, which are
captured by charging coupled device image sensors or by other di-
gital image sensors in non-uniform illumination conditions, are un-
clear or blurred. Thus, the image without enhancement is impossible
to exhibit the vivid details to observers directly. For instance, the
X-rays images from direct digital radiography(DDR) system are not
only blurred by noise, but also captured in non-uniform and low il-
lumination conditions. So image enhancement is essential to these
digital images and thus is an important task in image processing. The
fuzzy set theory is a powerful tool for developing new and robust
techniques in image processing [1–7]. A number of researchers have
aimed for enhancing the low-contrasted image and many developed
methods which perform quite well [8–10,13,19,20]. However, when
applying on the low-luminance and low-contrasted images, those
existing methods presented in the previous literatures cannot work
well and most of the time lack compatibility and flexibility. For these
reasons, we need to look for a suitable and flexible function to
modify the intensity distribution of the image so as to fitting to
human eyes. In this paper, a new method for image enhancement is
proposed, which is based on the maximum fuzzy Sure entropy
(MSRM). MSRM uses the fuzzy set theory [11], the fuzzy c-partition,
the involutive fuzzy complements and the maximum fuzzy Sure
entropy. We develop a new class of membership functions as well as
a newmeasure of fuzziness. In our study, we design a newmethod to
select a suitable positive threshold value to control the enhancement
performance. To date, the Sure entropy principle has been rarely used
in the literature [12]. We tested the proposed method and other
existing four methods using various images of different types. The
experimental results show that the proposed method achieves better
performance in image enhancement, especially when the images are
extremely low contrasted and low illuminated.

The rest of this paper is organized as follows. Section 2 de-
scribes an image in the form of fuzzy set theory, as well as the
maximum fuzzy-Sure entropy method, fuzzy c-partition and the
involutive membership functions. In Section 3, we describe the
proposed method and the threshold value selection in full detail.
The family of functions to modify the membership values of the
gray levels is also introduced in this section. Section 4 presents the
experimental results obtained using the proposed method and
other existing methods. Comparisons and discussions of the pro-
posed method and the other four contrast enhancement techni-
ques are carried out. Finally, conclusions are made in Section 5.
2. Background

For image enhancement, we present the framework concerning
fuzzy set theory, fuzzy entropy, fuzzy c-partition and involutive
membership functions. Following, we describe the details.
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2.1. Image description in fuzzy set theory

In this paper, an image A of size ×M N pixels, having L gray-
levels ranging from Lmin to Lmax, can be viewed as an array of fuzzy
singletons [10,11]. Each element in the array is the membership
value representing the degree of brightness of the gray level

( ∈ [ ])g g L L,min max . In fuzzy set theory, image A can be written as
below:

μ= { ( ) = ⋯ = ⋯ } ( )A g g i M j N/ , 1, 2, , , 1, 2, , 1A ij ij

where μ ( )gA ij denotes the degree of brightness possessed by the
gray level intensity gij corresponding to the (i, j) pixel. The histo-

gram of the image is described as ( ) ( ∈ [ ])h g g L L, ,A min max and de-
notes the frequency of occurrence of the gray level g. We introduce
a membership function ( )P gA of fuzzy set [7], which is the prob-
ability measure of the occurrence of gray-levels and described as

μ( ) = ( )• ˜ ( )P g g h gA A A . Here ˜ ( )h gA denotes the probability of the gray
level g by normalizing histogram ( )h gA . In our study, we write
˜ ( )h gA as below:

˜ ( ) =
( )
× ( )h g

h g
M N 2A

A

So the probability of this fuzzy event can be calculated by:

∑ μ( ) = ( ) ˜ ( )
( )=

−

P A g h g
3g

L

A A
0

1

2.2. Fuzzy c-partition

The fuzzy c-partitions can be represented by partition matrices.
It is defined as [13]. Let = { ⋯ }T t t t, , , n1 2 , Q cn is a set of real ×c n
matrices, and c is an integer, ≤ ≤c n2 . Fuzzy c-Partition space for
T is the set:

∑ ∑μ μ μ= ∈ ∈ = ∀ < < ∀
( )= =
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c

ik
k
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ik
1 1

2.3. Maximum entropy of fuzzy c-partition principle

In this section, we discuss two different measures of fuzziness
for fuzzy c-partition, i.e. Shannon entropy and Sure entropy. The
Shannon entropy principle was used for the maximum fuzzy en-
tropy and fuzzy c-partition in early studies [14]. Let

= { ⋯ }U A A A, , , n1 2 be a finite partition of fuzzy sets. The Shannon
entropy H(U) [15] is defined as below:

∑( ) = − ( ) ( )
( )=

H P A P AU log
5i

c

i i
0

In this paper, we have investigated image enhancement per-
formance of Sure entropy principle according to the Shannon en-
tropy's for the maximum fuzzy entropy and fuzzy c-partition. The
Sure entropy H(U) presented in [16] is given as below:

∑ε ε( ) ≤ ⇒ ( ) = ( ( ) )
( )=

P A H U P Amin ,
6

i
i

c

i
0

2 2

where εis a positive threshold value. At the same time, since
( ) ≥P A 0i , thus the Sure entropy H(U) can be described as follows:

∑ε ε( ) ≤ ⇒ ( ) = ( ( ) )
( )=

P A H U P Amin ,
7

i
i

c

i
0

In this, we can tune the enhancement performance of the im-
age by changing the value of ε.
2.4. Involutive membership functions

Image enhancement plays a key role in digital image proces-
sing, and there are a lots of literatures concerning this topic. When
the image is improved, The gray-levels of the image histogramwill
be modified in some respects, e.g. by histogram equalization or
appropriate gray-level transformation. In a word, the selection of a
suitable function for the gray-level modification is an important
step. In this study, we introduce Sugeno class of involutive fuzzy
complements and present an involutive memberships [2,17]. Here,
the membership values μ ( )( ∈ [ ])g g L L,A min max of image A denote the
degree of compatibility of the gray level g with a relational image
property (e.g. brightness, edginess etc.). Then we can define the
involutive fuzzy complements as follows.

Definition 1. Let μ ∈ ( )F x and α ∈ ( )0, 1 . Then the complement of
μ is the fuzzy set μ*defined for all ∈g X by the membership
function [17]:

μ
μ
λμ

*( ) =
− ( )
+ ( ) ( )

g
g

g

1

1 8A
A

A

where

λ α
α

= −
( )

1 2
92

Properties of μ*:

1. λ ∈ ( − ∞)1, , so μ*belongs to Sugeno's class of involutive
complements.

2. μ μ*( ) = ( )g gA A if and only if μ α( ) =gA . Therefore, αis the equili-
brium of μ*.

3. For α = 0.5 the complement becomes the standard fuzzy com-
plement, i.e., μ μ*( ) = − ( )g g1A A .

4. Let μ μ ∈ ( )F X,A B , and μA is α-sharper than μB. Then μ*
A is

α-sharper than μ*
B .

In this study, for the image A, the membership function μ ( )ijA is
initialized as follows:

μ ( ) =
−

− ( )
ij

L L

L L 10
ij

A
min

max min

where ∈ [ ]L L L,ij min max , = ⋯i M1, 2, , , and = ⋯j N1, 2, , . Referring
to the literature [17], we have new involutive memberships as
below:
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The relationship of α and λ is depicted in (9), we can calculate λ and
replace it into (12) and (11). Then, we obtain the involutive member-
ships μ ( )ijA , called α-involutive memberships as depicted in Fig. 1.

The α-involutive fuzzy class begins with a high-contrast image
and by increasing α the image changes itself into a dim image. In
this paper, we obtain the optimal parameter α using the exhausted
search method.



Fig. 1. The α-involutive fuzzy memberships.

Fig. 2. The membership functions, μdark and μbright .
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3. Proposed algorithm

In this section, a fuzzy 2-partition method is presented first.
Next, the selection of the threshold value ε is discussed. Then, the
maximum entropy is found out for the fuzzy 2-partition by the
exhausted search method, as well as the equilibrium α of the
image A is obtained.

3.1. Fuzzy 2-partition method

The fuzzy 2-partition method is usually used to look for the
gray-level threshold in image processing. In this study, we can
obtain the equilibrium αby this method. Here, we assume that the
images have 256 gray-levels ranging from 0 to 255 and normalize

these values to ∈ ⎡⎣ ⎤⎦W 0, , , ...,1
255

2
255

255
255

. The bi-level threshold is

used to classify pixels to dark group or bright group. There for, two
fuzzy sets described as dark and bright may be considered, in W
whose membership functions are defined as below:

μ α
α

α
=

∈

∈ ( ( )

⎧
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x x
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α λ
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where ∈x W is the independent variable, and α ∈ ( )0, 1 is the
crossover point.

The relationship of α and λ refer to (9). μdark and μbright are
shown in Fig. 2, which are decided by λ and α.

Fig. 2 distinctly shows these two fuzzy sets, dark and bright,
partition W into two parts in a fuzzy manner. Actually, for gray-
level images, the membership function of fuzzy set dark in W can
be regarded as the membership of "black pixel group", while the
membership function of the fuzzy set bright denotes the mem-
bership of the "white pixel group".

3.2. Selection of the threshold value

The parameter ε is a positive threshold value of fuzzy-Sure
entropy. In our method, the experimental results prove that the
value of ε directly connects with the image enhancement perfor-
mance, i.e. the quantity of modified image can be controlled by
adjusting ε. Here, for selecting a suitable ε, we firstly define the
first-order fuzzy moments m and ( )P Ac max (c is the number of
partitions ) as follows:

∑= ( ) ˜ ( )
( )=

−

m t i h i
15i

L

A
0

1

and

α( ) = ( ( ) ∈ ( )) ( )αP A P Amax 0, 1 16c cmax

where L is gray levels, ˜ ( )h iA denotes the probability of the nor-
malized histogram α( ) = ( ( ) ∈ ( ))αP d P dark max ark 0, 1max corre-
sponding to gray-level i of the image A and refers to (2), and

( ) =
− ( )t i
i

L 1 17

In (16), ( )P Ac max denotes the maximal value of the partitions ( )αP Ac

with respect to α ranging from 0 to 1. In our study, ( )P dark max and
( )P bright max are defined as the maximal values of ( )P dark and
( )P bright , respectively, that is

α( ) = ( ( ) ∈ ( )) ( )αP d P dark max ark 0, 1 18max

α( ) = ( ( ) ∈ ( )) ( )αP b P bright max right 0, 1 19max

Then we can assign ε the value as below:

ε =

( )
≤
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2
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In our study, obviously, when the original image appears un-
der-exposure, the histogram of the image is close to the left of the
abscissa, moreover, m is less than 0.5. While the image is over-
exposed, the corresponding histogram is close to the right of the
abscissa, and m is greater than 0.5. In our experience, when m is
less than 0.5, the image looks dark, then we can select εranged
from 0 to ( )P bright max in order to obtain a satisfying image. Here,
the greater ε is, the brighter the enhanced image looks. However,
when ε is bigger than ( )P bright max, the enhanced image no longer
alters along with ε's change. On the other hand, when m is bigger
than 0.5 and the image looks bright, we select ε ranged from 0 to

( )P dark max. Moreover, the less ε is, the darker the enhanced image
looks. In this paper, we firstly select the midpoints of the two
intervals, respectively.

3.3. Our algorithm implement

In this paper, the exhausted search method is used to calculate
the optimal α and λ. The details are described as below:

Step A: Input the image , set L¼256, normalize gray level and
initialize Hmax,αopt , λopt ,α = 0.3027, and ( )P bright max.

Step B: Compute the histogram and obtain m according to (15).
Step C: Compute the membership function μ ( )ijA according to

(10) and calculate the histogram.
Step D: Compute the probability of the occurrence of the gray-

levels and normalize the histogram according to (2).
Step E: Initialize ε¼1-m.
Step F: Use the exhausted search approach to attain the pair

2.1186 and λopt , which form a fuzzy 2-partition that has the
maximum fuzzy-Sure entropy:

for α¼1 to 254
255

:

(i) For given α, according as (9), (13) and (14), obtain λ and
compute new membership functions, μ ( )gdark and
μ ( )( = ⋯ − )g g L0, 1, , 1bright .

(ii) Compute the probabilities of the fuzzy events of dark and
bright by (3):

μ( ) = ∑ ( ) ˜ ( )=
−P dark g h gg

L
dark A0

1

μ( ) = ∑ ( ) ˜ ( )=
−P bright g h gg

L
bright A0

1

iii) Compute the Sure entropy of this partition according to (7):

ε α ε

ε ε

( ) ≤ ⇒ ( ) = ∑ ( ( ) )

= ( ( ) ) + ( ( ) )
=P A H U P A

P dark P bright

, min ,

min , min ,
i i i1

2

(iv) If current computed ( )P dark is greater than ( )P dark max, replace
( )P dark max with current computed ( )P dark . In the same way,

when current computed ( )P bright is greater than ( )P brigth max,
replace ( )P brigth max with current computed ( )P bright . Similarly,
if current computed H is greater than Hmax, replace Hmax with
current computed H. At the same time, replace αopt , and λopt
with current computed αand λ, respectively.

end for α.
Step G: Modify λ according to (20).
Step H: Repeat step(F) and obtain the ultimate αopt and λopt .
Step I: Obtain the involutive memberships μ ( )ijA according to

(10), (12) and (11).
Step J: Get the improved image μ= ( − ) × ( )F L ij1 A .
If the improved image is not perfect, we can appropriately

decrease or increase the value of ε and repeat steps from (F) to (I),
until it is satisfying.

When using the method based on the maximum Shannon
entropy, the calculational methods are all same as the above
mentioned steps except the steps (E), (F), (G) and (H), of which (E),
(G) and (H) are removed and in step (F) Shannon entropy is
computed as (5):

∑α( ) = − ( ) ( ) = − ( ) ( ) − ( )

( )
=

H U P A P A P dark P dark P bright

P bright

, log log

log

i
i i

1

2

4. Experimental results and discussion

In this section, we first tested the proposed method using dif-
ferent types of images with different kinds of degradations. e.g.
contrast degradation, luminance degradation, and contrast-lumi-
nance degradation, etc. Then, we compared our results with those
produced using the histogram equalization method(HEM), the
maximizes the parametric index of fuzziness (PIFM) [1], the
λ-enhancement method based on optimization of image fuzziness
( λM) [2], and the maximum Shannon entropy principle of fuzzy
events (MSNM) [18]. In our study, each image has 256(L¼256)
gray levels from 0 (the darkest) to 255(the brightest) except the
X-ray image “hand" with 65536 gray levels. The experimental
comparison is in the environment of Matlab7.0, CPU is Intel Core i5
3.30 GHz, RAM is 4.00 GB.

4.1. Experimental results of the proposed method

The first tested image "pout-lowluminance-lowcontrast" with
size 240×291 pixels and 256 gray-levels ranging from 0.0784 to
0.2196. The luminance and contrast of this image were badly de-
graded as shown in Fig. 3(a1). Then this image was enhanced by
our proposed method. The first-order fuzzy moment m is equal to
0.1094 which is less than 0.5, and this accords with the histogram
of the original image as shown Fig. 3(a2). After applying our
method to this image with ε = − =m1 0.8906, we got the first
enhanced image as shown in Fig. 3(b1) and α¼0.0039. But Fig. 3
(b1) , (b2) and (b6) show that the image was too much over en-
hanced and many content and texture details are lost. At the
same time, from Fig. 3(b3)–(b5), we discovered that λ has no
influence on fuzzy Sure entropy, with the reason that λ is greater
than not only ( )P dark max ( ( )P dark max¼0.1321), but also ( )P bright max
( ( )P bright max¼0.8209). Thus the parameter λ needed a modifica-
tion and we assigned 0.41045 to λ according to (20) , after which
we obtained the second enhanced image as shown in Fig. 3(c1). It
is obvious that this λ is a suitable value for the enhancement as
shown in Fig. 3(c1)–(c6). Therefore, the finally obtained optimal α
is equal to 0.0824. The computational cost for the first enhance-
ment is about 0.367 s, and the total computational cost is about
0.3952 s. It is evident that the luminance and contrast of the ori-
ginal image are highly enhanced by the proposed method. Fur-
thermore, the final image looks clear and uniform.

In order to verify that the proposed method can work well on
other kinds of images, we tested it on the image "flowers-low-
luminance-lowcontrast" and the results were given in Fig. (4). The
luminance and contrast of this image (size 500×362 pixels , 256
gray-levels ranging from 0.0118 to 1) were extremely degraded as
shown in Fig. 4(a1), and the corresponding histogram is shown in
Fig. 4(a2). The first and second enhanced results are given in Fig. 4
(b1)–(b6) and in Fig. 4(c1)–(c6), respectively. In this test, for
m¼0.1458, then the first λ¼0.8542, the obtained α¼0.0039 and
computational cost is about 0.5058 s. Similarly, for modified
λ¼0.3269, then we obtain α¼0.0353 and the total computational
cost about is 0.5342 s. The enhanced image looks much better than
the original degraded one and this shows the effectiveness of our
proposed method in various low-luminance and low-contrasted
images.



Fig. 3. “pout-lowluminance-lowcontrast’’ :(a1) the original image, (a2)the histogram of the original image, (b1) the first enhanced image by the proposed method , (b2) the
histogram of the first enhanced image, (b3) P(dark) of the first enhancement processing ,(b4) P(bright) of the first enhancement processing, (b5) the first Sure entropy,(b6)
the first membership function, (c1) the second enhanced image, (c2) the histogram of the second enhanced image, (c3) P(dark) of the second enhancement processing , (c4)
P(bright) of the second enhancement processing, (c5) the second Sure entropy, (c6) the second membership function.
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Next we test the image "pout-lowcontrast" with low contrast as
shown in Fig. 5(a1) and (a2). Firstly, for m¼0.4654, λ¼0.5346,and
α¼0.0353, the computational cost is about 0.3670 second and the
processed results are shown in Fig. 5(b1)–(b6). Secondly, for λ¼0.4160,
and α¼0.0667, the total computational cost is about 0.3970 s and the
results are shown in Fig. 5(c1)–(c6). Fig. 5(a1) is a low-contrasted and
vague image. It is obvious that the image obtained by the proposed
method is more distinct as shown in Fig. 5(c1).



Fig. 4. "flowers-lowluminance-lowcontrast" :(a1)the original image, (a2)the histogram of the original image,(b1) the first enhanced image by the proposed method , (b2) the
histogram of the first enhanced image, (b3) P(dark) of the first enhancement processing ,(b4) P(bright) of the first enhancement processing,(b5) the first Sure entropy,(b6)the
first membership function,(c1)the second enhanced image ,(c2)the histogram of the second enhanced image, (c3) P(dark) of the second enhancement processing ,(c4)P
(bright) of the second enhancement processing,(c5) the second Sure entropy,(c6)the second membership function.
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4.2. Comparisons of algorithms

In order to evaluate the performance of the proposed method,
we compared our results with those obtained by other four meth-
ods: the histogram equalization method (HEM), the maximizes the
parametric index of fuzziness (PIFM), the λ-enhancement method
( λM) , and the maximum Shannon entropy principle (MSNM).
Tested those methods on many images, e.g. "lena", "tire", "pout-
lowluminance", "flowers-lowluminance-lowcontrast", "lena-low-
contrast" and "hand". The original images are shown in Fig. 7(a)–
Fig. 12(a) and the corresponding histograms are given in Fig. 7(b)–
Fig. 12(b).The enhanced images obtained by the HEM, PIFM, λM and
MSNM are shown in (c), (d), (e) and (f) of Figs. 7–12, respectively.
The final images improved by the proposed method are depicted in
Figs. 7(g)–12(g) and the corresponding histograms are shown in
Fig. 7(h)–Fig. 12(h). The comparative results of computational costs
are depicted in Tables 1–6.The relational curves of the involutive
membership functions λand the gray level of the original images are
shown in Fig. 6(a)–(f). The curves of the PIF method are depicted
with dash and dot line(PIFM), λ-enhancement method described
with solid line (λM), the maximum Shannon entropy principle de-
picted with dashed line (MSNM), and the maximum Sure entropy
shown with dotted line (MSRM).

In Fig. 7, the original image "lena" (Fig. 7(a)) is vague and
blurred. The histogram equalization method directly modifies the
histogram of the original image (Fig. 7(b)), with the defect of
amplifying the noise,the obtained image(Fig. 7(c)) looks unnatural.
The contrast of the image (Fig. 7(d)) obtained employing the PIFM
is enhanced, but there are some over-enhanced portions, e.g. hair
and the computational cost is the most as illustrated in Table 1.



Fig. 5. "pout-lowcontrast" :(a1)the original image, (a2)the histogram of the original image,(b1) the first enhanced image by the proposed method , (b2) the histogram of the
first enhanced image,(b3) P(dark) of the first enhancement processing,(b4)P(bright) of the first enhancement processing,(b5) the first Sure entropy,(b6)the first membership
function,(c1)the second enhanced image ,(c2)the histogram of the second enhanced image, (c3) P(dark) of the second enhancement processing ,(c4)P(bright) of the second
enhancement processing,(c5) the second Sure entropy,(c6)the second membership function.
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The Fig. 7(e) shows that the λM improves the contrast of the
original image and makes it clear and natural. But comparing this
result with the image(Fig. 7(g)) by the MSRM, this method is in-
conspicuous. The MSNM reforms the contrast, but the view picture
looks darker as shown in Fig. 7(f). In this test on "lena", we can
discover that the MSRM has achieved a better performance over
the other methods. the final image looks not only distinct and
uniform, but also natural. The corresponding histogram is shown
in Fig. 7(h). From Fig. 6(a), we can see that, when gray level is less
than 70, the enhancement by the PIFM is the most, but the en-
hancement by the MSNM is the least. While gray level is greater
than 180,the enhancement by the MSRM is the most, but the en-
hancement by the λM is the least. Fig. 7(b) shows that the gray
levels of the first peak are less than 70, corresponding to the hair
and tyre, so there are some over-enhancements when employing
the PIFM, but some under-enhancements when employing MSNM.



Fig. 6. "the curves of membership functions" :(a) "lena", (b) "tire",(c) "pout-lowluminance", (d) "flower-lowluminance-lowcontrast", (e) "lena-lowcontrast",(f) "hand", for the
PIF method, depicted with dash and dot line, λ-enhancement method described with solid line, the maximum Shannon entropy principle depicted with dashed line,and the
maximum Sure entropy shown with dotted line.
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There are only a few pixels with gray levels greater than 180, so
the effects by the existing four methods are similar.

In Fig. 8, the vague and blurred image "tire" is shown in Fig. 8
(a), and the corresponding histogram is depicted in Fig. 8(b). It is
obvious that, the HEM and λM bring over-enhancements as illu-
strated in Fig. 8(c) and (e), respectively. There are some under-
enhanced portions in the image obtained by the MSNM as de-
picted in Fig. 8(f). In Fig. 8(d), there are a few over-enhanced
portions such as the tyre, while the hub of the wheel is a little
enhanced by the MSRM as show in Fig. 8(g). Even then, the MSRM
is preferred. Firstly, the image enhanced by the MSRM is more
natural than by the PIFM. Secondly, the computational cost of the
MSRM is less than the PIFM's as shown in Table 2. Finally, we can
obtain a satisfying image through decreasing ε ( ε¼0.2991) to
0.2891. Fig. 6(b) also shows that the λM causes over-enhancements
and the MSNM brights under-enhancements.

In Fig. 10, the original image "flowers-lowluminance-low-
contrast" with low luminance and low contrast is depicted in
Fig. 10(a), and the corresponding histogram is shown in Fig. 10(b).
We can see that, the images obtained by the HEM (Fig. 10(c)),the
PIFM (Fig. 10(d)), and the λM (Fig. 10(e)) all have some over-en-
hanced portions: the stamens and leaves of these flowers, which
make them unclear and unnatural. But there are under-enhance-
ments in Fig. 10(f), obtained by the MSNM. In this test, the pro-
posed method get ahead of the other methods. The image en-
hanced by the MSRM looks not only distinct but also natural, and
the computational cost is less as shown in Table 4. In addition,
From Fig. 6(d), we also discover that, when gray levels are less
than 50, the enhancements of the PIFM and λM are far more than
the MSRM's(more than the MSNM's). We also see that a majority
of gray levels are less than 50 as shown in Fig. 10(b), and the en-
hancement about this part is very important to improve this im-
age, thus MSRM is a proper method.

In Fig. 11, we can see that the contrast of the original image
(Fig. 11(a)) "lena-lowcontrast" was extremely degraded, and this
image is very vague and blurred. The HEM can improve the con-
trast as shown in Fig. 11(c), but make the image awfully unnatural.
The image (Fig. 11(d)) obtained by the PIFM has some over-en-
hancements, we also obtain this verity from Fig. 6(e). The image
(Fig. 11(e)) obtained from λM is better than the original image, but
it is vague and unclear. The performance of MSNR is almost similar
to MSNM. The final images by the MSRM and MSNM are distinct
and natural, but the image enhanced by MSRM looks brighter than
by MSNM. In addition, considering the computational cost (as
shown in Table 5), the proposed method is preferable.

In Fig. 12, the original image (Fig. 12(a)) "hand" was captured
from DDR system directly. the image is very vague and looks dark.
The obtained images by the HEM, λM and MSNM are given in
Fig. 12 (c),(e) and (f), respectively, but they are inferior to the en-
hanced image by the MSRM as shown in Fig. 12(g). The image
obtained by the PIFM has so many over-enhancements that most
parts of the image are lost. From Fig. 6(f), we can discover that the
PIFM has the most enhancement(leading to over-enhancement),
the λM has the most even change(leading to the inconspicuous
contrast enhancement). The computational cost of the MSRM is
only more than the HEM's as depicted in Table 6. Thus our pro-
posed method have the advantage over the other four methods.
5. Conclusions

This paper proposes a newly developed image enhancement
method based on the maximum fuzzy Sure entropy. This method
offers two major contributions. Firstly, it is very efficient and ef-
fective when applying our proposed method on low-quality ima-
ges, especially on low contrast and low illuminance images. Sec-
ondly, the proposed method is quite robust as the threshold value
can be selected in a relatively very large range until satisfying
results. We conducted experiments on different kinds of low-
quality images with our method and other existing methods, and



Fig. 7. "lena" :(a) the original image, (b) the histogram of the original image,(c)the enhanced image using HEM,(d)the enhanced image using PIFM, (e) the enhanced image
using λM, (f)the enhanced image using MSNM,(g) the enhanced image using the proposed method(MSRM) ,(h)the histogram of the image enhanced by MSRM.
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Fig. 8. "tire" :(a) the original image, (b) the histogram of the original image,(c)the enhanced image using HEM,(d)the enhanced image using PIFM, (e) the enhanced image
using λM, (f)the enhanced image using MSNM,(g) the enhanced image using the proposed method(MSRM) ,(h)the histogram of the image enhanced by MSRM.

C. Li et al. / Neurocomputing 215 (2016) 196–211 205



Fig. 9. "pout-lowluminance" :(a) the original image, (b) the histogram of the original image,(c)the enhanced image using HEM,(d)the enhanced image using PIFM, (e) the
enhanced image using λM, (f)the enhanced image using MSNM,(g) the enhanced image using the proposed method(MSRM) ,(h)the histogram of the image enhanced by
MSRM.
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Fig. 10. "flowers-lowluminance-lowcontrast" :(a) the original image, (b) the histogram of the original image,(c)the enhanced image using HEM,(d)the enhanced image using
PIFM, (e) the enhanced image using λM, (f)the enhanced image using MSNM,(g) the enhanced image using the proposed method(MSRM) ,(h)the histogram of the image
enhanced by MSRM.
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Fig. 11. "lena-lowcontrast" :(a) the original image, (b) the histogram of the original image,(c)the enhanced image using HEM,(d)the enhanced image using PIFM, (e) the
enhanced image using λM, (f)the enhanced image using MSNM,(g) the enhanced image using the proposed method(MSRM) ,(h)the histogram of the image enhanced by
MSRM.
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Fig. 12. the x-ray image "hand" with ×2469 1247: (a) the original image, (b) the histogram of the original image,(c)the enhanced image using HEM,(d)the enhanced image
using PIFM, (e) the enhanced image using λ M, (f)the enhanced image using MSNM,(g) the enhanced image using the proposed method(MSRM) ,(h)the histogram of the
image enhanced by MSRM.
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Table 1
Comparisons of algorithms on “lena”.

ALGORITHM HEM ( )PIFM a, b, c λM MSNM MSRM

Parameter α,λ ( ) λ = −0, , , 0.650881
255

255
255

α = 0.4228 α = 0.4549 α = 0.2235

Computational cost (s) 0.2396 102.3812 3.2314 2.4782 0.7782

Table 2
Comparisons of algorithms on“tire”.

ALGORITHM HEM ( )PIFM a, b, c λM MSNM MSRM

Parameter α,λ ( ) λ = −0, , , 0.9291
255

228
255

α = 0.2275 α = 0.3255 α = 0.1059

Computational cost (s) 0.156 87.2888 1.3178 0.4034 0.3593

Table 3
Comparisons of algorithms on “pout-lowluminance”.

ALGORITHM HEM ( )PIFM a, b, c λM MSNM MSRM

Parameter α,λ ( ) λ = −0, , , 0.99451
255

28
255

α = 0.3027 α = 0.1255 α = 0.0314

Computational cost (s) 0.169167 90.8124 1.4948 0.5365 0.38567

Table 4
Comparisons of algorithms on “flowers-lowluminance-lowcontrast”.

ALGORITHM HEM ( )PIFM a, b, c λM MSNM MSRM

Parameter α,λ ( ) λ = −0, , , 0.97091
255

89
255

α = 0.2539 α = 0.102 α = 0.0353

Computational cost (s) 0.2184 88.797 2.1186 1.2654 0.544167

Table 5
Comparisons of algorithms on “lena-lowcontrast”.

ALGORITHM HEM ( )PIFM a, b, c λM MSNM MSRM

Parameter α,λ ( ) λ = −0, , , 0.373256
255

255
255

α = 0.459 α = 0.4706 α = 0.3882

Computational cost (s) 0.2374 83.0158 3.2876 2.5188 0.7562

Table 6
Comparisons of algorithms on “hand”.

ALGORITHM HEM ( )PIFM a, b, c λM MSNM MSRM

Parameter α,λ ( ) λ = −0, , , 99761
255

19
255

α = 0.3642 α = 0.3059 α = 0.102

Computational cost (s) 1.5784 135.39 130.947 129.92 3.331
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the comparisons of those experiment results show that the per-
formance of our method overwhelms those of the existing ones.
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