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• New neuron model is presented with electromagnetic induction being considered.
• Magnetic flux is used to describe the effect of electromagnetic induction.
• Memristor is used to realize feedback and coupling between membrane potential and electromagnetic field.
• Double coherence resonance is detected and multiple modes in electrical activities are observed.
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a b s t r a c t

Complex electrical activities in neuron can induce time-varying electromagnetic field and
the effect of various electromagnetic inductions should be considered in dealing with elec-
trical activities of neuron. Based on an improved neuron model, the effect of electromag-
netic induction is described by usingmagnetic flux, and themodulation ofmagnetic flux on
membrane potential is realized by using memristor coupling. Furthermore, additive phase
noise is imposed on the neuron to detect the dynamical response of neuron and phase tran-
sition inmodes. The dynamical properties of electrical activities are detected anddiscussed,
and double coherence resonance behavior is observed, respectively. Furthermore, multiple
modes of electrical activities can be observed in the sampled time series for membrane
potential of the neuron model.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The neurodynamics [1–9] on biological system has been paid much attention since the breakthrough on electrical
activities of isolate neuronmodel in 1950s. TheHodgkin–Huxley neuronmodel is thought as a reliable neuronmodel because
the effect of ion channels can be described. Indeed, some simplified neuron models can also be helpful to understand the
dynamical properties of neuron, for example, themathematical Hindmarsh–Rose neuronmodel [2] is effective to reproduce
main properties of neuronal activities and can be available for bifurcation analysis. Readers can find detailed description
for other neuron models in Ref. [4], as mentioned in Ref. [3], reliable neuron circuits can be set up to detect the response
of neuron to external stimuli. Based on most of the neuron models, stochastic resonance [10–16] can be found by applying
appropriate noise and periodical forcing on the isolate neuron and even neuronal network [17–19]. Stochastic resonance and
coherence resonance on neuron and neuronal network can induce distinct regularity in sampled time series for membrane
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potential, and spatial regular distribution [20–24] under applying optimal intensity of different kinds of noise, such as
Gaussian white noise [24], Lévy noise [14] and channel noise [23]. For stochastic resonance, external periodical forcing or
intrinsic autaptic driving are important for generating continuous pulses or wave fronts like pacemaker [13,25] in presence
of noise. As a result, bifurcation parameters [26,27] such as time delay and conductance for ion channels can be adjusted to
enhance coherence and also induce decoherence of network [28].

By now, dynamical analysis and synchronization transition has been extensively discussed onmany neuron models, and
it is confirmed that the external forcing current and bifurcation parameters can change the modes of electrical activities
[29–35]. In fact, some realistic factors should be considered by dealing with these neuron models. For example, autapse,
a specific synapse connected to the body of neuron via a close loop. As reported in Refs. [34–36], autapse plays
important biological function in regulating the electrical activities of neuron and network. In the case of neuronal network
[37,38], autapse driving can regulate the collective behaviors of neurons like a pacemaker and even generate regular spatial
patterns such as spiral waves or continuous pulses. Furthermore, the effect of electromagnetic induction in neuron should
be considered during the changing of concentration of ions in the cell. According to the physical law of electromagnetic
induction, time-varying electromagnetic field can be induced when different ion currents across the channels embedded
into the membrane, and magnetic flux across the membrane is also changed. As a result, Lv et al. [39,40] suggested that
magnetic flux across the membrane can be used to describe the effect of electromagnetic induction, and it is confirmed
that electromagnetic radiation can also be imposed the model to investigate the transition of electrical activities in neuron.
However, these results presented in Refs. [39,40] have been carried out on the Hindmarsh–Rose and the effect of noise
and ion channels is out of consideration. Besides the Lévy noise in Ref. [14], it is interesting to investigate the response
of the improved biological neuron model driven by phase noise [41–44]. Readers can explore the previous review [45]
and references therein for neurodynamics. In this paper, the effect of electromagnetic induction is considered on the
Hodgkin–Huxley neuronmodel, and thenphase noise is considered to detect the possible emergence of stochastic resonance,
and the emergence of multiple modes in electrical activities.

2. Model description

Magnetic flux ϕ is used to describe the effect of electromagnetic induction, and the dynamical equations developed from
the original Hodgkin–Huxley neuron model are described as follows

Cm
dV
dt

= −(IK + INa + IL + ACm cosωt) + Iext + kρ(ϕ)(V + Ve);

dy
dt

= αy(V )(1 − y) − βy(V )y; (y = m, h, n)

dϕ
dt

= k1V − k2ϕ;

dQ
dt

= ω1 +
√
2Dξ(t)

(1)



ρ(ϕ) = (α + 3βϕ2); Ve = A sinωt/ω; Iext = A1 sin(Q (t));

IK = 36n4(V + Ve + 12); αn = 0.01
10 − V

exp[(10 − v)/10] − 1
, βn = 0.125 exp[−V/80];

INa = 120n3h(V + Ve − 115); αm = 0.1
25 − V

exp[(25 − V )/10] − 1
, βm = 4 exp[−V/18]

IL = 0.3(V + Ve − 10.6); αh = 0.07 exp[−V/20], βh =
1

exp[(30 − V )/10] + 1

(2)

where the variable V , ϕ represents the membrane potential and magnetic flux across the membrane, respectively. Ve is the
additive induction membrane induced by external electric stimuli, Cm,m, n, h is the membrane capacitance, and the gate
variable for channels, the function ρ(ϕ) is the conductance developed frommemristor and used formemory associatedwith
magnetic field. A, A1,ω is the amplitude and angular frequency for external forcing currents, ξ(t) is Gaussianwhite noise,ω1
is the angular frequency of phase noise Q (t) [41–44]. For detailed description about the parameters α, β, k, k1, k2, readers
can find in Ref. [40]. The schematic diagram for the neuronal circuit is plotted in Fig. 1.

3. Numerical results and discussion

In this section, the fourth order Runge–Kutta algorithm is used for dynamical equations, time step h = 0.01, the initial
values for the variables are selected as V0 = −64.999801 mV,m0 = 0.052938, h0 = 0.5916, n0 = 0.317726, ϕ0 = 1,
the parameters are set as α = β = 0.1, k1 = 0.1, k2 = 1, A = 2.5 µA/cm2, the membrane capacitance is set as
Cm = 1 µF/cm2. At first, the dependence of magnetic flux on the membrane potential is investigated without additive
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Fig. 1. Schematic diagram for neuronal circuit under electromagnetic induction, Im is the external forcing current, Cm denotes the capacitance of
membrane, Ve, VNa, VK , VL the additive voltage onmembrane and the gate voltage for ion channels under electromagnetic radiation,M(ϕ) is thememristor.

Fig. 2. Bifurcation diagram for ISI via feedback gain k, the amplitude and angular frequency of the external forcing is selected atA = 2.5µA/cm2 ,ω = 0.75,
and no noise is considered.

Gaussian white noise and phase noise being considered, the ISI (interspike interval) is estimated under different feedback
gain k, and the bifurcation diagram is plotted in Fig. 2.

The results in Fig. 2 confirmed that the electrical activities can be controlled and selected as isolate modewith increasing
the feedback gain k, which describes the coupling and adjusting onmembrane potential bymagnetic flux, it indicates that the
memory effect is enhanced thus the electrical mode is selected. It also finds that themembrane potential is much dependent
on the magnetic flux, and sampled time series for membrane potential of neuron are calculated in Fig. 3.

Indeed, multiplemodes of electrical activities in neuron are foundwhen the effect of electromagnetic induction, which is
described bymagnetic flux and coupling withmembrane potential, is considered. As a result, appropriate mode in electrical
activities can be selected by applying appropriate feedback gain on the membrane potential. In the following, the phase
noise is imposed on the improved model, and the dynamical properties in electric activities are detected. The phase noise is
generated from Gaussian white noise and the sampled time series for phase noise are calculated in Fig. 4.

It is confirmed that phase noise can be trigged from Gaussian white noise and the noise intensity can be adjusted by
the Gaussian noise completely. Furthermore, the phase noise under different intensities is imposed on the neuron, and the
sampled time series for membrane potential are detected, the results are plotted in Fig. 5.

It is interesting to find that the oscillating behavior of neuron is enhancedwith increasing the noise intensity, particularly;
multiple modes of electrical activities can be detected from the time series for membrane potentials. That is to say,
appropriate noise is effective to trigger various modes of electrical activities of isolate neuron. For excitable neuron model,
the SNR (signal to noise ratio) is often calculated to detect the stochastic resonance. The SNR is often defined by SNR =

10 log10(S/B) where S and B represent the values of the output power spectrum density (PSD) at the peak (height of the
signal peak) and the base of the signal feature (the amplitude of the background noise measured at the base of the signal
peak), respectively [46–48]. In fact, the calculation for SNR provides an effectivemethod for statistical and nonlinear analysis
in signals. On the other hand, the coefficient variability (CV) of ISI series is often calculated to discern the coherence degree,
the ISI is marked as T , and then the CV [49,41] is approached by

CV =


(⟨T 2⟩ − ⟨T ⟩2)/⟨T ⟩. (3)

It indicates that a smaller value for CV can be associated with a better coherence. The results for SNR and CV from output
series of membrane potentials are plotted in Fig. 6.

It is similar with the previous works about stochastic resonance, particularly, double distinct peaks can be found in the
curvewith changing the intensity of noise, and it is called double coherence resonance [41]. The SNR is approachedwith large
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Fig. 3. Sampled time series for membrane potential by applying different feedback gains, for (a) k = 0, (b) k = 1.37, (c) k = 1.95, (d) k = 3, the amplitude
and angular frequency of the external forcing is selected as A = 2.5 µA/cm2 , ω = 0.75, respectively.

Fig. 4. Sampled time series for external forcing current under different noise intensity, for (a) D = 0, (b) D = 10, (c) D = 60, the amplitude and angular
frequency of the phase noise is selected as A1 = 16 µA/cm2 , ω1 = 0.06, k = 3.

value, whichmeans that the regular oscillating behavior is distinct over noise; indeed, it is the phase noise that enhances the
oscillating behaviorwith certain regular rhythm. Furthermore, the noise is removed to investigate the effect ofmagnetic flux
on themembrane potential by changing the feedback gain k under different values, and the bifurcation analysis is presented
in Fig. 7. And the time series for membrane potentials are calculated in Fig. 8.

The results in Fig. 7 find that ISI of neuron can be stabilized with increase of the feedback gain k, which the magnetic
flux can adjust the membrane potential to regular rhythm. To confirm the dynamical properties in electrical activities, the
sampled time series for membrane potentials are calculated in Fig. 8.

It is found in Fig. 8 that mode of electrical activities in neuron depends on the selection of feedback gain k, indeed,
multiplemodes of electrical activities emerge under appropriate feedback gain and it could be associatedwith some realistic
biological properties, which neuron can presentmultiple modes at fixed parameters. With increase of the feedback gain, the
modulation of magnetic flux on membrane potential can be approached completely thus the electrical activities select the
most suitable mode under the fixed parameters. Furthermore, the phase noise is considered, and the results are plotted in
Fig. 9.

The results in Fig. 9 confirmed thatmultiplemodes in electrical activities can be triggered under appropriate phase noise,
and the electrical activities of neuron show certain sensitivity to external phase noise. It is interesting to detect the SNRwith
the same parameters being selected; the results are plotted in Fig. 10.

The diagram for SNR in Fig. 10 shows some differences from the results in Fig. 6 though two peaks are still observed in
the curve for SNR by increasing the noise intensity at a larger feedback gain. The two peaks in Fig. 10 are not distinct and
their values are smaller than the two peaks of SNR in Fig. 6. And all the SNR are approachedwithout distinct diversity, that is
to say, larger feedback gain can induce larger SNR and keep robust to the noise background, the potential mechanism could
be that multiple modes in electrical activities of neuron are generated under noise and electromagnetic induction, and the
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Fig. 5. Sampled time series for membrane potential under different noise intensity, for (a) D = 0, (b) D = 100, (c) D = 300, (d) D = 500, the amplitude
and angular frequency of the phase noise is selected as A1 = 16 µA/cm2 , ω1 = 0.06, k = 3.

Fig. 6. SNR and CV for output series of membrane potential is calculated under different noise intensities, A1 = 16 µA/cm2 , ω1 = 0.06, k = 3.

Fig. 7. Bifurcation diagram for ISI via feedback gain k at ω = 0.7, A = 2.5 µA/cm2 , and no noise is considered.



86 F. Wu et al. / Physica A 469 (2017) 81–88

Fig. 8. Sampled time series for membrane potential under different feedback gains, for (a) k = 0.5, (b) k = 1.9, (c) k = 4.875, (d) k = 6, the amplitude
and angular frequency of the Iext is selected as A = 2.5 µA/cm2 , ω = 0.7.

Fig. 9. Sampled time series for membrane potential under different noise intensity, for (a) D = 0, (b) D = 100, (c) D = 300, (d) D = 500, the amplitude
and angular frequency of the phase noise is selected as A1 = 16 µA/cm2 , ω1 = 0.06, k = 6.

electrical modes are dependent onmagnetic flux greatly. Furthermore, additive Gaussian white noise is also considered, the
numerical results found that multiple modes of electrical activities can be observed in the improved model.

Above all, phase noise is imposed on our improved neuron model, which the effect of electromagnetic induction is
described by using magnetic flux, stochastic resonance-like behavior can be observed when the feedback gain between
magnetic flux and membrane potential is weak. Furthermore, multiple modes in electrical activities can be observed in
electrical activities and stochastic resonance is suppressed with the increase of feedback gain on membrane potential.

4. Conclusions

In this paper, the effect of electromagnetic induction is considered on the original Hodgkin–Huxley neuron model by
introducing an additive magnetic flux variable, which is coupled the membrane potential across a memristor. SNR and
CV are calculated to detect the stochastic resonance behavior under phase noise, multiple modes of electrical activities
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Fig. 10. SNR and CV for output series of membrane potential under different noise intensities, A1 = 16 µA/cm2 , ω1 = 0.06, k = 6.

are observed. It is interesting to observe the occurrence of double coherence resonance which was ever detected in
another neuron model [41]. With increasing the feedback gain of magnetic flux on membrane potential, the stochastic
resonance is suppressed (two peaks in SNR curve are not distinct) because of emergence of multiple modes in electrical
activities of neuron. The biological neuron model presents more complex dynamical behaviors, particularly; the emergence
of multiple modes in electrical activities can throw light on further investigation on dynamical response of neuron under
electromagnetic radiation. Furthermore, the modulation of astrocytes on neuronal transmission [50,51] can be considered
by adding the magnetic flux on the neuron-coupled-astrocytes model, and this topic could be carried out by readers in this
field for their interests.
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